
World Wide Web (2009) 12:125–147
DOI 10.1007/s11280-008-0049-x

An Operable Email Based Intelligent
Personal Assistant

Wenbin Li · Ning Zhong · Yiyu Yao · Jiming Liu

Received: 31 March 2008 / Revised: 1 July 2008 /
Accepted: 7 July 2008 / Published online: 23 September 2008
© Springer Science + Business Media, LLC 2008

Abstract The recent phenomena of email-function-overloading and email-
centricness in daily life and business have created new problems to users. There is
a practical need for developing a software assistant to facilitate the management
of personal and organizational emails, and to enable users to complete their email-
centric jobs or tasks smoothly. This paper presents the status, goals, and key technical
elements of an Email-Centric Intelligent Personal Assistant, called ECIPA. ECIPA
provides various assisting functions, including automated and cost-sensitive spam
filtering based on corresponding analysis, ontology-mediated email classification,
query and archiving. ECIPA can learn from dynamic user behaviors to effectively
sort and automatically respond email. Techniques developed in Web Intelligence
(WI) are adopted to implement ECIPA. In order to facilitate cooperation of
ECIPAs of different users, the concept of operable email, an extension of traditional

W. Li
Shijiazhuang University of Economics, Shijiazhuang 050031, China

W. Li · N. Zhong (B) · Y. Yao · J. Liu
The International WIC Institute, Beijing University of Technology, Beijing 100022, China
e-mail: zhong.ning.wici@gmail.com

N. Zhong
Department of Life Science and Informatics, Maebashi Institute of Technology,
460-1 Kamisadori-Cho, Maebashi-City 371-0816, Japan

Y. Yao
University of Regina, Regina, Canada

J. Liu
Hong Kong Baptist University, Hong Kong, China

126 World Wide Web (2009) 12:125–147

email with an operable form, is introduced. ECIPA can in fact be viewed as a family
of collaborative agents working together on the operable email.

Keywords operable email · personal assistant · email filtering · intelligent agents ·
Web intelligence

1 Introduction

Email is one of the most useful communication tools over the Internet. Sine 1971,
the functionality of email has been in a constant evolution, from simple message
exchanges to multimedia/hypermedia contents communication to push technologies
for direct marketing. For instance, email can work with a Web browser, such
as Microsoft Internet Explorer and Netscape, as a useful function of Web-based
e-commerce that is popularly used by enterprises to promote products and spread
information. In this paper, we refer to this kind of expansion in functionality as email-
function-overloading. People reply on email to conduct their jobs and tasks in daily
life or business. They use emails to plan and coordinate their own work, to track and
dispatch tasks, to exchange information and cooperate among group members, and
to publish results. In other words, their work is mostly email-centric.

Email-function-overloading and email-centricness, as pointed out by Tinapple
and Woods, have presented inconveniences and problems to email users [28]. We
highlight some of the most serious ones as follows. First, email users often have clut-
tered inboxes containing hundreds of messages, including outstanding tasks, partially
read documents and conversational threads. Attempts by users to rationalize their
inboxes by archiving may not be achieved in a straightforward fashion. Important
messages usually get overlooked, or lost in archives. Second, as a communication
tool, many documents are exchanged as email attachments. Users need to sort out
not only emails and resources, but also relationships between them. The existing
email facilities are not designed to handle such management tasks. Third, email-
mediated communications can in general be categorized into two approaches: auto-
mated and non-automated. In existing email facilities, most of the communication
tasks are not fully automated. It is necessary for users to deal with those tasks
manually. Fourth, receiving, recognizing, or deleting spam messages presents a time-
consuming, manual task.

The above mentioned drawbacks in the existing email systems can cause many
inconveniences and sometimes serious consequences. For instance, users may fre-
quently forget an important appointment. They may be tired of those repeated tasks
which could be automated. They may not be able to remember where an attachment
has been stored. Hence, there is a real need for developing an intelligent assistant to
improve the management of personal and organizational email, which enables users
to complete email-centric tasks smoothly. In fact, developing intelligent applications
on various kinds of network is one of the goals of Web Intelligence (WI) [35–37].

This paper presents the status, goals, and key technical elements of an Email-
Centric Intelligent Personal Assistant, called ECIPA. ECIPA adopts ontology to
store contents from several personalized information sources, local and global
information, such as emails, local files, and user’s background knowledge, to provide
a single gateway to index, manage and search such information. In addition to those

World Wide Web (2009) 12:125–147 127

tasks which are available in email client applications today, ECIPA provides au-
tomated and novel functions. For example, ECIPA can automatically learn the
dynamic user behavior by monitoring how the user processes ingoing and outgoing
emails. ECIPA can also find out whether or not its owner is on vacation. It can
automatically respond senders during the vacation period. In order to reduce the
burden of processing the large volume of spam messages, ECIPA incorporates a
filtering agent to block spam. We have particularly designed an active email system,
called operable email, for automated communication between two ECIPAs. The
operable email provides an interface for a user or the user’s ECIPA to interact with
other users’ ECIPAs, in order to perform some automated work as permitted by
those users.

In the rest of this paper, we first present some background and related work
on ECIPA in Section 2. In Section 3, we give an overview and the architecture
of ECIPA. Section 4 describes what is the operable email and its main features
for automated email-mediated tasks in ECIPA. The main agents in ECIPA, such
as extracting agent (EtA), learning agent (LA), filtering agent (FA) are discussed
in Section 5. Some implemented snapshot and experimental results of ECIPA are
provided in Section 6. Finally, we present concluding remarks and future work in
Section 7.

2 Background and related work

The flood of wanted or unwanted messages has aroused a great need for developing
intelligent personal assistants that are aimed to automate the classification [4, 10, 15],
archiving, filtering [6, 11, 26, 34], storage, representation, and retrieval of emails. An
assistant collaborates with its user(s) in the same work environment. It can assist a
user in a range of areas [14]: (1) performing tasks on behalf of the user; (2) training
or teaching the user; (3) helping users to collaborate; (4) monitoring events and
procedures.

In this work we show a more flexible and robust framework of an assistant.
This assistant combines various WI-related techniques, such as the operable email,
agent-based etc. to produce a highly personal and automated system, with more
features than found in a typical system today. The outstanding characteristics of such
an assistant are that firstly it adopts the operable email as a basic for automated
functions; secondly, it uses agent-based architecture. Thus, in the remainder of this
section, we discuss related work with respect to the two aspects.

2.1 The assistants based on variation of email

Although email-mediated tasks can be either automated or non-automated, the
email client cannot work for its users automatically without semantic support. To
open the door for implementing a wide range of email-mediated applications with
automated functions of response by machine, researchers are turning to modify or
extend the format of traditional email. Semantic email is a good example [17].

A semantic email process (SEP) should be first represented for a semantic email
task. A SEP contains three primary components: originator, manager and partici-
pants. A SEP is initiated by the originator, who is typically a person. The manager
may be a shared server or a program run directly by the originator. A new SEP

128 World Wide Web (2009) 12:125–147

invoked by an originator is sent to the manager. Then, the manager sends email
messages to the participants. After that, the manager handles responses, and requests
changes as necessary to meet the originator’s goals. The participants, who are also
typically a person, respond to messages received about the process. Surely, the
semantic email has the greatest promise for implementing automated functions.
Some applications based on such a kind of email have been developed [9]. However,
such semantic emails have the following disadvantages and hence cannot be used in
ECIPA. First, an automated task needs to be defined as a semantic email process
(SEP) by a trained user. Second, it needs an additional server (namely manager)
to support the functions of a SEP. Third, many bread-and-butter tasks cannot be
defined as a SEP. In order to solve the problems, we describe how to design and
apply the operable email for implementing automated functions in ECIPA.

2.2 The assistants based on agent technology

Among many applications, intelligent agent technology has emerged as a devel-
opment paradigm in which programs are created as proxies for human users in
interactions with other humans or computers. For instance, agent-based approaches
have been developed to assist users in their own work. Moreale and Watt [20]
explored the application of an agent assistant metaphor to mailing list knowledge
management. Mitchell et al. [19] pointed that a long-standing goal of artificial
intelligence (AI) is the development of intelligent workstation-based personal agents
to assist users in their daily lives. By analyzing emails, contact person names, and
online calendar meetings, they developed a clustering approach to automatically
acquiring a knowledge base describing a user’s different activities, e.g., contact
people, meetings, and email handling. They studied the distribution of email words,
the social network of email senders and recipients, and the results of Google
Desktop. Huang et al. [8] discovered some major ongoing activities based on a variety
of data available from users’ workstations, including emails, files, online calendar,
and the histories of Web page accesses. Deng et al. [5] implemented a personal
email agent, named P@rty, which can help its user to manage the growing volume
of messages. P@rty was designed to classify incoming messages with respect to a user
into folders automatically, and prioritize each incoming message based on the user
preferences. Bergman et al. [3] studied the capabilities of smart vacation responding,
junk mail filtering, efficient email indexing and searching, deleting, forwarding, re-
filing, and prioritizing of emails. The key contribution of their work is to leverage
high-quality open source components for information retrieval, machine learning,
agents and rules to provide a powerful, flexible and robust capability. Xia and Liu
[29] implemented an adaptive personal email agent (PEA) that can learn the mails
handling preferences of its users and automatically categorize and manage the emails.
Ho et al. [7] described an email system, called EMMA (email management assistant),
that can sort messages into virtual folders, prioritize, read, reply (automatically or
semi-automatically), archive and delete certain mail items. Pires and Abreu [22]
applied the framework of an evolving logic programs, named EVOLP, to modeling
the reactive and updateable rule bases and employing them to define an evolving
email Personal Assistant Agent.

Some of the existing projects on intelligent agents have been criticized for solving
only toy problems [3]. Many of the ideas described in the earlier studies are

World Wide Web (2009) 12:125–147 129

fragmentary. In addition, some assistants were implemented to solve simple out-of-
date problems with out-of-date technologies. As the real-world problems become
more complex and new technologies continue to emerge, it is imperative that
we leverage on and incorporate emerging theories and techniques, such as agent-
based computing, heterogeneous information source handling, information retrieval,
machine learning, as well as WI-related techniques.

3 The architecture of ECIPA

Web intelligence aims at producing new theories and technologies that will enable
us to optimally utilize the global connectivity, as offered by the Web infrastructure,
in life, work, and play [13]. ECIPA is an example of the applications in Web intel-
ligence. The main objective of an ECIPA is to design customizable and extensible
agents that work together to process ingoing, outgoing, and existing emails.

Figure 1 shows part of use case diagram of ECIPA. It indicates that ECIPA can
deal with two kinds of emails, i.e., operable email and traditional email. The former is
designed for automated tasks completed by agents in ECIPA, which will be described
in the next section. When a new email is detected by MSA (monitoring/sending
agent), it firstly identifies the type of the email. Then, MSA informs corresponding
agents to deal with this email, by writing a piece of message on the blackboard (all the
agents in ECIPA communicate with each other via a blackboard). The blackboard

User

FA

LA

IA

agent

PA

MSA

write traditional email Send

filtering

inform

access Interior Database

access Ontology

generate operable email

receive

Fig. 1 Part of the use case diagram of ECIPA. FA filtering agent, PA parsing agent, LA learning
agent, MSA monitoring/sending agent.

130 World Wide Web (2009) 12:125–147

is a block of memory that can be accessed by each agent. In fact, it is designed as
a message queue for storing blackboard items. All the items are categorized into
three types to store, namely, the one from MSA to an agent, the one from an agent
to MSA, and the one from an agent to another agent. Main entries in each item
include: MESSAGE_ID (the message ID), SOURCE_ID (the sending agent ID),
DESTINATION_ID (denotes the receiving agent ID), CONTENT (the message
content), USING_OR_NOT (the message is using or not). Most of functions of
ECIPA are supported by the agents, such as PA (parsing agent), LA (learning
agent), FA (filtering agent) etc. Other agents in ECIPA are: extracting agent (EtA)
which distills information from diverse sources; querying/altering agent (QAA)
which answers or alerts the user; configuring agent (CA) which sets the running
parameters; interface agent (IA) which provides user services; external agent (ExA)
that communicates with the archiving system.

Each agent has the following statuses: waiting, running, blocked, suspended. The
waiting status denotes that the agent is in the queue waiting for executing. The
running means that the agent is running. The blocked denotes that the agent is
blocked by MSA. The suspended is that the agent just registers in MSA, it is still
stored in the disk. The exchanged diagram of agent status is shown in Figure 2. All
agents register their own status in MSA.

The interior database is designed to store various information, e.g., the name of
each agent, the capabilities of each agent, the status of each agent, the contact book.
The ontology stores built-in concepts and their relationship, and archives emails
based those concepts.

The main functions of ECIPA supported by our contributions can be summarized
below:

• Operable email-based intelligent cooperation (supported by PA and EtA): In
all the email-mediated works with respect to a user, part of them can be carried
out automatically [17]. The use of the operable email allows an ECIPA to aid
its user to automatically carry out the formalized tasks enclosed in the operable
email sent by another user or the user’s ECIPA.

• Ontology-mediated email management (supported by EtA, ExA, QAA): An
ontology is designed to store background knowledge with respect to the user,
the information of local or global resources, emails and attachments within their

Fig. 2 The statuses of agents
in ECIPA.

World Wide Web (2009) 12:125–147 131

context. ECIPA provides the flexible functions for classifying emails into virtual
folders based on the operations on concepts in the ontology, as well as those for
queries based on concepts.

• Dynamic user behavior learning-based sorting/responding (supported by LA):
ECIPA learns dynamic user behaviors based on the time window techniques
developed by us (see Section 5.2). It prioritizes incoming messages according to
the habit processing emails with respect to a user. In addition, by finding and an-
alyzing the user behaviors, ECIPA can identify whether the user is on vacation.
Thus, ECIPA responds for the user automatically in the case of vacation.

• Automated and cost-sensitive spam filtering (supported by FA): ECIPA
combines multiple Naive Bayesian filters to block unwanted emails. The filtering
method is sensitive to the cost of the false positive errors and the false negative
errors.

ECIPA demonstrates that useful tasks can be accomplished by means of agent
interaction. Furthermore, The key techniques adopted by ECIPA are very useful
for developing other intelligent applications on the Web. For example, the dynamic
behavior learning approach based on time-window can be adopted in other person-
alizing recommendation system on the Web. Although the architecture described is
developed as a three tiers structure, it can be easily implemented by other ways.

4 Operable email as a basis of ECIPA

4.1 Introduction to the operable email

As an indicator of collaboration and knowledge exchange, email provides a rich
source for extracting informal social network across the organization. As a result,
it is a highly relevant area for research on social networks. Just as the WWW
consists of websites and hyperlinks which explicitly connect sites, the Whole World
Social Email Network (WWSEN) consists of email addresses and communication
relationships which implicatively connect users. Hence, among those research topics
of WI, recasting email for ubiquitous social computing is a special goal. On the other
hand, enhancing email with semantic is an important way for implementing email
based intelligent applications. The operable email is our solution for such a goal.

Different from the traditional, merely human-readable email, the operable email
instead provides a language as well as an infrastructure where agents on the WWSEN
can automatically cooperate and deal with some tasks by expressing some infor-
mation in an email with a machine-processable form. We are not sure if a formal
definition of the operable email is useful or desirable. Nevertheless, we suggest the
possible best way of summing up the operable email as follows. It is a technology for
enabling machines to make more sense of some specifically emails sent from an agent
to another, with the result of implementing automated functions or services on the
WWSEN.

It is well know that the traditional email was originally designed as a tool for
the communication of one to one user or one to multiple users. For simplification,
we only consider one to one communication. In our view, the communication
between two users can be categorized into two types, namely automated and
non-automated. However, current emails without semantic do not support any

132 World Wide Web (2009) 12:125–147

automated application, although many new functions have been added to email.
Instead of providing a simple tool for manual communication between two users, the
operable email focuses on offering a mechanism for those two kinds of communica-
tions. Consequently, with the support of the operable email, many intelligent func-
tions, such as searching, question-answering, and problem-solving, become possible
on the WWSEN. Sustained by automated communication based on the operable
email between any two nodes, the WWSEN provides another Internet application
environment that enables people to effectively publish, share, and search information
or resources. Concretely, we view each node as an autonomy agent entity, this allows
more functionality of a node, as well as additional connections and interactions be-
tween different nodes. The operable email is viewed as a soft communication media
between any two entities. That is, for automated tasks, the semantic information from
agent x to agent y is enclosed into an operable email. Imaging that user A wants to
search a resource on the WWSEN, A first inputs relative information about that
resource into A’s agent x. After that, x automatically generates an operable email oe

enclosing information that can be automatically understand by other agents. With
an appropriate mechanism, oe is promulgated on the WWSEN. Then, the received
agents parse, understand and respond oe. Although many details in the illustrative
example are ignored, we still see that the WWSEN provides asynchronous services
(while WWW provides synchronous ones) to support intelligent problem solving,
decision making, question-answering, cooperative teamwork and so on.

In fact, the WWSEN absorbs the Web’s ideals, and it is a complementarity for
current Internet computing. Thus, the current and future WI-related theories and
techniques serving for the wisdom Web provide possible implementation platforms
for developing the operable email and the WWSEN [13, 36]. Figure 3 shows the stack
of operable email, in which the operable email consists of six layers, namely language
layer, knowledge layer, representation layer, explaination layer, functions layer and
services layer.

• The language layer aims at designing Problem Solver Markup Language
(PSML) [27] for representing globally distributed resources and knowledge from

Fig. 3 The stack of the
operable email.

Ontology language

Objects

Ontology

Resources

ReasoningSecurity Promulgation

Profile

Problem-Solver Markup Language

Parser plug-ins

Problem solving: searching, question-answering,
publishing, decision making, sharing etc.

Problems

Language

Knowledge

Presentation

Explaination

Functions

Services

Knowledge

World Wide Web (2009) 12:125–147 133

the WWSEN, as well as problems, tasks, queries, results, profiles and objects.
Note that PSML is a language which bears a machine-understandable form.

• In the knowledge layer, various knowledge, and ontologies including concepts
and their relationship are represented and stored.

• Using PSML, the representation layer provides a mechanism with which profiles,
objects, resources etc. are expressed. A profile is used to denote personalized
information related to a user. An object refers to a mobile agent defined by
PSML. A sharing file, a piece of publishing information etc. on the WWSEN
are called by a joint name, namely resources.

• The explaination layer provides multifarious plug-ins for parsing messages en-
closed into an operable email. For example, a query initiated by a sender is
enclosed into an operable email which will be sent to receivers. At the receivers’
side, the corresponding parser plug-in in the agents is invoked to “understand”
the intention of that query. After that, an answer is enclosed into another
operable email, and then is sent to the sender. Different plug-ins parse different
messages of the operable email. In this way, the operable email affords a flexible
and extensible architecture. That is, when we want to the agent to understand
a new kind of message of the operable email, only installing (or developing) a
corresponding plug-in is needed.

• Just as its name implies, the functions layer offers some functions such as the
function of security mechanism, the promulgation function and the reasoning
function. Agents, the sharing resources, etc. on the WWSEN are especially
vulnerable to new threats from a security viewpoint. The security mechanism
aims at studying countermeasure for that. Through the promulgation function,
an operable email can penetrate over the WWSEN when it is necessary. Carrying
out the reasoning function using knowledge is required for intelligent services.

• The services layer includes many user-oriented services which aid users to solve
sundry problems, such as querying, sharing/searching, publishing etc.

In our view, the operable email opens the door for implementing a wide range
of email-mediated applications with automated functions on the WWSEN that
are neglected or infeasible before. By providing a more efficient and effective
communication means with semantic, the operable email exploits research towards a
long-standing goal of WI, i.e., the wisdom Web [13, 36].

4.2 The operable email in ECIPA

From the description in Section 4.1, we can see that designing such operable email
is a complex engineering. To demonstrate some automated functions for ECIPA’s
users, we here provide a simple PSML in language layer of the operable email.
Using a special field in the header of an operable email, the MSA in ECIPA can
distinguish an operable email from a traditional email. The content in an operable
email is generated by ECIPA (or written by users) according to the PSML syntax as
shown in Table 1.

According to the PSML syntax for providing the automated tasks in ECIPA, we
define some commands as shown in Table 2. Due to the limited space of this paper,
the parameters of those commands are omitted. To simplify the parsing process,
we represent each script of the commands as an XML document according to a

134 World Wide Web (2009) 12:125–147

Table 1 The command syntax of the operable email in BNF.

〈message〉:: = 〈command〉(〈blank〉〈para-value〉)∗
〈command〉:: = 〈identifier〉
〈para-value〉:: = 〈paraName〉〈blank〉〈value〉
〈paraName〉:: = 〈identifier〉
〈value〉:: = (〈ascii〉)*
〈identifier〉:: = 〈alphabetic〉(〈alphabetic〉|〈numeric〉)∗
〈blank〉:: = 〈whitespace〉(〈TAB〉|〈ENTER〉)+

“*” indicated any number of occurrences.
“+” means that the number of occurrences should be greater than 1.

scheme of the body of the operable email before sending [12]. In other words,
ECIPA encodes message-as-XML documents into operable emails, and decodes the
message-as-XML documents back into messages that represent the commands as
shown in Table 2.

Hence, in ECIPA, we can see that the operable email provides an email-based
communication means, facilitated by an assistant of the users. This means that
the operable email supports an email-based agent infrastructure where agents can
automatically deal with some tasks that are impracticable currently. There are several
reasons why using the operable email as a communication media for “bear the
weight” of the communication script. First of all, email clients are lightweight and
available on most of computational devices. In the next place, emails are peer-to-
peer and symmetric communication protocols. Hence, an email-based agent commu-
nication channel does not need a router component. Again, firewalls are not an issue
for email-based communication. Agents on either side of a firewall can communicate
more easily with an email-based infrastructure than with a TCP/IP infrastructure.
Finally, the ISP mailbox acts as a message queuing facility, obviating the need for
a specialized message queuing component. Consequently, the operable email or its
transmutation to be developed in the future is an imperative, simple-seeming but
very useful tool for implementing WI applications on the next generation of the Web
(i.e., the Semantic Web).

In practice, operable emails can be generated by either a user or a program. It
is obvious that the user-generated case is tedious, time-consuming, and error-prone.
Thus, in ECIPA, we adopt the latter to form operable emails for the user according
to the input in the IA of the assistant.

Table 2 The main commands as used in ECIPA.

Command Meaning

download Download a file from another assistant
listfile Ask the receiver to list the sharing files the sender can access
sendfile Ask the receiver to send a file
appointment Make an appointment with the receiver at a given time
meeting Hold a meeting with the receivers at a given time
bulletin Publish a bulletin to receivers
subscribe Subscribe a piece of information from the receiver
ask Ask the receiver about something

World Wide Web (2009) 12:125–147 135

5 An agent based design of ECIPA

In this section, we describe in detail the agent based architecture of ECIPA. More
specifically, the functions and working principles of some of the agents are examined
in relation to the concept of operable emails.

5.1 Ontology-based processing of operable emails

Ontologies provide many useful capabilities [21], such as (1) sharing domain informa-
tion among people and software; (2) enabling reuse of domain knowledge; (3) analyz-
ing domain knowledge and making it more explicit; (4) separating domain knowledge
from its implementation. These useful capabilities motivate us to adopt the ontology-
based method for email management. Specifically, our objective is to archive email
information, email context, user’s background, and other resources into an ontology
represented by OWL (Web Ontology Language: http://www.w3.org/2004/OWL/)
whose logical footstone is Description Logic (DL) [2]. In this way, ECIPA provides
the retrieving, classifying and managing functions based on concepts.

In DL, the complex concepts are constructed by using the atomic concepts, rela-
tionship, and constructors. According to the ontology, the EtA in ECIPA extracts
the relevant information of each email, and then stores them as the instances into the
ontology’s ABox. as shown in Figure 4. Hence, an email is decomposed into much
piece of information, i.e., the instances in the ABox of the DL-based ontology. After
the atomic and complex concepts are defined to obtain the instances of the atomic
concepts and their relationship, the instances of a concept can be queried through

Email(E1). header(H1). body(B1).

hasHeader(E1, H1). hasBody(E1,B1).

hasSender(H1, Yila Su).

appointment(A1).

hasTopic(E1, A1).

…

friend(Yila Su).

scholar(Yila Su).

Background Knowledge in ABox

Instances in ABox

Concepts and their relationship

TBox
All emails fromfriends?

E1…

• An Email named E1

• It came from my friend

•

• He is a scholar

• He wants to make an

appointment with me

..(friend)hasSenderheadhasHeaderEmailEmailofFriend

Information of an email

1. Extracting

3. Querying
4. Reasoning

5. Return

2. StoringMy friend is Yila Su

∩ ∩

Fig. 4 The concept-based query process in ECIPA. 1, 2: ExA extracts and stores an instance into the
ontology; 3: QAA generates a formal query according to user’s query given in IA, and send it to an
inference engine; 4: reasoning; 5: the results are shown in IA.

http://www.w3.org/2004/OWL/

136 World Wide Web (2009) 12:125–147

the reasoning in an inference engine of DL. For example, “sender” and “Email” are
two atomic concepts in the ontology, “hasSender” is an atomic relationship between
these two concepts. “friend” is a sub-subclass of “sender”. Figure 4 shows that the
ABox of this ontology has the following instances: Email(E1); hasSender(E1, Yila
Su); friend(Yila Su). Then we can use the following concept to search “emails from
friends”:

Emailof Friend ≡ Email ∩ ∃hasHeader.(head ∩ ∃hasSender. f riend).

In this example, the inference engine returns the instance “E1” of the above
concept, and shows it to the user via IA. The searching method based on concepts
can return the results that the user really needs. However, the precision and recall of
the traditional searching based on keywords are not perfect.

The main purpose of a concept-based query is to provide the easy, accuracy, and
fast access to all information related to email messages (i.e. message contents, header
fields, attachments etc.). However, the correspondence between a user’s intension of
queries and concepts needs to be established to support such a function, as shown
in Figure 4. To solve this problem, we set several built-in concepts maintained by
the QAA in ECIPA. For example, the following concepts can be defined to dis-
tinguish sender’s status: f amily, colleague, f riend, businessman, and scholar, whose
instances are set by the user.

Emailof Family ≡ Email ∩ ∃hasHeader.(head ∩ ∃hasSender. f amily)

EmailofConfrere ≡ Email ∩ ∃hasHeader.(head ∩ ∃hasSender.confrere)
Emailof Friend ≡ Email ∩ ∃hasHeader.(head ∩ ∃hasSender. f riend)

Emailof Business ≡ Email ∩ ∃hasHeader.(head ∩ ∃hasSender.merchant)
Emailof Scholar ≡ Email ∩ ∃hasHeader.(head ∩ ∃hasSender.scholar).

Thus, an input of a query accepted by the IA is automatically mapped by QAA
into a built-in concept or that one defined by multiple concepts. For example, if a
user wants to get those emails sent from friends who are scholars, ECIPA returns
the instances synchronously defined by the two concepts, namely EmailofFriend and
EmailofScholar, as follows.

EmailFromScholar AndFriend ≡ Email ∩ ∃hadHeader.(head ∩ ∃hasSender
.scholar) ∩ (head ∩ ∃hasSender. f riend)).

By means of executing a query, messages can be classified into a virtual folder. A
virtual folder contains the set of messages defined by an atomic or complex concept at
any given moment. An analogy can be established between a virtual folder and a view
in databases, which is a virtual relation defined by a query over existing, concrete
relations. This enables a user to define virtual folders based on the combination of
built-in concepts. The expression for a folder is executed every time as a user wishes
to retrieve the set of messages represented by the folder criterion. Such a method
guarantees the consistency between the classification criteria specified for a folder,
and the set of messages associated to it. At the same time, the logical association of
emails to virtual folders has some additional advantages; for instance, the same email
is related to one or multiple folders without message duplication.

World Wide Web (2009) 12:125–147 137

As described above, an ontology is also designed to archive the user’s background
knowledge, the information about emails and attachments within their context. In the
archiving method, ECIPA indexes all the contents without user’s involvement. The
ExA in ECIPA acts as the external interface that interacts with the archiving agent of
the organization. The enterprise agent can tell the ExA what are the required emails
for archiving. For those required messages, the ExA protects them from tampering.

5.2 Learning and adaptation

ECIPA is a personal assistant. A prerequisite for developing systems providing the
personalized services is to understand user behavior [1]. However, it is very difficult
to learn the behaviors of a user because they are dynamic. That is, the behavior in a
period is different from that one in another period. In order to capture the dynamic
behaviors, we adopt a technique, namely time window that refers to a period in which
LA observes behaviors of its users. Figure 5 shows an illustrative example of the time
window. In each window, LA observers behaviors of its users, such as determining
what kinds of emails the user read with a higher priority, the deleting behavior, and
the forwarding or replying behavior. Hence, when the window is sliding step by step,
the learned behaviors change synchronously.

Supported by LA, ECIPA provides the functions with respect to behavior learn-
ing: (1) vacation responding, and (2) prioritizing incoming messages. It can be
guessed that a user is on vacation if ECIPA observed no outgoing emails. However,
some receivers may be waiting for a user’s reply. In this case, based on the analyzing
results of LA, the MSA in ECIPA automatically sends a reply to tell the senders that
its user may be on vacation, and to prompt them try to contact the user in other ways
if they have urgent things. The length of a sliding step (denoted by � below) and the
size of a time window (denoted by s below) are the two crucial parameters for this
function, where s > �. For the service of vacation responder, we suggest that the user
sets � to 1, and sets s to �m/n	, where m is the maximum length of vacations, and
2 <= n < m. For example, the first author often has a short vacation less than 7 days,
then the author sets s to 3, where m=7, n=2.

The architecture of ECIPA shows that all agents in ECIPA run on the server
side. Hence, even the user is not online, ECIPA still provides some of the automated
functions (e.g., the vacation responding) for its user.

As mentioned above, ECIPA also learns user behavior to prioritize incoming
messages. The user may then view emails sorted by priority. That is, the priority

Fig. 5 An illustrative example
of the time windows.

date

ingoing email

outgoing email

slide

Why no

outgoing?

Why only

outgoing?

1st Window 2nd Window 3rd Window

138 World Wide Web (2009) 12:125–147

is used to represent the degree of importance of new emails. In ECIPA, we define
4 types of priorities for each message:

• Read-based Priority (RP) that is based on the principle “more early read, more
important”;

• Sender-based Priority (SP) that is based on the principle “more frequency, more
important”;

• Similarity-Based Priority (SIP) that is based on the principle “more similar to
important emails, more important”;

• Combined Priority (CP) that is a combination of the above three priorities.

Suppose that there are n new emails, e1 is the first email that a user has read, e2

is the second one, . . ., en is the last one. Then, the RP of the ith email is defined
as RP(ei) = (N − i + 1)/(N ∗ (N − 1)/2). Furthermore, suppose that, in the full time
window, there are N emails in total, and among them, there are N1 ingoing emails, N0

outgoing emails, Nj1 emails are sent by the jth sender, Nj0 are sent to the jth sender.
In the recent time window, the jth sender has sent Mj1 emails, and the ECIPA user
has sent Mj0 emails to this sender. Then, SP of the jth sender is defined as

SP(j) =
1∑

m=0

(
Njm

Nj
∑Ns

i=1(Nim/Ni)
+ Mjm

Mj
∑Nt

i=1 Mim/Mi

)
+ Nj/N (1)

where Ns is the count of all the senders, Nt is the count of all the time windows,
Nj=Nj1+Nj0, Mj=Mj1+Mj0.

SIP of the jth new email ej is defined as follows. Assume that e1, . . . , eK are e j’s K
nearest neighbors computed by k-NN method [18]. Then, SIP is

SI P(ej) =
K∑

i=1

RP(ei)/K. (2)

ECIPA sorts new emails according to the CP value of each email. For a new email e,
CP(e) is computed as

CP(e) = a ∗ SP(es) + b ∗ SI P(e) (3)

where es denotes the sender of e, a and b are set by the user, 0< a, b ≤2. In fact, in
the CP formula, a feedback mechanism is hidden. From the above descriptions, we
can see that the reading order of a user in this time affects SP value in the next time.
Thus, the CP value changes with the reading behavior of a user.

5.3 Spam filtering

The spam filtering is a very important function of ECIPA. As Segal et al. [24] pointed
out, “the best approach is a multifaceted one, combining various forms of filtering . . .”.
ECIPA combines rule-based and statistical methods. The left side of Figure 6 shows
the working flow of the FA in ECIPA. FA consists of two types agents: rule-based
and statistic-based. When a new email arrives, the rule-based agent uses default rules
to judge whether it is a spam or not. In fact, the rules refer to some of the concepts and
the corresponding instances stored in the ontology of ECIPA. The purposes using

World Wide Web (2009) 12:125–147 139

New Emails

Default rules in

ECIPA

spam?

Statistical agents

spam?

YES

NO

YES

NO

Updating

rules

1) Emails from friends,

scholars, families

are legitimate

2) Emails from “spam

address”a re s pam

3) Emails from “spam

sender”a re s pam

4) Emails from the

sender to whom the

receiver has replied

before are legitimate

5) …

1) Reducing the chance

of the costly false

positive error

2) Improving the speed

of filtering

3) Increasing the

accuracy of filtering

4) …

Background

knowledge is

used!

Rules in Ontology Purposes

Return

Fig. 6 The filtering process of FA.

such rules are given in the right-hand of Figure 6. If the rule-based agent fails to
classify that email, ECIPA passes it to the statistic-based agent. For simplification,
we still call the statistic-based agent as FA.

Similar to ATC tasks described in [23], the main issues, when building a filter-
ing agent, include dataset preparation, feature selection, email representation, etc.
[25, 32, 33] give the detailed and formal definition about such a process. Before the
filtering agent is available, we conduct a training phase to train multiple statistic-
based filtering agents. The training phase is divided into four steps: firstly, dividing
the training dataset into Q partitions; secondly, training the kth Naive Bayesian
(NB) [16] agent on the kth subset (k = 1, 2, . . . , Q); thirdly, constructing the training
matrices (includes the spam matrix and the legitimate matrix); fourthly, computing a
weight for each agent using correspondence analysis. After that, when a new email
arrives, Q agents classifies it according to their own weights. The key problem in FA
lies in how to build the training matrices. For simplification, we only consider the
spam matrix below. Suppose that T M(N×(Q+1)) is the matrix, N is the total count of
the training spam. The ith line of T M represents the ith training spam, which mainly
reflects the performance of each filter on the ith training email. Let the ith line vector
in T M be vi, and vi = 〈pi,1, pi,2, . . . , pi,Q−1, pi,Q, pi,Q+1〉, where pi,k(k = 1, . . . , Q)

is the posterior probability of the ith training email belonging to spam, which is
computed by the kth agent, and pi,Q+1 = 1.

The NB algorithm is adopted to learn a filter for each statistic-based agent in FA.
Each statistic-based agent votes a new email according to its weight. Correspondence
Analysis (CA) is adopted to generate the weight for each of such agents. The main
idea of correspondence analysis is to develop simple indices that show the relations
between the row and column categories. These indices tell us simultaneously which
column category has a greater weight in a row category and vice-versa. Corre-
spondence analysis is also related to the issue of dimension reduction of the table.
Algorithm 1 shows the CA process on the spam or legitimate training matrix.

140 World Wide Web (2009) 12:125–147

Here we describe CA process in FA for the spam matrix. For the matrix
T M(N×(Q+1)), the calculations of correspondence analysis may be divided into three
main stages (see Algorithm 1). The first stage (Steps 1.1-1.6 in Algorithm 1) consists
of some preprocessing calculations performed on T MI×J (I = N, J = Q + 1), which
leads to the standardized residual matrix. In the second stage (Step 2 in Algorithm 1),
a singular value decomposition (SVD) is performed on the standardized residual
matrix to redefine it in terms of three matrices: UI×K,

∑
K×K, and VK×J , where

K = min(I − 1, J − 1). In the third stage (Steps 3.1-3.2 in Algorithm 1), we use U ,∑
, V to determine YI×K and Z J×K, the coordinates of the rows and columns of T M,

respectively, in the new space.
YI×K is the principal coordinates of the rows of T M, and Z J×K is the principal

coordinates of the columns of T M. Note that not all K dimensions are necessary.
Hence, we can reduce the dimension to K̃, while some information is lost. Defini-
tion 1 is used to reflect the degree of information loss.

Definition 1 Information loss (IL) is defined as follows.

IL = 1 −
K̃∑

i=1

λi/

K∑

i=1

λi (4)

where λi is the diagonal element in
∑

.
According to Definition 1, given a value of IL, the user can compute the K̃.

In the new geometric representation, the rows zi and z j(i, j = 1, 2, . . . , Q) in Z ,

corresponding to columns i and j in T M, lie close to one another when filters i and j
receive similar predictions from the collection of training emails. Similarly, Z Q+1 is
corresponding to the Q+1 column of T M, which represents the real categorization
of the training emails. Hence, we can define:

Definition 2 The ith Agent’s Weight on Spam (WJi) is defined as follows.

W Ji =
K̃∑

j=1

|Zij + Z (Q+1) j|/
K̃∑

j=1

|Zij − Z (Q+1) j| (5)

where Zij is the jth element in Zi, i = 1, 2, . . . , Q.
Similarly, we can use correspondence analysis on the legitimate matrix. Then, we

can work out the ith Agent’s Weight on Legitimate (WLi).
In the filter combination phase of the FA, the ith statistic-based agent’s prediction

or vote for a spam has a strength proportional to its assigned weight W Ji. Thus, we
can compute the posterior probability of a spam as follows:

p(c1/e) =
Q∑

i=1

W Ji ∗ pi(c1/e) (6)

where pi(c1/e) is the posterior probability of a spam computed by the ith filter, e is a
new email, c1 denotes spam.

World Wide Web (2009) 12:125–147 141

Algorithm 1 The CA process on training matrix T M
Data: T M. //training matrix
Result: U , �, V, Z . //intermediate variables
Process:

Step 1.1. sum = � I
i=1�

J
j=1T Mi, j;

Step 1.2. P = (1/sum)T M;
Step 1.3. r = 〈r1, r2, . . . , rI〉, ri = Pi+ (i = 1, 2, . . . , I);
Step 1.4. c = 〈c1, c2, . . . , cJ 〉, ci = P+i (i = 1, 2, . . . , J);
Step 1.5. Dr = diag(r1, r2, . . . , rI), Dc = diag(c1, c2, . . . , cJ);
Step 1.6. P̃ = D−1/2

r (P − rcT)D−1/2
c ;

Step 2. P̃ = U�VT ;
Step 3.1. Y = D−1/2

r U�;
Step 3.2. Z = D−1/2

c V�;
Step 4. return U , �, V, Z .

Similarly, we can work out the posterior probability of legitimate(c0) for e:

p(c0/e) =
Q∑

i=1

WLi ∗ pi(c0/e). (7)

In general, the decision rule selects the class for which the posterior probability,
p(c j/e) (j = 0 or 1), is the largest one. This way minimizes the probability of making
an error. While for the email filtering problem, we should consider a somewhat
different rule that minimizes an expected loss or risk. Let c01 be the cost assigning
an email e to c0 (legitimate) when e ∈ c1 (spam), i.e., c01 is the cost of receive-error
(namely, false negative error); and c10 is the cost of reject-error (namely, false positive
error). In practice, it can be very difficult to assign costs. In some situations, both
c01 and c10 may be measured in monetary units that are quantifiable. However, in
many situations, costs are a combination of several different factors measured in
different units, such as money, time, quality of life. As a consequence, they may be
the subjective opinion of an expert.

The overall expected cost (OEC) is used to denote the error cost of a filter:

OEC = c10 p(c1/c0)p0 + c01 p(c0/c1)p1 (8)

where p0 and p1 are the prior probabilities of c0 and c1, respectively, and p(c1/c0) is
the probability of making a reject-error, and p(c0/c1) is the probability of making a
receive-error.

In order to minimize OEC, we can deduce the decision rule as follows:

Rule 1. Given a new email e, we classify it into spam if and only if:

p(c1/e)
p(c0/e)

≥ c10 p0

c01 p1
. (9)

where the right hand side of the inequality is a constant, which is called α below.

142 World Wide Web (2009) 12:125–147

6 Implementation and evaluation of ECIPA

This section reports a prototype implementation of the ECIPA system, as well as
some initial evaluations of the filtering agent.

6.1 An illustrative example using ECIPA

This subsection describes how to use ECIPA to implement automated appointment
based on the operable email. The left side of Table 3 shows a simple example of
using the “appointment” command with its parameters. As shown in this table, the
sender wants to make an appointment with the receiver at 9:00am on Oct 28, 2006.
The participants also include another people, namely Wenbin.

Figure 7 shows the snapshot of ECIPA relative to the function of making
appointment. First, the sender should login (Figure 7a). Then, the email type of
appointment should be chosen (Figure 7b). After that, IA automatically shows an
interface to input corresponding information about that appointment (Figure 7c).
Once the sender clicks the “OK” button, an operable email enclosed this piece of
information shown in the right side of Table 3 is generated automatically. When the
operable email is sent to the receiver from the sender. The assistant of the receiver
parses that command first. If the assistant finds that its owner is not free at that time,
it will automatically ask the sender a new time. Otherwise, it responds automatically
if and only if its owner endued the right to it in advance. If the ECIPAs of a sender
or a receiver agree with the time, IA will show the results for the users (Figure 7d).
QAA will alter the user before the appointment.

6.2 Filtering performance of FA

This subsection discusses the comparative performance of FA and other filtering
algorithms. Below, we first depict the configuration of relative experiments. In the
cost-insensitive classification tasks, two commonly used evaluation measures are
precision and recall. These measures do not take into account the cost of two types
of errors. In our opinion, an ideal filter should have the following features: (1) the
reject-error rate is in a sustainable range [0, β], where β > 0; (2) the receiver-error
rate is a low value; and (3) the total error cost is very low.

Table 3 An example of using the “appointment” command.

(appointment) 〈appointment〉
:date Oct 28, 2006 〈date〉 Oct 28, 2006 〈/date〉
:time 9:00am 〈time〉 9:00am 〈/time〉
:event Netmeeting 〈event〉 Netmeeting 〈/event〉
:participant Wenbin 〈participant〉 Wenbin 〈/participant〉

〈/appointment〉
The user wants to make an appointment with Wenbin at 9:00 am, on Oct 28, 2006.

World Wide Web (2009) 12:125–147 143

(d) Appointment information given by IA.

(b) Select email type. User can choice to write a

traditional email or an Operable Email.

(c) Inputing information of an appointment, then ECIPA

will generate an Operable Email automatically, and send

it to relative sender.

(a) Login

Fig. 7 An illustrative example to show how to make an appointment via ECIPA.

In order to judge whether or not a filter has a good performance, we define three
evaluation criteria as follows:

Definition 3 The reject-error rate (RJER):

RJER = F10/(F10 + F00). (10)

Definition 4 The receive-error rate (REER):

REER = F01/(F01 + F11). (11)

Definition 5 The total error cost (TEC):

TEC = c10 p0 ∗ RJER + c01 p1 ∗ REER. (12)

144 World Wide Web (2009) 12:125–147

Table 4 The distribution of testing and training emails of the two mentioned corpora.

The count of training emails The count of testing emails
Legitimate Spam Legitimate Spam

PU1 488 384 122 96
Ling-Spam 1929 384 483 97

In the three definitions, F10 is the count of reject-error, F01 is the count of receive-
error, F00 is the times correctly classifying legitimate emails, and F11 is the times
correctly classifying spam, respectively. RJER and REER reflect the ratio of two
types of errors, respectively. TEC represents the total cost generated by these two
types of errors. A larger RJER shows that the filter makes the reject-error more often,
and a larger REER indicates that the filter makes the receive-error more often. In
general, the effect of RJER on TEC is much stronger than REER since c10 is larger
than c01. A larger TEC indicates a worse performance.

Several experiments have been carried out on two benchmark datasets for test-
ing email filters’ performance: Ling-Spam and PU1 (http://iit.demokritos.gr/skel/
i-config/downloads/). Table 4 gives the distribution of testing and training emails of
those two corpora. In our experiments, the ratio of feature subset selection is 1%;
Q = 8; the feature subset selection method is based on information gain (IG) [31];
we adopt c01 = 0.5 and c10 = 2 for evaluating the filters.

Figure 8 shows the comparative results of five filtering algorithms with those two
corpora. These methods are NB [11, 30], Rocchio [23], Vote [23], cost-SVM (C-
SVM) [11] and FA, respectively. In this experiment, α is set to 1 for FA. For both
corpora, all the RJER values of FA are very small. That is, FA makes very few
positive errors on these two corpora. Also, C-SVM makes few reject-errors on both
two test datasets. However, the REER and TEC in C-SVM are higher than the ones
in FA with Ling-Spam and PU1. Figure 8a shows that FA has the lowest RJER,
REER and TEC on PU1. For Ling-Spam, it seems that Rocchio filter is the best
one. While this filer is not a cost-sensitive method on the one hand, and on the other
hand, it makes more reject-errors than FA for PU1. From Figure 8b, we can see that
all filters make few positive errors on Ling-Spam. Hence, for Ling-Spam, most of
legitimate test emails may reside on the side represented by the legitimate training
data, and are far way from the classifying hyperplane between legitimate and spam.

(a) PU1 (b) Ling-Spam

Fig. 8 The results of five filters on PU1 and Ling-Spam.

http://iit.demokritos.gr/skel/i-config/downloads/
http://iit.demokritos.gr/skel/i-config/downloads/

World Wide Web (2009) 12:125–147 145

(b) Ling-Spam(a) PU1

Fig. 9 The performance of FA on PU1 and Ling-Spam when α is changing.

In other words, it is difficult for filters to incorrectly classify legitimate test emails for
Ling-Spam.

Figure 9 gives the performance of FA when α is changed. Figure 9 shows the
performance on PU1 and Ling-Spam, respectively. From Figure 9a, we can see that
RJER becomes much lower when α is changed to larger, while REER is opposite.
When we adjust α to be greater, TEC becomes much lower at first, when α arrives at
a threshold, TEC starts to become larger adagio. Figure 9b displays the same pattern.

From Figure 9a, we note that TEC and RJER reach the lowest point when α

adopts the threshold value 1. Figure 9b shows that α should be set to the threshold
value 1.2 if we expect to gain the lowest TEC and RJER on Ling-Spam. In real
applications, we suggest that users should adopt the value of α which is a little larger
than the threshold at which TEC and RJER gain their lowest value. For example, if
PU1 is used as a dataset, α can be set to 1.1, and if Ling-Spam is used as a dataset, α

can be set to 1.3.

7 Concluding remarks

The main contributions in this work can be summarized as follows. Firstly, we
presented how to recast traditional emails for implementing intelligent applications
and ubiquitous computing based on email. Email is indispensable to most user’s
work, and has significant impacts on both academic research and ordinary daily life.
However, when people benefit from email, they often suffer from spam and too much
manual work. To solve this problem completely, we proposed the operable email.
Secondly, we developed an Email-Centric Intelligent Personal Assistant named
ECIPA, by drawing on a variety of WI-related techniques. This assistant combines
various WI-related techniques, such as the operable email, agent-based means etc. to
produce a highly personal and automated system, with more features than found in
a typical system today. The key and novel technical features of such an assistant in-
clude automated and cost-sensitive spam filtering; ontology-mediated classification,
query and archiving; sorting/responding based on dynamic user behavior learning;
intelligent cooperation based on the operable email. Thirdly, a proposed filtering
method is adopted in such an assistant, which combines multiple NB filters based on
its own dynamic weight of voting.

146 World Wide Web (2009) 12:125–147

Acknowledgements The authors would like to thank all the reviewers. The work is (partially)
supported by the NSFC major research program: “Basic Theory and Core Techniques of Non-
Canonical Knowledge” (no. 60496322), NSFC project: “The Operable Email: Theory and Its
Applications” (no. 60673015), Open Foundation of Beijing Municipal Key Laboratory of Multimedia
and Intelligent Software Technology, and Project (no. 06213558) of Department of Science and
Technology of Hebei Province.

References

1. Amato, G., Straccia, U.: User profile modeling and applications to digital libraries. In: Proc. of
ECDL’99, pp. 184–197 (1999)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Schneider, P.P. (eds.): The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, UK
(2002)

3. Bergman, R., Griss, M., Staelin, C.: A personal email assistant. Technical report HPL-2002-236,
HP Labs Palo Alto http://citeseer.ist.psu.edu/bergman02personal.html (2002)

4. Cohen, W., Carvalho, V.R., Mitchell, T.M.: Learning to classify email into “speech acts”. In: Proc.
of the EMNLP’04, Hong Kong, pp. 309–316 (2004)

5. Deng, Y.H., Tsai, T.H., Hsu, J.: P@rty: a personal email agent. In: Proc. of Agent Technology
Workshop, National Taiwan University, pp. 61–64 (1999)

6. Fawcett, T.: “In vivo” spam filtering: a challenge problem for data mining. KDD Explorations
5(2), 140–148 (2003)

7. Ho, V., Wobcke, W., Compton, P.: EMMA: an email management assistant. In: Proc. of
IEEE/WIC International Conference on Intelligent Agent Technology, IAT’03, pp. 67–74.
IEEE, Los Alamitos, CA (2003)

8. Huang, Y.F., Govindaraju, D., Mitchell, T.M., Carvalho, V.R.D., Cohen, W.W.: Inferring ongo-
ing activities of workstation users by clustering email. In: Proc. of CEAS’04 (2004)

9. Kassoff, M., Petrie, C., Zen, L.M., Genesereth, M.: Semantic email addressing: sending email
to people, not strings. In: Proc. of AAAI 2006 Fall Symposium on Integrating Reasoning into
Everyday Applications (2006)

10. Li, W.B., Zhong, N., Liu, C.N.: Design and implementation of an email classifier. In: Proc.
of International Conference on Active Media Technology, AMT’03, pp. 423–430. Chongqing,
China (2003)

11. Li, W.B., Liu, C.N., Chen, Y.Y.: Combining multiple email filters of Naive Bayes based on GMM.
Acta Electronica Sinica 34(2), 247–251 (2006)

12. Li, W.B., Zhong, N., Liu, J.M., Yao, Y.Y., Liu, C.N.: Perspective of applying the global e-mail
network. In: Proc. of IEEE/WIC/ACM Web Intelligence, WI’06, pp. 117–120. Hong Kong (2006)

13. Liu, J.M.: Web intelligence (WI): What makes wisdom Web? In: Proc. of the 18th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’03, pp. 1596–1601. Morgan Kaufmann,
San Francisco (2003)

14. Maes, P.: Agents that reduce work and information overload. Comm. ACM 37(7), 30–40 (1994)
15. Martin, S., Sewani, A., Nelson, B., Chen, K., Joseph, A.D.: Analyzing behaviorial features

for email classification. In: Proc. of the IEEE Second Conference on Email and Anti-Spam,
CEAS’06 (2005)

16. McCallum, A., Nigam, K.: A comparison of event models for Naive Bayes text classification.
In: Proc. of AAAI-98 Workshop on Learning for Text Categorization, pp. 41–48 (1998)

17. McDowell, L., Etzioni, O., Halevy, A., Henry, L.: Semantic email. In: Proc. of the Thirteenth Int.
WWW Conference, WWW’04, pp. 244–254. New York, USA (2004)

18. Mineau, G.W.: A simple KNN algorithm for text categorization. In: Proc. of ICDM’01, pp. 647–
648

19. Mitchell, T.M., Wang, S.H., Huang, Y.: Cheyer: Extracting knowledge about users’ activities
from raw workstation contents. In: Proc. of AAAI’06, pp. 181–186 (2006)

20. Moreale, E., Watt, S.: An agent-based approach to mailing list knowledge management, vol.
2926, pp. 118–129. Springer, LNAI (2003)

21. Noy, N., McGuinness, D.L.: Ontology development: a guide to creating your first ontology.
Technical report SMI-2001-0880, Standford Medical Informatics, Stanford University, Stanford,
CA 94305 (2001)

http://citeseer.ist.psu.edu/bergman02personal.html

World Wide Web (2009) 12:125–147 147

22. Pires, F.M., Abreu, S.: An evolvable rule-based email agent, vol. 2902, pp. 394–408. Springer,
LNCS (2003)

23. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1),
1–47 (2002)

24. Segal, R., Crawford, J., Kephart, J., Leiba, B.: SpamGuru: an enterprise anti-spam filtering
system. In: Proc. of the First Conference on Email and Anti-Spam, CEAS’04 (2004)

25. Stephen, R., Hugo, Z., Michael, T.: Simple BM25 extension to multiple weighted fields. In: Proc.
of CIKM’04, pp. 42–49 (2004)

26. Sun, D., Tran, Q.A., Duan, H., Zhang, G.: A novel method for Chinese spam detection based on
one-class support vector machine. J. Inform. Comput. Sci. 2(1), 109–114 (2005)

27. Su, Y.L., Zheng, L., Zhong, N., Liu, C.N., Liu, J.M.: Distributed reasoning based on problem
solver markup language (PSML) - a demonstration through extended OWL. In: Proc. of EEE’05,
pp. 208–213 (2005)

28. Tinapple, D., Woods, D.: Message overload from the inbox to intelligence analysis: how spam
and blogs point to new tools. In: Proc. of Human Factors and Ergonomics Society 47th Annual
Meeting, pp. 419–423. Denver, CO (2003)

29. Xia, F., Liu, W.Y.: An agent for semi-automatic management of emails. In: Proc. of 5th Asia
Pacific Conference on Computer Human Interaction, APCHI’02, PRC, pp. 709–719 (2002)

30. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proc. SIGIR’99, pp. 42–
49 (1999)

31. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In:
Proc. of 14th International Conference on Machine Learning, ICML’97, pp. 412–420. Nashville,
TN, US (1997)

32. Wu, S.T., Li, Y.F., Wu, Y.: Automatic pattern-taxonomy extraction for web mining. In: Proc. of
the IEEE/WIC/ACM International Conference on Web Intelligence, pp. 242–248 (2004)

33. Wu, S.T., Li, Y.F., Wu, Y.: Deploying approaches for pattern refinement in text mining. In Proc.
of ICDM’06, 1157–1161 (2006)

34. Zhang, L., Zhu, J.B., Yao, T.S.: An evaluation of statistical spam filtering techniques. ACM
Trans. Asian Lang. Inform. Process. 3(4), 243–269 (2004)

35. Zhong, N.: Developing intelligent portals by using WI technologies. In: Proc. of Wavelet Analysis
and Its Applications, and Active Media Technology, vol. 2, pp. 555–567. World Scientific (2004)

36. Zhong, N., Liu, J.M., Yao, Y.Y.: In search of the wisdom Web. Computer 35(11), 27–31 (2002)
(special issue)

37. Zhong, N., Liu, J.M., Yao, Y.Y.: Envisioning intelligent information technologies from the stand-
point of Web intelligence. Commun. of the ACM 50(3), 89–94 (2007)

	An Operable Email Based Intelligent Personal Assistant
	Abstract
	Introduction
	Background and related work
	The assistants based on variation of email
	The assistants based on agent technology

	The architecture of ECIPA
	Operable email as a basis of ECIPA
	Introduction to the operable email
	The operable email in ECIPA

	An agent based design of ECIPA
	Ontology-based processing of operable emails
	Learning and adaptation
	Spam filtering

	Implementation and evaluation of ECIPA
	An illustrative example using ECIPA
	Filtering performance of FA

	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

