
World Wide Web (2008) 11:407–425
DOI 10.1007/s11280-008-0047-z

Holistically Stream-based Processing Xtwig Queries

Guoren Wang · Bo Ning · Ge Yu

Received: 1 February 2008 / Revised: 5 May 2008 /
Accepted: 17 May 2008 / Published online: 13 June 2008
© Springer Science + Business Media, LLC 2008

Abstract Unlike a twig query, an Xtwig query contains some selection predicates
with reverse axes which are either ancestor or parent. To evaluate such queries in
the stream-based context, some rewriting rules have been proposed to transform
the paths with reverse axes into equivalent reverse-axis-free ones. However, the
transformation method is expensive due to multiple scanning input streams and the
generation of unnecessary intermediate results. To solve these problems, a holistic
stream-based algorithm XtwigStack is proposed for Xtwig queries. Experiments
show that XtwigStack is much more efficient than the transformation method.

Keywords XML · query processing · twig pattern · Xtwig pattern

1 Introduction

XML has become the de-facto standard for exchanging data and representing
information over the Web, and database servers are employed to store large amounts
of XML documents, for example, in XML dissemination systems [7] and XML digital
libraries [24]. XML data may be very complex and deeply nested, consequently there
is a lot of interest in query processing over data that conforms to a tree-structured
data model. XML Queries typically contain some selection predicates with forward
axes. However, it is reasonable that XML queries may be more complex and contain
some selection predicates with ancestor and/or parent reserve axes. The following

G. Wang (B) · B. Ning · G. Yu
School of Information Science and Engineering, Northeastern University,
Shenyang 110004, China
e-mail: wanggr@mail.neu.edu.cn
URL: http://mitt.neu.edu.cn/wanggr

408 World Wide Web (2008) 11:407–425

XPath [26] expression Q1 is an example of such query based on the sample XML
document in Figure 1a.

Q1 : book [ancestor :: Computer][ancestor :: Addison − Wesley]
[title = “X ML”]//author[//name = “John”]

Expression Q1 matches book elements that (i) have a child subelement title
containing “XML”, (ii) have a subelement author whose name is “John”, (iii) are
descendants of Addison-Wesley elements, and (iv) are descendants of computer
elements. This expression can be represented as a complex node-labeled pattern in
which elements and string values are regarded as node labels, as shown in Figure 1b.
Q1 involves the ancestor and descendant nodes of book elements.

Compared to DOM-based processing methods [16, 23], stream-based processing
methods [3, 5, 8, 9, 13–15, 19, 25] have been widely used recently, and there is
increasing interest in the work of evaluating queries with reverse axes directly in the
stream-based context. Olteanu et al. [18] propose some rewriting rules to transform
absolute XPath location paths with reverse axes into equivalent reverse-axis-free
ones. There are lots of works that evaluate queries with only forward axes, such
as path pattern [3, 25] and twig pattern [19]. With the rewriting rules, Q1 can be
transformed into a twig query which can be evaluated using existing algorithms such
as PathStack [13], TwigStack [5], TJFast [14], PPS [9], Extended Dewey [15], CCPI
[22] or Twig2Stack [8]. But the transformed query patterns contain equality joins of
nodes, and remain expensive to evaluate. When there are multiple ancestor axes in
the query pattern, the processing cost increases.

The other method is to decompose the Xtwig pattern into a set of twig patterns,
each of which can be matched against the XML database, then these twig matches
are joined to get the final results.

Both of the above mentioned methods cannot avoid the join operations caused by
transformation. In this paper, a new algorithm is developed to match Xtwig queries
holistically without unnecessary joins and therefore avoid the extra processing
overhead of intermediate results, and a new data structure called XCube is proposed
to conduct the matching of vpatterns, which is the core problem of the Xtwig pattern
matching.

books

Computer

NEU Press

book
title author

nameXML

John

Addison-Wesley

book
title author

nameBio
Smith

book
title author

nameXML

John

Addison-Wesley

Computer

book
title author

nameDB
John

Computer

book
title author

nameXML
John

Addison
-Wesley

a b

Management

NEU Press

book
title author

nameEco
Weir

Figure 1 Example of an Xtwig query. a XML document. b Xtwig query pattern.

World Wide Web (2008) 11:407–425 409

The contributions of this paper are summarized as follows.

• We propose a new query pattern Xtwig. In real applications, XML queries are
more complex and may contain predicates with ancestor axes, but there is not
any research work on stream-based processing the queries with ancestor axes
so far.

• We analyze the characteristics of the Xtwig pattern matching, and propose a new
data structure called XCube to solve the relations of predicates with ancestor
axes. We then propose algorithm called XtwigStack to solve the Xtwig pattern
matching. It is a holistic join algorithm for Xtwig pattern matching.

• Finally we present the experimental results on a range of real and synthetic data
to complement our analytical results. The performance study shows that our
algorithms perform well on execute time and the amount of intermediate results.

The rest of this paper is organized as follows. Section 2 introduces the XML data
model and the Xtwig query pattern. Section 3 explains in detail the matching of Xtwig
patterns and presents the XtwigStack algorithm. Section 4 shows our experiment
results and performance evaluation. Related work and conclusions are given in
Sections 5 and 6 respectively.

2 Preliminaries

2.1 XML data model

An XML document can be modeled as an ordered tree, where nodes represent
elements, attributes and text data, and edges correspond to parent-child(p-c) rela-
tionships between nodes. The structural relationship between any two nodes can be
captured by a region-based encoding scheme [11, 20, 28], in which each node can be
represented with a tuple (docID, startpos, endpos, level), based on its position and
level in the ordered tree. In this scheme, the ancestor-descendant(a-d) relationship
between two nodes can be determined by comparing their start and end positions.
For example, node u is an ancestor of v if u.startpos < v.startpos and v.endpos <

u.endpos. Furthermore, if u.level = v.level − 1, then u is the parent of v.

2.2 XPath and axes

Usually, query pattern can be expressed with XPath. The primary purpose of XPath
is to address parts of an XML document, by navigating through the XML document
structure. There are 13 axes in XPath, such as ancestor, descendant, following, and
following-sibling. An axis is either forward or reverse. An axis is reverse if it only
contains the context node or nodes that are before the context node in the document
order. Thus, parent, ancestor, ancestor-or-self, preceding, and preceding-sibling are
reverse axes, while all the other axes are forward. The following gives two example
queries containing reserve axes.

Q2:A//C[ancestor::B] and Q3:A//C[parent::B]

410 World Wide Web (2008) 11:407–425

To simplify XPath expressions with reverse axes, we introduce symbol $ for
parent:: and symbol % for ancestor::. Then Q2 and Q3 can be expressed in the
abbreviated form:

Q2: A//C[% B] and Q3: A//C[$B]

2.3 Xtwig pattern

An Xtwig pattern is a query that contains parent or ancestor axes in its predicates.
In the Xtwig pattern, a node is called a vnode if it has more than two in-edge reserve
axes, and the parent of a vnode is called a vpnode of the vnodes. For example, in
Figure 2a node V is a vnode and nodes A, B and C are its vpnodes. It is noted
that the ancestors of the parents of a vnode v are not vpnodes of v. For example,
in Figure 2a node V is a vnode and nodes A, B and C are its vpnodes, but node
D is not a vpnode of vnode V. An Xtwig pattern is called a vpattern if it contains
a leaf vnode. A vpattern only consisting of vnodes and vpnodes is called a simple
vpattern. The number of the vpnodes in a vpattern is called the Reverse Fan-out
Degree(RFOD) of the vpattern. For example, Figure 2a is a simple vpattern and its
RFOD is 3.

In a vpattern, the maximal subtree including a vpnode as a leaf is called a vtwig
of the vpnode. Similarly the maximal path including a vpnode as a leaf is called a
vpath of the vpnode. For example, in Figure 2b D//A is a vpath of vpnode A while in
Figure 2c C[//E]//B//D is a vtwig of vpnode D.

A more complex vpattern can be gotten by the combination of a simple vpattern,
vpaths, and/or vtwigs at vpnodes. For example, the vpattern in Figure 2d can
be gotten by the combination of the simple vpattern V[%B][%A] and the vtwig
C[//E]//B//D at vpnode B. Similarly, a more complex Xtwig pattern can be gotten
by the combination of a simple vpattern, paths, and/or twigs at the vnode. For
example, in Figure 2, (e) can be gotten by the combination of the simple vpattern
V[%A][%B][%C] and the path V//D//E at vnode V and (f) can be gotten by the
combination of the simple vpattern V[%A][%B][%C] and the twig V//D[//E]//F//G
at vnode V.

Given a query Xtwig pattern Q and an XML database D, a matching of Q in
D is identified by a mapping from nodes in Q to nodes in D such that (i) query
node predicates are satisfied by the corresponding database nodes, and (ii) the
structural (parent-child and ancestor-descendant) relationships between query nodes
are satisfied by the corresponding database nodes. We call the matching of Q in D
Xtwig Pattern Matching.

Figure 2 Examples
of Xtwig patterns (a–f).

D
A B C

V

A B C

V

E

D

A B C

V

E F

G

A B C

V

D

a db c

D A

V

B

C

E

D

A

V

B

C

E

fe

World Wide Web (2008) 11:407–425 411

3 Xtwig pattern matching

In this section, we first analyze the limitations of the two basic methods, vertical de-
composition and horizontal decomposition. Then we study the matching of vpatterns
which is the core problem of the Xtwig pattern matching. We present a new data
structure called XCube to compactly represent the results of a vpattern matching.
With the new stack structure, we present XtwigStack, an algorithm for finding all the
matching results of an Xtwig pattern against an XML document.

3.1 Limitations of basic decomposition methods

There are two kinds of decomposition methods to match an Xtwig query pattern. The
straightforward one is, at each vnode, to vertically decompose the Xtwig pattern into
multiple twig patterns. Each individual decomposed twig pattern can be evaluated
using the traditional twig algorithm, then they are join-merged at the vnodes to get
the final results. This method is referred to as VertiDec. Processing decomposed twig
patterns needs multiple scanning of the streams. Furthermore, many intermediate
results may not be part of the final results. For example, if John published another
XML book at another publisher, this would be an unnecessary intermediate result for
Q1. The other method is, at each vnode, to horizontally decompose the Xtwig pattern
into vpatterns and twig patterns. The decomposed twig patterns and vpatterns are
processed separately, and join-merged at the vnodes to get the final results. This
method is referred to as HoriDec. Compared with VertiDec, HoriDec scans fewer
element streams, but still has to scan the vnode tag stream twice at least, that is
because each vnode belongs to both the decomposed vpattern and twig pattern.
Moreover, it has the same problem of unnecessary intermediate results as VertiDec.

For example, Q1 can be decomposed into Q4 and Q5 by VertiDec (R is the root
of the XML document):

Q4:R[//publisher=“Addison-Wesley”]//book[title=“XML”]//author[@name=“John”]

Q5:R[//catalog=“computer”]//book[title=“XML”]//author[@name=“John”]

Q1 can be decomposed into Q6 and Q7 by HoriDec:

Q6:R//book[title=“XML”]//author[@name=“John”]

Q7:R//book[%publisher=“Addison-Wesley”][%catalog=“computer”]

Besides these two basic decomposition methods, we can also solve the Xtwig
pattern matching by rewriting rules [4, 18] which can transform an Xtwig pattern into
an equivalent reverse-axis-free twig pattern. The idea of rewriting is that, instead of
looking back from the context node, one can look forward from the beginning of the
document to match the tag T in predicates with reverse axes. Instead of checking
whether the context node has an ancestor T or not, one looks for a T node, then

412 World Wide Web (2008) 11:407–425

Figure 3 Example of
Vbranches matching.

a1
b1
a2

b2
v

A B

V
Simple Vpattern Q XML Document D

B

V

A

A

V

B

Qp1 Qp2

(a1,b1,v1)
(a1,b2,v1)
(a2,b1,v1)
(a2,b2,v1)

Answers to Q

for a following node that is identical to the context node. For example, Q8 can be
equivalently transformed into Q9 which is reverse-axis-free.

Q8:book[ancestor::Computer]

Q9:book[/descendant::Computer/book::node()==self::node()]

Although there is no ancestor axis in Q9, evaluating Q9 is rather expensive
because the streams have to be scanned twice and there is an equality join caused
by the rewriting. For an Xtwig pattern containing multiple predicates with ancestor
axes, the evaluation cost of the rewriting way increases.

3.2 Matching of vpatterns with vpaths only

Consider the simple vpattern A//V[%B] in Figure 3. In this pattern, A and B are
ancestors of V. There are two possible cases, A is an ancestor of B or B is an
ancestor of A. Therefore the answer to the simple vpattern Q is the union of Qp1

and Qp2 in Figure 3. Similarly, for any vpattern, the results of the vpattern matching
are the permutation of the vpnode elements which have the a-d relationships and
satisfy respective vpattern structure relationships. XCube is proposed to express this
permutation. For a given vpattern, an XCube is a hyper cube, and the dimensionality
of the XCube is the number of vpnodes in the vpattern. Each type of XCube is
corresponding to a vpattern. If there are n vpatterns in an Xtwig pattern, there
are n kinds of XCubes. Every coordinate axis is calibrated by the answer list of
corresponding vpnode. Every node in the hyper cube is just one answer to the
vpattern, and each XCube is a set of answers to the corresponding vpattern.

Figure 4 Examples of XCube.
a XML document. b Query.
c Answers. d XCube xc1 and
xc2 to answer set s1 and s2.

b1
c1
c2
b2
v1

b3
c3
v2

a1

Answer set s1:
(d1,a1,b1,c1), (d1,a1,b1,c2),
(d1,a1,b2,c1), (d1,a1,b2,c2),
(d2,a1,b1,c1), (d2,a1,b1,c2),
(d2,a1,b2,c1), (d2,a1,b2,c2)
Answer set s2:
(d1,a1,b3,c3), (d2,a1,b3,c3)

a c

A B C

V

D
d1
d2

b

A

C B

C1

C2

(d1,a1)
b1

(d2,a1)

((d1,a1),b1,c1) ((d2,a1),b1,c1)

((d1,a1),b1,c2)

((d2,a1),b2,c2)((d1,a1),b2,c2)

((d2,a1),b2,c1)
((d1,a1),b2,c1)

((d2,a1),b1,c2)

A

C B

C3

(d1,a1)
b3

(d2,a1)

((d1,a1),b3,c3)
((d2,a1),b3,c3)

d

b2

World Wide Web (2008) 11:407–425 413

Consider the vpattern query in Figure 4b on the XML document in Figure 4a. The
results of the query are given in Figure 4c. These two result sets can be expressed
by XCubes xc1 and xc2, as shown in Figure 4d. Because the query pattern has three
vpnodes, the dimensionality of the XCube is 3. Every coordinate axis is calibrated by
the element list and all the nodes on the XCube are the answers to the vpattern. For
example, for the answer set S1, coordinate axis A is calibrated by the answer list of
vpath D//A. Since the answer list of D//A is {(d1,a1), (d2,a1)}, coordinate axis A is
calibrated by these two values, as shown in XCube xc2 of Figure 4d. Coordinate axes
B and C can be calibrated in a similar way.

Algorithm 1 gives the computation of matching vpatterns with vpaths only. It
associates each node q in the vpattern with a stream Tq containing all the elements
of tag q and each stream has an imaginary cursor, which can either move to the next
element or read the current element. The operations over streams are eof, advance,
next, nextL and nextR. Operation advance(Tq) moves the current cursor to the next
element in tag stream Tq, and operation next(Tq) returns the current element in
tag stream Tq. The last two operations return the startpos and endpos of current
element in the stream. At the same time, it associates a single stack S for all vpnodes,
and associates a separate stack ST for each ancestor node T of respective vpnodes
to maintain their relationships in the vpath. The operations for two kinds of stacks
are empty, popStack, pushStack, topL and topR. The last two operations return the
startpos and endpos of current element in the stack. All the elements of vpnodes will
be pushed into stack S to maintain the a-d relationships of all the vpnode elements,
while the other tag elements will be pushed into respective stacks to preserve the
answers of the tag itself. In Algorithm 1, line 2 returns the tag, the next element of
which has minimal startpos among the streams of the vpnodes. Line 5 pops stack
S until the top is the ancestor of the next(Tq). When the algorithm runs to line 11,
the next element is not an ancestor of the top of stack S, and it is going to output
the answers. Before outputting the answers, the algorithm has to determine whether
or not the current stack S contains elements of all the vpnodes. Line 12 outputs the
answer set in the form of an XCube by scanning stack S.

Consider the vpattern query in Figure 4b on the XML document in Figure 4a.
There are three vpaths in the vpattern, D//A, B, and C, as shown in Figure 5a. Node
D is associated with stack SD as node D is an ancestor of vpnode A, and vpnodes A,
B and C all are associated with stack S. The first two elements d1 and d2 in stream
Td, as shown in Figure 5b, are both pushed into SD, as shown in Figure 5c, because
d2 is a child of d1. For element a1, since A is a vpnode it is pushed to stack S and its
parent pointer is set to d2, which is the top of stack SD. Then b1, c1, c2 and b 2 are
pushed into S too, as shown in Figure 5. When element b 3 comes, it is confirmed that
the current stack S contains elements from all the vpnodes, then the algorithm can
output the XCube shown in Figure 5d and pop stack S until the top of S is an ancestor

Figure 5 Illustration
of algorithm BPCube.
a Vpaths. b Streams.
c Stacks. d XHyperCube.

SSD

d1
d2

a1
b1
c1
c2
b2Ta:

Tb:

Tc:

a1, a2, a3 ...

b1, b2, b3 ...

c1, c2, c3 ...

A

C

B

C1

C2

(d1,a1)
b1

(d2,a1)

b2

Td: d1, d2, d3 ...

A B C

D

dcba

414 World Wide Web (2008) 11:407–425

Algorithm 1: BPCube(v)
Data: Query of vpatterns with vpaths only, its vnode is , and tag streams with

.
Result: The matching of against the tag streams.
while not at end of any stream do1

such that is minimal;2

if is then3

if is not a root then4

Pop stack , until the top is an ancestor of next();5

if is a root or is not empty then6

if stack S is empty then7

Push element next() to stack S;8

else if nextL() topL(S) and nextR() topR(S) then9

Push element next() to stack S;10

else if stack contains elements of all the tags of vpnodes then11

Output the XCube by scanning stack S and respective stack ;12

Pop stack S, until the top is an ancestor of next();13

Push element next() to stack S;14

if is not then15

if is not a root then16

Pop stack , until the top is an ancestor of next();17

if is a root or is not empty then18

Pop stack , until the top is an ancestor of next();19

Move the current element of to , set pointer to the top of ;20

advance();21

of b 3. Note that the algorithm does not pop stack SD until the next element of tag D
is not a descendant of the top of SD.

3.3 Matching vpatterns with vtwig

In this section, we study the matching of vpatterns with vtwig. Figures 2c and 2d
are such query patterns. First, we propose a new stack structure called Stick Stack
to store the temporary answers caused by the sticks, then propose a stream-based
algorithm called BCube to process the matching of vpatterns with vtwig based on the
new proposed stick stack structure.

Figure 6 Examples
of stick patterns (a–d).

D A

V

B

C

E

D

A

V

B

C

E

a b

D

A

V

B

C

E

c

F

D

A

V

B

C

E

d

F G

World Wide Web (2008) 11:407–425 415

Figure 7 Illustration of
Stick Stack for a stick path.
a Fragment of XML
document. b Stick path.
c Stick stack.

b1[4,19]

d1[5,12] d3[13,18]

f1[7,8] f2[9,10]f4[15,16]

f3[14,17]d2[6,11]
d1

d2

f2
f4

f1

d3

f3

stick

D

F

a b c

[5,18]

[5,12]
[13,18]

[7,8][9,10] [14,17]

e1[2,3]

c1[1,20]

3.3.1 Stick stack

In a vpatttern with vtwig, a stick node is a node not included in any vpath of
the vpattern. For example, in Figure 6 pattern (a) has a stick node E; (b) has two
stick nodes E and D; (c) has three stick nodes D, E and F, and D and F forms a stick
path D//F; (d) has four stick nodes E, D, F and G, and D, F and G forms a stick
twig D[//F]//G. Note that a simple stick node, a stick path, or a stick twig are usually
referred to as a stick patten.

To solve the matching of vpatterns with vtwig, a new structure called Stick Stack
is proposed to store the temporary answers of stick patterns in a vpattern with vtwig.
During the matching of such vpattern, a Stick Stack is associated with each stick
pattern that consists of node stacks. Those node stacks are built for stick nodes.
For a stick node A, the elements of A with an ancestor-descendant relationship are
grouped into the same node stack and an upper element is a descendant of the lower
elements in the same node stack. It is obvious that a stick node may have multiple
node stacks. Moreover, each node stack is associated with a code, which can be
easily determined by the code of the bottom element of the node stack. Based on
the region encoding, we can easily determine the relationship among node stacks.
For two node stacks s1 and s2, if s1.top.startpos < s2.top.startpos and s2.top.endpos <

s1.top.endpos, then s1 is called the ancestor node stack of s2. Moreover, each element
e in a node stack has a pointer to the parent element of e in an ancestor node stack.
For each Stick Stack, there is a root node stick with a region encode which is defined
as the minimal startpos and maximal endpos among the elements in all the node
stacks. Figure 7c is an example of the stick stack of stick path D//F of Figure 6c. The
region code of the Stick Stack is [5, 18].

3.3.2 BCube: matching vpatterns with vtwig

Algorithm BCube is designed to deal with the matching of vpatterns with vtwig and
presented in Algorithm 2.

There are three kinds of stacks in Algorithm BCube. The first one is stack S, which
is used to preserve the relationships of vpnode elements, and all the vpnode elements
are pushed to S if they are the descendant of a top stack element. The second one
is the stick stack, which is designed to store the temporary answers of stick patterns.
The last one is a stack associated to those nodes which are not vnodes, vpnodes, and
stick nodes. They are similar to the stacks in Algorithm TwigStack.

In Algorithm BCube, getMinX(v) returns the tag qact of which stream is going to
be processed. If qact is a vpnode, the next element of stream Tqact is pushed to stack S,

416 World Wide Web (2008) 11:407–425

Figure 8 Illustration of
algorithm BCube. a XML
document. b All kinds
of stacks.

c1

c2e1

e2 a1

b1

a2

b2

d1

f1 f2

f3

d2

b3

a1

a2

b1

b2

c1
c2

e1 e2

d1

f1 f2
S

Stick Stack (E) Stick Stack (D//F)

v1

v2

a b

Sc

as in Algorithm BPCube. When the next element e is not a descendent of top element
of S, as stack S is popped as the XCube is generated to output the answers, until e is
a descendent and it is pushed to S. If qact belongs to a stick pattern, the next element
e is pushed to the stick stack to store the temporary answers to the stick pattern.
Otherwise, the next element of qact is pushed to respective stacks as in Algorithm
TwigStack.

Consider the vpattern in Figure 6c. Figure 8 illustrates the execution process of
Algorithm BCube. In the algorithm, there are two stick stacks stick stack(E) and
stick stack(D//F), and there is a stack S to preserve the relationships of elements
from vpnode streams. There is also a stack Sc. The next tag getMinX(v) returns is
b, and next(Tb) is b 3. Because B is a vpnode and b 3 is not a descendant of the top
element of S, the current final answers can be output and stack S is popped until S is
empty.

3.4 XtwigStack: matching Xtwig patterns

So far we have addressed the matching of vpatterns with vpaths only and vpatterns
with vtwig. Next we discuss the matching of more general forms of Xtwig patterns
such as in Figure 2e and f.

In order to solve the matching of Xtwig patterns, Algorithm XtwigStack is
proposed by applying Algorithm BCube to PathStack or TwigStack. Function
BCubeStep, which is invoked once, is defined to match a vpattern. By regarding the
set of a vpattern as a virtual node, the advance function in PathStack or TwigStack can
be changed in order to process the matching of the vpattern. In the advance function,
if the tag node is a virtual node composed of many vpatterns, BCubeStep is invoked
to move the relative streams for finding the next answer set for the virtual node. In
this case, each stream is scanned only once, and algorithm XtwigStack is therefore
I/O and CPU optimal. Note that a twig pattern is a special case of Xtwig pattern, so
the algorithm XtwigStack can conduct the matching of twig pattern too.

By defining the symbol XCube(vb1, vb2...) which represents vpatterns vb1,vb2 and
so on, the processing of Xtwig pattern matching in Figure 2 can be evaluated by the
patterns in Table 1.

4 Performance evaluation

In this section we present experimental results on the performance of the proposed
holistic stream-based Xtwig matching algorithms using both real and synthetic
data sets.

World Wide Web (2008) 11:407–425 417

Table 1 Matching Xtwig
pattern. Pattern Processing Xtwig pattern

(a) XCube(A, B, C)//V
(b) XCube(D//A, B, C)//V
(c) XCube(C[//E]//B//D, A)//V
(d) XCube(C[//E]//B[//D], A)//V
(e) XCube(A, B, C)//V//D//E
(f) XCube(A, B, C)//V//D[//E]//F//G

4.1 Experimental settings

We implement all the algorithms in Java 1.5. The system and hardware environment
is a PC with 2.4 GHz Pentium CPU and 512 MB RAM running Windows XP
operating system. The following three real-world and synthetic data sets are used
for our experiments:

(1) DBLP [21], the well-known XML data set records large amounts of information
on authors, papers, and other publications. The DTD of DBLP is not recursive;

(2) XMark[27], XMark is a well known XML benchmark. The XMark data set
contains information about an auction site. It is “information oriented”, and
has many repetitive structures and fewer recursions;

(3) A synthetic XML data set with deep recursions is generated by using the
following DTD.

<!ELEMENT a (b)∗
>

<!ELEMENT b (c|a)∗
>

<!ELEMENT c (d|b)∗
>

<!ELEMENT d (e)∗
>

<!ELEMENT e (f)∗
>

<!ELEMENT f (#PCDATA) >

The algorithms of VertiDec, HoriDec, and Rewriting Rules Method (RRM) [18]
are implemented to evaluate the performance of the proposed algorithms in this
paper for the matching of Xtwig patterns.

4.2 Performance study

4.2.1 Influence of RFOD

In order to evaluate the influence of reserved fan-out degree on performance, we
design three vpattren queries Query1–Query3 on the XMark data set. The RFODs of
these vpatterns are 2–4. We also design four vpattern queries Query4–Query8 on the

418 World Wide Web (2008) 11:407–425

synthetic data set. The RFODs of these queries are 2–6. These 8 queries are given as
follows.

Query1: /regions//from[%asia]

Query2: /regions//from[%asia][%mailbox]

Query3: /regions//from[%asia][%mailbox][%mail]

Query4: /A//F[%B]

Query5: /A//F[%B][%C]

Query6: /A//F[%B][%C][%D]

Query7: /A//F[%B][%C][%D][%E]

Query8: /A//F[%B][%C][%D][%E][%F]

Figures 9 and 10 show the influence of RFOD change on the performance of
algorithms VeriDec, RRM and XtwigStack. From these figures, we can see that
XtwigStack performs better than VeriDec, and is independent of RFOD, while the
performance of VeriDec gets worse as RFOD increases. RRM is not independent of
RFOD and its performance is the worst. As RFOD increases, VertiDec has to scan
more elements and merge more intermediate results, while RRM has to scan streams
several times and evaluates multiple join operations.

4.2.2 Scalability vs document size

In order to examine scalability performance vs document size, two vpattern queries
Query9 and Query10 are designed on the DBLP data set and the synthetic data set
respectively. These two vpattern queries are given as follows.

Query9: /document//year[%proceedings]

Query10: /A//E[%C][%D]

Figure 9 Response time vs
RFOD on XMark.

0

2

4

6

8

10

12

14

2 3 4

E
la

ps
ed

 ti
m

e(
se

co
nd

s)

RFOD

XtwigStack
VertiDec

RRM

World Wide Web (2008) 11:407–425 419

Figure 10 Response time vs
RFOD on the synthetic
data set.

0

5

10

15

20

25

30

35

40

2 3 4 5 6

E
la

ps
ed

 ti
m

e(
se

co
nd

s)

RFOD

XtwigStack
VertiDec

RRM

Figures 11 and 12 show the scalability performance vs different document size
of algorithms XtwigStack, VeriDec and RRM. From these figures we can see that
VeriDec and RRM have similar scalability performance vs document size and
XtwigStack has much better scalability performance vs document size than VeriDec
and RRM. This is because the larger the document is, the more time is consumed for
VertiDec and RRM to merge the intermediate results. Figures 13 and 14 show that
the useful intermediate result rate of VertiDec decreases rapidly as the document size
increases.

4.2.3 Scalability vs length of vpattern

In order to evaluate the scalability performance vs length of vpattern, four vpattern
queries with different length, Query11–Query14, are designed on the XMark data

Figure 11 Scalability vs
document size on DBLP.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

20m 40m 60m 80m 100m

E
la

ps
ed

 ti
m

e(
m

s)

Size

XtwigStack
VertiDec

RRM

420 World Wide Web (2008) 11:407–425

Figure 12 Scalability vs
document size on the synthetic
data set.

0

500

1000

1500

2000

2500

5m 10m 15m 20m 25m 30m

E
la

ps
ed

 ti
m

e(
m

s)

Size

XtwigStack
VertiDec

RRM

set. These vpattern queries are given as follows.

Query11: /regions//from[%mailbox]

Query12: /people//person//street[%address]

Query13: /open_auctions//open_auction//time[%bidder]

Query14: /closed_auctions//closed_auction//description[%annotation]

Figures 15 and 16 show the scalability performance vs different length of vpattern.
From Figure 15 we can see that VertiDec and RRM have similar performance, and
are the worst, while they are slower than XtwigStack. In Figure 16, XtwigStack
scans the fewest elements, while VertiDec and RRM scan the most. VertiDec scans
many times the streams of the nodes under vpatterns when matching respective twig
patterns, and scans lots of intermediate results for merge-joining. Since HoriDec
avoids the scanning of the streams of the nodes under vpatterns, it performs better
than VertiDec and RRM. XtwigStack scans the streams only once and does not
generate any intermediate results, so it has the best performance.

Figure 13 Useful result rate vs
document size on DBLP.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20m 40m 60m 80m 100m

U
se

fu
l r

es
ul

ts
 r

at
e

Size

VertiDec

World Wide Web (2008) 11:407–425 421

Figure 14 Useful result rate vs
document size on the synthetic
data set.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

5m 10m 15m 20m 25m 30m

U
se

fu
l r

es
ul

ts
 r

at
e

Size

VertiDec

4.2.4 Xtwig patterns

Finally, we design the following xwtig query Query15 to compare the performances
of XtwigStack, VertiDec, HoriDec and RRM on the XMark data set.

Query15:/regions//item[%asia]//name

Since VertiDec scans some streams many times and has a lot of intermediate
results, it performs worst. HoriDec is better than VertiDec, because it scans the
tag streams only once, except for the vnode stream. However, it still has lots of
useless intermediate results. XtwigStack is a holistic algorithm, and it scans all the
streams only once, and has no intermediate results. Figure 17 shows the advantages
of XtwigStack in terms of elapsed time. Figure 18 shows that as the document size
increases, the number of elements scanned by VertiDec increases fastest, while the
number of elements scanned by HoriDec are less than that by VertiDec, and larger
than that by XtwigStack.

Figure 15 Elapsed time vs
different length of vpattern.

0

2

4

6

8

10

12

14

16

18

Q11 Q12 Q13 Q14

E
la

ps
ed

 T
im

e(
se

ce
nd

)

XtwigStack VertiDec HoriDec RRM

422 World Wide Web (2008) 11:407–425

Figure 16 Number of scanned
elements vs different length of
vpattern.

0

50000

100000

150000

200000

250000

300000

350000

Q11 Q12 Q13 Q14

N
um

be
r

of
 e

le
m

en
ts

 s
ca

nn
ed

XtwigStack VertiDec HoriDec RRM

5 Related work

With the increasing popularity of XML, query processing and optimization for XML
databases has attracted a lot of research interest. The work of Lore [17], Timber [12],
and Natix [10] has considered various aspects of retrieving such data.

Structural join is essential to XML query processing because XML queries usually
impose certain structural relationships (e.g. p-c or a-d relationships). For binary
structural join, Zhang et al [2] propose a multi-predicate merge join (MPMGJN)
algorithm based on region labelling of XML elements. The later work by Al-Khalifa
et al [1] gives a stack-based binary structural join algorithm, called Stack-Tree-
Desc/Anc which is optimal for an a-d and p-c binary relationship. A twig pattern
is a query with selection predicates only containing descendant and child axes. There
are some work to conduct the matching of twig patterns. N. Bruno et al [6] propose a
holistic twig join algorithm, namely TwigStack, to avoid producing large intermediate
results. Extended Dewey [15], TJFast [14] and Twig2Stack [8] are newly proposed
to evaluate twig patterns, and they are nearly the best methods to solve this series
of problems of twig pattern matching. A twig pattern only contains predicates with

Figure 17 Elapsed time vs
document size.

0

500

1000

1500

2000

2500

3000

3500

5m 10m 15m 20m 25m 30m

E
la

ps
ed

 ti
m

e(
m

s)

Size

XtwigStack
VertiDec
HoriDec

RRM

World Wide Web (2008) 11:407–425 423

Figure 18 Number of scanned
elements vs document size.

0

10000

20000

30000

40000

50000

60000

70000

5M 10M 15M 20M 25M 30M

T
he

 n
um

be
r

of
 s

ca
nn

ed
 e

le
m

en
ts

Size

XtwigStack
VertiDec
HoriDec

RRM

descendant and child axes, while an Xtwig pattern is a more complex query which
may contain predicates with ancestor and/or parent axes. For the work of reverse
axes, Olteanu et al [18] propose rewriting rules to transform absolute XPath location
paths with reverse axes into equivalent reverse-axis-free ones, and rewrite all axes to
a minimum set of forward axes.

6 Conclusions

XML queries are more complex and may contain predicates with ancestor or parent
axes, but there is no research work on stream-based processing queries with ancestor
or parent axes so far. We propose a new query pattern Xtwig to meet the requirement
and analyze the Xtwig pattern in details. We analyze the characteristics of Xtwig
pattern matching, and propose a new data structure called XCube to conduct the
vpattern matching, which is the core problem of the Xtwig pattern matching. We
also develop an XtwigStack algorithm to solve the queries with ancestor or parent
axes in predicates. Finally we present experimental results on a range of real and
synthetic data, to complement our analytical results. The performance study shows
that XtwigStack is I/O and CPU optimal, and every stream is scanned only once, and
there are not useless intermediate results.

Acknowledgements This research was supported by the National Natural Science Foundation of
China (Grant No. 60573089 and 60773221) and National Basic Research Program of China (Grant
No. 2006CB303103).

References

1. AL-Khalifa, S., Jagadish, H.V., Kouda, N., Patel, J.M., Srivastava, D., Wu, Y.: Structural joins:
a primitive for efficient XML query pattern matching. In: Proc. 18th Int. Conf. Data Engineer-
ing (ICDE’02), pp. 141–152. IEEE Computer Society, San Jose (2002)

424 World Wide Web (2008) 11:407–425

2. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Zhang, C., Naughton, J.F., DeWitt, D.J.,
Luo, Q., Lohman, G.M.: On supporting containment queries in relational database management
systems. In: Proc. 27th ACM SIGMOD Int. Conf. Management of Data (SIGMOD’01), pp. 425–
436. ACM, Santa Barbara (2001)

3. Arion, A., Bonifati, A., Manolescu, I., Pugliese, A.: Path summaries and path partitioning in
modern XML databases. World Wide Web 11(1), 117–151 (2008)

4. Barton, C., Charles, P., Goyal, D., Raghavachari, M., Fontoura, M., Josifovski, V.: Streaming
XPath processing with forward and backward axes. In: Proc. 19th Int. Conf. on Data Engineering
(ICDE’03), Bangalore, pp. 455–466. IEEE Computer Society, Bangalore (2003)

5. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern matching. In:
Proc. 28th ACM SIGMOD Int. Conf. Management of Data (SIGMOD’02), pp. 310–321. ACM,
Madison (2002)

6. Bruno, N., Srivastava, D., Koudas, N.: Holistic twig joins: optimal XML pattern matching. In:
Proc. 28th ACM SIGMOD Int. Conf. Management of Data (SIGMOD’02), pp. 310–321. ACM,
Madison (2002)

7. Chan, C.Y., Ni, Y.: Piggyback optimization of XML data dissemination. In: Proc. 23rd Int. Conf.
Data Engineering (ICDE’07), pp. 1454–1455. IEEE Computer Society, Istanbul (2007)

8. Chen, S., Li, H., Tatemura, J., Hsiung, W., Agrawal, D., Candan, K.S.: Twig2Stack: bottom-up
processing of generalized treepattern queries over XML documents. In: Proc. 32nd Int. Conf.
Very Large Data Bases (VLDB’06), pp. 283–294. ACM, Seoul (2006)

9. Chen, T., Ling, T.W., Chan, C.: Prefix path streaming: a new clustering method for optimal
XML twig pattern matching. In: Proc. 15th Int. Conf. Database and Expert Systems Applications
(DEXA’04), pp. 801–811. Springer, Zaragoza (2004)

10. Fiebig, T., Helmer, S., Kanne, C.C., Moerkotte, G., Neumann, J., Schiele, R., Westmann, T.:
Anatomy of a native XML base management system. VLDB J. 11(4), 292–314 (2003)

11. Florescu, D., Kossmann, D.: Storing and querying xml data using an rdmbs. IEEE Data Eng.
Bull. 22(3), 27–34 (1999)

12. Jagadish, H.V., AL-Khalifa, S., Chapman, A., Lakshmanan, L.V., Nierman, A., Paparizos, S.,
Patel, J.M., Srivastava, D., Wu, Y., Yu, C.: TIMBER: a native XML database. VLDB J. 11(4),
274–291 (2002)

13. Jiao, E., Ling, T.W., Chan, C.Y.: PathStack : a holistic path join algorithm for path query with not-
predicates on XML data. In: Proc. 10th Int. Conf. Database Systems for Advanced Applications
(DASFAA’05), pp. 113–124. Springer, Beijing (2005)

14. Lu, J., Chen, T., Ling, T.W.: TJFast: effcient processing of XML twig pattern matching. In: Proc.
14th Int. Conf. World Wide Web (WWW’05), pp. 1118–1119. ACM, Chiba (2005)

15. Lu, J., Ling, T.W., Chan, C.-Y., Chen, T.: From region encoding to extended dewey: on efficient
processing of XML twig pattern matching. In: Proc. 31st Int. Conf. Very Large Data Bases
(VLDB’05), pp. 193–204. ACM, Trondheim (2005)

16. Lv, J., Wang, G., Yu, J.X., Yu, G., Lu, H., Sun, B.: Performance evaluation of a DOM-based
XML database: storage, indexing and query optimization. In: Proc. 3rd Int. Conf. Web-Age
Information Management (WAIM’02), pp. 13–24. Springer, Beijing (2002)

17. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: a database management
system for semistructured data. SIGMOD Rec. 26(3), 54–66 (1997)

18. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: looking foward. In: Proc. the EDBT Work-
shop on XML Data Management, pp. 109–127. Matfyzpress, Prague (2002)

19. Qin, L., Yu, J.X., Ding, B.: TwigList: make twig pattern matching fast. In: Proc. 12th Int. Conf.
Database Systems for Advanced Applications (DASFAA’07), pp. 850–862. Springer, Bangkok
(2007)

20. Tatarinov, I., Viglas, S., Beyer, K., Shekita, E., Shanmugasundaram, J., Zhang, C.: Storing and
querying ordered XML using a relational database system. In: Proc. 28th ACM SIGMOD Int.
Conf. Management of Data (SIGMOD’02), pp. 204–215. ACM, Madison (2002)

21. University of Washington (2002) University of Washington XML Repository. http://www.cs.
washington.edu/research/xmldatasets/

22. Wang, H., Li, J., Wang, H.: Clustered chain path index for XML document: efficiently processing
branch queries. World Wide Web 11(1), 153–168 (2008)

23. Wang, G., Sun, B., Lv, J., Yu, G.: RPE query processing and optimization techniques for XML
databases. J. Comput. Sci. Technol. 19(2), 224–237 (2004)

24. Wang, Y., Xing, C., Zhou, L.: Managing and querying of videos by semantics in digital library—
a semantic model SemTTE and its XML-based implementation. In: Proc. 9th Int. Conf. Asian
Digital Libraries (ICADL’06), pp. 519–522. Springer, Kyoto (2006)

http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/

World Wide Web (2008) 11:407–425 425

25. Wong, K.-F., Yu, J.F., Tang, N.: Answering XML queries using path-based indexes: a survey.
World Wide Web 9(3), 277–299 (2006)

26. W3C (1999) XPath. http://www.w3.org/TR/xpath
27. XMARK (2003) XMARK. http://monetdb.cwi.nl/xml
28. Yoshikawa, M., Amagasa, T.: XRel: a path-based approach to storage and retrieval of XML

documents using relational databases. ACM Trans. Internet Technol. 1(1), 110–141 (2001)

http://www.w3.org/TR/xpath
http://monetdb.cwi.nl/xml

	Holistically Stream-based Processing Xtwig Queries
	Abstract
	Introduction
	Preliminaries
	XML data model
	XPath and axes
	Xtwig pattern

	Xtwig pattern matching
	Limitations of basic decomposition methods
	Matching of vpatterns with vpaths only
	Matching vpatterns with vtwig
	Stick stack
	BCube: matching vpatterns with vtwig

	XtwigStack: matching Xtwig patterns

	Performance evaluation
	Experimental settings
	Performance study
	Influence of RFOD
	Scalability vs document size
	Scalability vs length of vpattern
	Xtwig patterns

	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

