
Intelligent Assistance in Authoring Dynamically
Generated Web Interfaces

José A. Macías

Received: 8 May 2007 /Revised: 7 September 2007 /
Accepted: 22 February 2008 / Published online: 19 April 2008
Springer Science + Business Media, LLC 2008

Abstract Since its emergence in the early 1990s, the WWW has become not only an
information system of unprecedented size, but a universal platform for the development of
services and applications. However, most of the advances in web technologies are intended for
professional developers, paying poor attention to end-users with no programming abilities but
with explicit needs of creating and customizing web-based presentations. This provides a strong
motivation for end-users to act as designers at some point, leading to an emerging role of new
computing-related professionals to be considered. This paper is an effort to leverage such
difficulties by providing intelligent mechanism to assist end-users in web-based authoring
tasks. To carry out such a challenge, intelligent user-monitoring techniques are exploited to
obtain high-level information that will be used to infer the user’s preferences and assist him
throughout the interaction. Furthermore, we report on how iteration patterns can be applied to
avoid repetitive tasks that are automatically carried out on behalf of the user. In order to bring
off a feasible trade-off between expressivity and ease of use, a user experiment to obtain the
user’s perception and evaluate the hit-rate of our system is also presented.

Keywords intelligent web-based user interfaces . end-user development . web-based
programming by example . semantic web interaction . model-based user interface design

1 Introduction

A long-term goal of Human Computer Interaction is to design systems that minimize the
gap between the human's cognitive conception of task and its computational representation.
In this respect, considerable progress has been made over the last few years. Computer
applications include new and more sophisticated user interfaces. This motivated user
interaction to be one of the most important concerns in the design of today’s software
artifacts. Consequently, the new computing today is a shift frommachine-centered automation
to user-centered services and tools. In a nutshell, traditional computing has changed from what
computers can do themselves to what people can do with computers [36].

World Wide Web (2008) 11:253–286
DOI 10.1007/s11280-008-0043-3

J. A. Macías (*)
E.P.S. Universidad Autónoma de Madrid, Ctra. De Colmenar Viejo, Km. 15, 28059 Madrid, Spain
e-mail: j.macias@uam.es

1.1 End-user interaction

As software products grow in terms of expressivity, there is a growing need to allow people
to customize, configure and also create their own software artifacts in order to achieve daily
tasks properly. This includes professionals such as engineers, scientists and freelance
professionals who have concrete domain skills but generally lack programming abilities
[20]. Further support is needed in order to provide non-programmer professionals with
easy-to-use mechanisms to build and customize software artifacts, avoiding the need for
them to learn programming languages and specifications that are usually deemed to be
irrelevant for their daily work activities. Programming languages must be flexible enough to
deal with a wide range of problems, but with flexibility comes complexity, and the result is
a learning curve that most users simply cannot be expected to tolerate [9]. Several researchers
have sought to reduce the learning burden by creating design environments that do not require
users to program per se; instead, they design by instructing the machine to learn from
examples [15] or by interacting with graphical micro worlds representing real domains.

It is estimated that over the next few years we will be moving from easy-to-use to easy-
to-develop interactive software systems. A study reported that in the U.S. alone, there are
55 million end-user developers compared to 2.75 million professional software developers
[2]. This advocates the idea of considering new design strategies, providing the end-user
with a different role of self-designer rather than being a simple computer operator. Actually,
such a trend motivated new interaction-based research to be considered. Probably the most
important approach is EUD (End-User Development) [13, 16], which is focused on a user-
centered approach. End-User Development can be thought of as a set of activities and
techniques that allow people, including non-professional developers, at some point to create
or modify a software artifact [14]. Those include intelligent and adaptive approaches such
as Programming by Example. EUD is targeted at meeting the needs previously commented
upon, enabling final users to create their own software artifacts with the minimum effort.
Do-it-yourself computing is one way to perceive this flourishing field [8].

1.2 Authoring dynamically generated web-based interfaces

In the last ten years, the web has spread as a relevant information distribution medium.
A great proportion of web content and functionality are accessed today through web
interfaces. To provide maximal functionality, most web interfaces are dynamic rather than
static. Actually, it is estimated that 80% of web pages are dynamically generated [35] by
applications and services stored in web servers.

The challenge of authoring static web pages has been practically overcome years ago by
well-known commercial tools. Using such applications it is possible to make changes to
web pages and in turn upload them into web servers, enabling the user to avoid editing
HTML directly. However, authoring dynamic web pages comprises a far more complex
concern, since it requires users to have programming skills. At present, most web pages
built by end-users simply present information; creation of interactive web sites or web
applications such online forms, surveys and interactive web applications still requires
considerable skill in programming and web technology. Preliminary studies indicate that
users’ web development activities are limited not because of a lack of interest but rather
because of the difficulties inherent in interactive web development [34]. Actually, no
definitive solution has still been proposed to provide users with easy mechanisms for
authoring web-based dynamic information generated by databases, web-based services,
ontologies and other repositories. There are commercial applications, including languages

254 World Wide Web (2008) 11:253–286

and frameworks such as XSL and JSP/ASP that can greatly simplify the development and
maintenance of dynamic web pages. However, such environments still require advanced
technical knowledge that domain experts, graphic designers or even average programmers
may lack. A small number of development environments have been provided to easily deal
with all these technologies. Admittedly, these tools help manage projects and provide code
browsing and debugging facilities, but one still has to deal with the code. Additionally,
users might want to customize only a concrete part of a web application, having no need of
dealing with the whole programmer-targeted development environment when carrying out
simpler modifications. An interesting study by Rode and Rosson [33] revealed that
although much progress has been made by commercial web development tools, most of the
end-user tools that they reviewed did not lack functionality but rather ease-of-use. Rode and
Rosson explored many different paths, including extensions to a popular web development
tool (Macromedia Dreamweaver) to offer web application features more suitable to end-
users. Although tools like Dreamweaver and FrontPage have substantial extension APIs,
Rode and Rosson found the inflexibility in controlling the users’ workflow as the main
hindrance to adopting these approaches. Currently, none of the commercial tools that they
reviewed would work without major problems for the informal web developer. Ideally,
following the concept of the gentle slope [23], the skills required to implement advanced
features should only grow in proportion to the complexity of the desired functionality. In
general, it is difficult to provide what-you-see-is-what-you-get (WYSIWYG) tools for the
development of dynamic web pages because it is difficult to describe procedural behavior
visually. This is an inherent problem concerning most authoring environments, which
implicitly reduce the user’s ability to create and modify (web-based) software artifacts.

1.3 The approach

This paper presents an approach aimed at authoring dynamically generated web-based pages by
end-users. This approach consists of two tools intended to minimize the effort in authoring such
web-pages. On the one hand, DESK [17, 18] is an interactive authoring tool that allows the
customization of dynamic-page generation procedures with no a-priori tool-specific skill
requirements from authors. On the other hand, PEGASUS [4, 5] generates HTML pages from
a structured domain-model and an abstract presentation-model. The approach consists of
combining intelligent GUI-design techniques such as Programming By Example (PBE) [9,
15] with a bespoke ontology-based representation of knowledge. DESK acts as a client-side
complement of the PEGASUS dynamic web-page generation system. Such a solution attempts
to smooth the gentle slope of complexity in software usage [20], decreasing the general
expressivity by means of a WYSIWYG environment, in favor of increasing the ease of use.

DESK faces the challenge of supporting the customization of page generation pro-
cedures in an editing environment that looks like an HTML editor from the author’s point
of view. The PEGASUS presentation model specifies which pieces of knowledge should be
rendered and how a certain unit of information from the domain model is presented to the
user. Instead of using the PEGASUS modeling language, authorized users can modify the
internal presentation model by editing in DESK the HTML pages generated by PEGASUS.
DESK detects iteration patterns and follows the Programming By Example approach to
infer changes that affect every class of knowledge from the user’s actions. DESK widens
the spectrum of authors who can participate in an otherwise abstract and complex model-
based environment such as PEGASUS. Inversely, our work shows that PBE techniques can
benefit from a knowledge-based approach, which provides models of the user interface and
explicit domain semantics for the PBE component to reason about. Consequently, our

World Wide Web (2008) 11:253–286 255

system’s main goal is to help users to carry out the authoring task easily. Further, novice
web users can benefit from using our system, since no programming languages are required and
help is provided throughout the interaction in order to achieve modifications to web pages with
minimum effort.

In a nutshell, the main contribution of this work is providing an environment that
automatically customizes web presentations from changes performed by users. Furthermore,
an intelligent agent is also provided to monitor the user’s activity and build a high-level task
model to reason about and infer the user’s intent. Inferred information is exploited to per-
sonalize web presentations, which will be dynamically generated depending on previous user
changes. The conceptual separation between content and presentation, which is implicitly
carried out by the system using an ontology-driven approach, provides useful mechanisms to
characterize the user’s intent. This involves exploiting semantics to better characterize user
preferences at interaction. Additionally, a trade-off between expressiveness and easy-of-use
should be considered. In this respect, we carry out such a compromise by supporting less
expressive but likely far more easy-to-use authoring facilities, which are mostly intended to
help and assist non-skilled end-users in authoring complex and cumbersome tasks.

This paper is organized as follows. Section 2 describes PEGASUS’s mechanisms as well
as the ontology-based underlying models used in dynamic page generation. Section 3
presents DESK and the inference mechanisms used in authoring the adaptive dynamic web
pages generated by PEGASUS. Section 4 discusses an experiment carried out by users
utilizing DESK. Section 4 also reports related work. Finally, Section 5 provides the
conclusions to complete the structure of this paper.

2 Knowledge representation and automatic generation of web interfaces

Ontologies can be regarded as an effective way to model different aspects of a user interface
and to provide conceptual models in which complex relationships can be defined. Such a
conceptualization can be used in order to code high-level semantic paths for automatic web-
based interface generation, further characterization and reverse-engineering purposes [19].
The author’s research experience is in using ontologies to specify knowledge for building
data models (domain models) used together with application or presentation models. Our
previous experiences helped us to address the problem of specifying complex knowledge
focused on the interface’s domain and presentation models, as well as working with XML-
based languages that better fulfill the assumptions about knowledge distribution and sharing
that we have implicitly presented in this work. Therefore, this work is focused on
combining ontologies with Model Based User Interface (MBUI) techniques [30, 32], which
emerged as the solution claiming to overcome several difficulties in automating the process
of generating interfaces (e.g., redundancy, lack of encapsulation and reusability). The
implicit idea behind MBUI is to split up the conceptual level of a user interface, which
leads consequently to the explicit specification of different aspects of the interface itself,
such as user and platform, domain knowledge, presentation, dialog and behavior.

PEGASUS (Presentation modeling Environment for the Generation of ontology-Aware
context-Sensitive web User interfaceS) is a domain-independent system that helps to create
a dynamic front-end for ontology-driven knowledge-based applications on the web [5].
PEGASUS supports the definition of made-to-measure ontologies for the description of
domain knowledge. This approach is based on MBUI mechanisms that ensure domain
independence by separating concept and presentation, so that the system generates web
pages on the fly by selecting domain objects (i.e., instances of the domain ontology) and

256 World Wide Web (2008) 11:253–286

assembling them into HTML documents in response to a user’s requests for concrete
knowledge units. Since PEGASUS’s ontological processing and specification is not the
main concern in this paper, we summarize in next subsections the most important concerns
about this system for the sake of brevity. Instead, we will later focus on DESK and the
iterative pattern detection, which is the strength of this paper. Interested readers can refer to
[4, 5] in order to find further detail about PEGASUS.

2.1 PEGASUS’s domain model

The domain model in PEGASUS comprises a semantic network of ontology classes, instances
and relations. The domain ontology consists of a set of classes that best fit a specific application
domain or that reflect the specific view of a particular author on the domain. In the presented
approach, ontologies can be defined with a high degree of freedom, with very generic classes
like Catalog, Product, or more specific, like E-Mail Software, and Multimedia Tools. All this
knowledge is captured by defining attributes for classes, and relations between classes [4].

As an example, a designer could build a domain ontology in PEGASUS for a software
download site like Tucows, defining ontology classes like Product, Category, HigherCategory,
LowerCategory, and Catalog. This way, instances such as Internet, E-Mail, E-Mail Clients and
Allegro Mail could be defined:

<HigherCategory id="Internet">

 <subCategories>

 <HigherCategory ref="Connectivity"/>

 <HigherCategory ref="Communications"/>

 <HigherCategory ref="E-Mail"/>

 ...

 </subCategories>

</HigherCategory>

<HigherCategory id="E-Mail">

 <subCategories>

 <LowerCategory ref="E-Mail Clients"/>

 <LowerCategory ref="E-Mail Parsers"/>

 ...

 </subCategories>

</HigherCategory>

<LowerCategory id="E-Mail Clients">

 <products>

 <Product ref="Agile Mail"/>

 <Product ref="Allegro Mail"/>

 ...

 <products>

</LowerCategory>

<Product id="Allegro Mail"

 license="Shareware" price="39.95">

 <information> <AtomicFragment>

 With AllegroMail, you can set up...

 </AtomicFragment> </information>

</Product>

World Wide Web (2008) 11:253–286 257

XML attributes like license and price correspond to properties of a knowledge unit (of
class Product), whereas elements like subCategories and products are relations with other
units (the ref attribute corresponds to the unit ID’s). While the current version of the
approach uses ad-hoc XML extensions to represent the domain model for historical reasons,
it is planned to move to some of the currently available ontology definition standards like
RDF or OWL [12], with minor modifications to the system.

2.2 PEGASUS’s presentation model

In contrast with other knowledge-based systems that achieve automatic page generation;
e.g., Adaptive Hypermedia systems [3, 28], PEGASUS provides extensive control over
presentation design, by using an explicit presentation model, apart from contents. The
separation of content and presentation is achieved by defining a presentation template for
each class of the ontology. Templates define what parts (attributes and relations) of a
knowledge item must be included in its presentation and in what order, as well as their
visual appearance and layout. This explicit separation enables graphical aspects and domain
contents to be handled more naturally, splitting up design responsibilities depending on the
designer’s task and/or background. Simpler templates can be elaborated by graphical
designers, who need focus only on the presentation’s graphical aspects. Designers only
have to take care to insert references to domain concepts (such as Product, Categoryof-
Product and so on) into the presentation template. Therefore, content providers need only
focus on the structure of the domain ontology in order to create the contents for such
references. Finally, the system dynamically generates the objects instanced, using the
template created previously. Templates are defined by using an extension of HTML based
on JavaServer Pages (JSP), that allows inserting control statements (between <% and %>)
and Java expressions (between <%= and %>) in the HTML code. For instance, a template
for class HigherCategory could be as follows:

<% if (availableSpace > 5) { %> 1

 <widget type="Table" columns="3" 2

 dataflow="wrap"> 3
 <list> <%= subcategories %> </list> 4

 </widget> 5

<% } else { %> 6

 <table> 7

 <tr><td> <%= id %> </td></tr> 8

 <tr><td> <%= subcategories %> </td></tr> 9

 </table> 10

<% } %> 11

This template indicates that when there is enough available space (which is estimated on
a scale from 0 to 10) a table is created in which a subcategory is presented in each cell, left
to right and top to bottom (lines 2 to 5). Otherwise a table of two rows and a single column
is generated (lines 7 to 10) where the category id (line 8) and the list of subcategories (line
9) are displayed. The expression <%= subcategories %> is a reference to the multi-valued
relation subcategories of the HigherCategory being displayed. The relation points to a list of
objects of type Category, which PEGASUS presents using the appropriate template
recursively. The widget XML tag is a JSP custom tag used to provide a standard set of
HTML widgets like tables, input types (buttons, combo boxes, etc.), and selection lists.

258 World Wide Web (2008) 11:253–286

Each widget type has specific mechanisms to display domain model data structures, using
different strategies to map complex relations between domain objects to display structures.

The resulting page for the Internet category can be seen in Figure 1, where the outer
table results from lines 2 to 5 of the template, and the inner tables correspond to lines 7 to
10 applied to subcategories of Internet software (a few details like cell background colors
and the tabbed bar have been omitted in the template code for the sake of brevity).

Besides templates, the PEGASUS presentation model also includes presentation rules
like the following:

<Rule>

 <test condition="availableSpace <= 1 "/>

 <presentation> <%= this.asLink() %> </presentation>

</Rule>

In Figure 1, above rule is responsible for presenting third-level subcategories, such as E-
mail Clients, as a link.

Adaptivity is carried through by inserting conditions into the presentation model’s
templates, into presentation rules, and into relations between domain objects. These
conditions can test properties of the user model, properties of the data, characteristics of the
platform, and any other aspect that should influence presentation, like task requirements,
user’s goals, usage modes (e.g., exploration vs. selective search), etc.

At runtime, the user interacts with the application through a web browser. Interaction
with an application built with PEGASUS consists of navigating through the semantic

Figure 1 Web page generated for an instance of type HigherCategory.

World Wide Web (2008) 11:253–286 259

network of domain objects. Each time the user moves to an object, PEGASUS responds by
generating an HTML page (see Figure 2). In doing so the system a) resolves the user’s
request by determining the actual object to move to, b) locates the instance in the domain
model, c) updates the domain and user models and d) generates the HTML presentation
applying the pertinent rules and the template that corresponds to the object class. In the
generated pages links do not point to other pages but refer, explicitly or descriptively, to
other domain objects.

From the PEGASUS point of view, the unit of interaction with the user is an HTTP
request. User model updates are carried out by taking into account only the information
extracted from client’s requests. Platform and user interface characteristics are captured at
the client-side through JavaScript code that the system inserts in the generated HTML
pages, and the information is returned to the server as part of an HTTP request when the
user clicks on links and buttons. This assumption greatly simplifies the system architecture
and the integration with external tools and modules. By contrast, it means that the system is
not explicitly aware of user activity between two requests, and presentation is not updated
during that interval. A finer but far more complex and bandwidth-sensitive approach could
be supported by generating Java user interface components (applets) that interact with the user
and communicate directly with the server to query and update the domain and user models.

All in all, PEGASUS’s underlying models are flexible enough to represent interface
information with a high degree of expressiveness. Designers handle such knowledge by
writing it by hand with an ontology-based standard editing tool or by using one of our
previous tools such as PERSEUS [17], which is intended to create specific domain
knowledge (class, objects and relationships) for PEGASUS. PERSEUS (Presentation
ontology buildER for cuStom lEarning sUpport Systems) is an interactive form-driven tool
that was originally used for creating PEGASUS adaptive hypermedia e-learning systems [4]
by automatically generating the XML domain-information to be processed by PEGASUS.

However, a designer wanting to customize or further change a presentation generated by
PEGASUS would have to follow the reverse path from the generated web page to the
underlying models, dealing with procedural information, the domain and presentation
models of the applications, and figuring out correspondences and mappings from the

Figure 2 PEGASUS architecture.

260 World Wide Web (2008) 11:253–286

domain ontology to the presentation objects—i.e., those used in the presentation template to
render domain objects. Obviously, this is a difficult challenge to face, since dealing with
procedural, presentation and domain knowledge together is not an easy task even for
advanced programmers. When procedural information needs to be considered, data-driven
design approaches such as PERSEUS are insufficient. Any solution proposed should be
able to provide mechanisms to support customization by the end-user, where ease of use
should be the primary concern.

DESK was conceived to leverage the authoring mechanisms and deal with web
customization easily. DESK fulfils the assumptions made and provides with automatic support
for accomplishing designs involving domain, presentation and procedural information under
the same authoring environment. Therefore, the user does not need to get involved in the
reverse path that the system follows automatically to carry out the required modifications.

3 Authoring dynamic web pages through DESK

In this approach, EUD paradigm is particularly considered in order to deploy ontology-
based MBUI techniques that relieve users from having to deal with specifications. To this
end, it accepts a reduction in the expressiveness of the MBUI approach in order that users
do not have to manipulate declarative specifications for the interface [22]. For a successful
trade-off between expressiveness and complexity, the system must provide a low-level
abstract design environment, such as a WYSIWYG interface that provides end-users with a
real representation of the interface. Such environments help users to easily manipulate the
interface’s objects without using complex specification languages, and provide a realistic
depiction at every step of what the user is attempting to do. However, creating an
application from scratch through a WYSIWYG environment is not easy, since a great deal
of implicit information from the underlying application models is often required [19].

Users can modify the design of dynamic web documents through DESK, editing the
page that PEGASUS generates instead of by directly manipulating its modeling language.
DESK identifies domain values, model fragments, and presentation constructs in the HTML
code, from which it infers meaningful transformations. The user only knows about the web
document and need not be aware of the underlying models and languages.

Figure 3 depicts how DESK works. DESK has both client-side and server-side
components. The client-side looks like a conventional HTML web-based authoring tool,
where the user navigates through dynamic web pages generated by PEGASUS (1) and edits
those (2) in a WYSIWYG environment. The tool monitors the user’s activity and generates
a monitoring model containing user actions along with its context for characterizing each
action conveniently. Then this information is sent to DESK’s server-side component (3),
which processes the monitoring model, infers changes (4), generates suitable feedback and
sends it back to the user (5). Finally, DESK applies the inferred changes to PEGASUS’s
underlying models (6). Affected web pages will be dynamically regenerated and will appear
suitably modified whenever the user navigates through them.

3.1 Inferring user intentions

DESK authoring tool uses a set of suitable heuristics consisting of advanced ontology-
based search algorithms for obtaining both syntactic and semantic information in order to
infer user intent. Syntactic information is obtained by the client-side component by means
of low-level heuristics (HL), whereas the server-side component obtains semantic

World Wide Web (2008) 11:253–286 261

information by applying high-level heuristics (HH). This distinction is because semantic
information is only available at the server-side where underlying high-level models are
stored, whereas the client-side component is mostly provided with syntactic information
about the user’s modification to HTML objects. However, both syntactic and semantic
information are used together to provide further accuracy when addressing ambiguity and
analyzing context, thus obtaining precise and meaningful information about the user’s intent.
In general terms, DESK heuristics deploy available knowledge from the PEGASUS’s
domain ontology in order to map the user’s modifications to appropriate domain structures.

At the client-side, DESK records all basic user editing actions accomplished in the
HTML code (insert text, change text style, etc.) and attempts to find out the syntactic
context by applying low-level heuristics (HL). In turn, contextual information and user
actions are packed into constructor primitives to form the monitoring model (Figure 4).
Low-level heuristics determine the syntactic context for every user action [21]. Syntactic
context is useful to obtain local information about where the changes take place in the
HTML code, thus providing with further support for disambiguation. Later, this information
will be used on the server-side.

Low-level heuristics are grouped into several modules:

& The context-location module finds out nearest syntactic context for every
modification. Candidate context includes references to other surrounding HTML
objects and text fragments that could be useful in order to identify mappings
among HTML code and domain objects.

& The special-structure location module identifies presentation structures (e.g.,
tables, selection lists, etc.) in which a modification occurs. This module knows

Figure 3 DESK mechanism overview.

262 World Wide Web (2008) 11:253–286

about items, cells, rows and columns, as well as how data structures are related to
different presentation widgets.

& The monitoring-model generation module generates a structured monitoring model
containing information from previous modules—that is to say, user actions and
surrounding context. This module transforms atomic syntactic actions into
meaningful editing primitives, including contextual location and information about
the HTML object’s structures.

3.2 Inferring meaningful transformations

Once the monitoring model has been created, it is sent to the server for further processing.
Figure 5 shows the back-end architecture of DESK. The client-side sends the monitoring
model to DESK’s server-side component, where inference takes place.

Server-side processing is mainly focused on inferring semantic information that will
eventually be used to update PEGASUS’s underlying models. To this end, high-level
heuristics (HH) have been defined [21]. These determine semantic context by examining the
application’s domain model. The system handles this by processing the domain ontology in
order to find out relationships between the syntactic changes and the domain objects.

High-level heuristics are also grouped into several modules:

& The context-location module finds out semantic context by processing the domain
ontology. This is probably the most important module and is also the first to be
invoked. It is targeted at identifying domain objects by both analyzing the content
of the monitoring model and processing the domain ontology. More precisely, an
algorithm executes a loop to find whether an element of the monitoring model

Figure 4 DESK client-side.

World Wide Web (2008) 11:253–286 263

matches an ontology object or whether it has instead to be identified by the context
(analyzing other surrounding objects).

& The presentation-context module takes into account the information reported by the
context-location module to create references to presentation objects included in the
presentation model of PEGASUS. These references will then be used to identify
changes that concern how the domain objects will be visualized. Since the user can
make changes to domain and presentation objects separately, the system must
identify correctly whether a change affects the presentation level (lexical changes
such as style, position color attributes and so on) or the domain level (changes
concerning domain objects and relationships).

& The disambiguation module is called whenever an ambiguous situation appears.
This is when two or more references for the same user modification are found during
context searching by previous modules. To solve this problem, the disambiguation
module takes into account contextual information stored in the monitoring model by
means of the low-level heuristics. Such contextual information will be analyzed to
disambiguate references and decide which is the appropriate one to select. When the
ambiguity cannot be solved, the system prompts the user for help.

One of the most important concerns of the high-level heuristics is to process the domain
model in order to obtain meaningful information for characterizing user changes. As an
example, let us suppose that the user edits the title of an e-mail client called “Allegro Mail”,
adding the word “Client” at the end.

Before After
• Allegro Mail • Allegro Mail Client
• Item 2 • Item 2
• Item 3 • Item 3
• ... • ...
• Item N • Item N

Figure 5 DESK server-side.

264 World Wide Web (2008) 11:253–286

The following information is created in the monitoring model to codify this
modification:

<InsertText>

 <Text> Client </Text> 1

 <Context start="12" end="18" before="" after="Item 2"> 2

 <Text> Allegro Mail </Text> 3

 </Context>

</InsertText>

The code above shows how the system recognizes the insertion of the word Client (line
1) and also the context where the insertion takes place—that is, from position 12 up to
position 18 (line 2) of the first line (before = ""; means that before that point there is
nothing) and just before a given Item 2 (after = "Item 2"), following the existing paragraph
Allegro Mail (line 3). The line Allegro Mail was generated by a <%=subcategories
("vertical")%> instruction in the presentation template. Such a command establishes
different categories of email products (in this case) to be visualized vertically by a selection
list. In order for the system to detect the proposed modification, it processes the monitoring-
model code above and attempts to find out where Allegro Mail software appears by
matching that string with the existing domain objects. This way, an occurrence is found, as
the title attribute of object EMC1 seems to contain such a string:

<eMail-Clients ID="EMC1" title="Allegro Mail">

...

<eMail-Clients ID="EMC2" title="Item 2">

...

<eMail-Clients ID="EMCN" title="Item N">

...

The system starts to analyze the object affected and then realizes that it belongs to the
category eMail-Clients. The system searches the domain model again to find where the object
EMC1 occurs, and discovers that it is included in the relation BelongsTo of the object
E-Mail:

<E-Mail ID="EM">

 <BelongsTo>

 <eMail-Clients ID="EMC1"/>

 <eMail-Clients ID="EMC2"/>

 ...

 ...
 <eMail-Clients ID="EMCN"/>

Analyzing this object and searching the domain model once again, the system finally
finds the class Software, where the relation BelongsTo appears:

<Class name="Software">

 <Relation name="BelongsTo"...>

...

World Wide Web (2008) 11:253–286 265

Since the system follows up every relation coming from the first occurrence, it is
possible to determine the logical path for every modification. In this way, carrying out a
bottom-up search and keeping the information found during the process the system can
characterize the change in the domain model. In this particular case, the characterization
carried out by the system can be summarized as: “The user has modified the title of a
«lower category» e-mail client product that belongs to a «higher category» called e-mail,
included in the software catalog of the electronic shop.”

The changes our system can detect may also involve presentation styles in the JSP
template. In order to detect those, the system first characterizes the object involved in the
modification as explained above. It then searches the presentation model of the
corresponding class in which the object appears. This is the task of the presentation-
context module, which matches the characterized object with its representation in the
presentation template, replacing, removing or adding the new style attributes.

For instance, let us suppose that the presentation template contains the code <h1>
<%=Product.title %> </h1>, giving the product’s title a heading style of h1. If the user
decides to change the style to h2, the following line depicting such a modification will
appear in the monitoring model:

<ChangeStyle old="h1 " new = "h2">

 <Text> Allegro Mail Client </Text>

 <Context start="1" end="20" before="" after="Item 2î/>

</InsertText>

Once the context-location module has characterized the object Product and its attribute
title, the presentation-context module searches the presentation template (class Product) for
such a reference (Product.title) and replaces the existing attribute (h1) by the new one (h2),
resulting in the following line in the presentation template: <h2> <%=Product.title %> </h2>.

This process can be generalized easily for every HTML structure (such as a table or
selection list) and widget. Therefore, monitoring-model primitives can reflect changes and
additions in style and page layout detected anywhere in the presentation template.
Additionally, ambiguities are also addressed through the disambiguation module. That is, if
the same object reference appears twice or more in the same presentation template,
contextual information is analyzed. The contextual information appears in every primitive
generated in the monitoring model (see previous examples of code), reflecting the start and
end positions and the objects appearing immediately before and after it. Thus the system
can determine the right object to change, with minimum ambiguity.

The process of running high-level heuristics enriches the monitoring model with
information resulting from the characterization explained above—that is, semantic
knowledge such as concrete domain-object names, attributes and semantic relationships.
Finally, a specialized module for managing changes processes the (enriched) monitoring
model again in order to accomplish the changes to PEGASUS’s underlying domain and
presentation models, sending back in turn a detailed report and prompting the user for help
if needed. In the above example, the attribute title of object EMC1 is readily modified by
such changes to the monitoring module.

Once performed, changes are only visible to the author who carried them out. This way,
each user can see the presentation according to the changes s/he accomplished; presentation
objects are rendered depending on the user profile. Instead of considering one presentation
and domain-object-network per user, the system stores only the modified instances and
identifies the corresponding changes in the user model when the page is generated again.

266 World Wide Web (2008) 11:253–286

3.3 An example

At first sight, DESK client application looks like an HTML editor. It provides support for
editing HTML pages and navigating through them. However, internally it manages a
structured model of the user interaction (the monitoring model). As well as being used to
record the user’s changes to dynamic web pages, the knowledge coded in the monitoring
model is also employed to help the user accomplish cumbersome tasks automatically. This
process is carried out by analyzing the monitoring model’s actions carefully and using a
reactive assistant to act as a surrogate for the user when necessary.

Figure 6 shows the user interface of DESK client, where the web page depicted in Figure 1
is being modified as follows: a) the text “Applications” is to be inserted beside the
“Internet” literal, and b) a few items from an HTML table have been cut and pasted into
both a combo box and a selection list. In general, items can be added or removed from
presentation structures by using a pop-up window that is made visible when double-
clicking on the widget. It is worth noting in Figure 6 that the user is attempting to replace
an existing table containing product categories by a combo box. Such a widget contains one
of the higher categories and also a selection list for selecting the subcategories of one of the
elements chosen from the combo box. DESK automatically detects the user’s intent and
suggests that the table should be replaced by the combo box and selection list. Figure 7
shows the result of such a process, once DESK has changed the presentation model on the
server-side (the internal mechanism of DESK client- and server-sides are detailed in later
sections). As we can see, the inserted text “Applications” appears twice in the final

Figure 6 DESK authoring tool in editing mode.

World Wide Web (2008) 11:253–286 267

presentation (page title and tabbed pane at the top). This is because the change concerns an
attribute, called title, included in the corresponding domain ontology’s instances, and
therefore is rendered on both the tabbed pane and the page title. This eventually results in
the literal “Internet” being replaced by “Internet Applications” at both those locations.
Furthermore, the previous table has been replaced by a combo box and a selection list in the
new version of the presentation.

It is worth emphasizing that the changes that have been accomplished are far from being
merely syntactical. The presentation depicted in the previous example was dynamically
generated, coming from the domain and presentation models stored on the server.
Consequently, the changes made to widgets, as well as the transformation shown, are
automatically carried out by the system, which makes semantic assumptions about the
presentation’s widget structures and deals with mappings to domain objects. As will be
explained in the following sections, semantic information combined with the user’s
syntactic actions offers interesting possibilities for user assistance, enabling to handle many
transformations automatically.

3.3.1 Assistance in authoring tasks

As mentioned before, the monitoring model is one of the chief elements in DESK. Aimed at
tracking user interaction for further semantic processing, the monitoring model is updated
continually, reflecting every user action. Besides monitoring user’s actions, the monitoring

Figure 7 Resulting web page once the changes have been processed.

268 World Wide Web (2008) 11:253–286

model is also taken into account on the client-side in order to analyze syntactic actions and
provide users with help when authoring a web page.

The DESK client features a mechanism intended to recognize the user’s intent and
provide appropriate help. This intelligent component knows about presentation structures,
and allows for user actions to carry out automatic transformations. Rather than continuously
checking for concrete user actions on presentation structures, which would be very
inefficient, DESK includes a pre-activation agent (DESK-A) that checks for lighter
conditions and detects iteration patterns [21]. This will be detailed in Section 3.4. Only one
agent is needed in order to check the monitoring model and detect different types of actions.
The agent is activated when certain actions (e.g., copying elements from one widget into
another) are detected. The agent looks for partial clues that alert the system to execute
specific heuristics that trigger a more detailed analysis of actions and objects involved. The
agent can be configured manually by defining its behavior in the form of rules. This task
must be carried out by experts. The agent’s behavior is configured by a set of trans-
formation hints such as the following:

<TransformationHint searchLength="100">

 <widget type="Table"

 changeTo="ComboBox,List" />

 <Condition action="Creation" 1

 object="ComboBox" />

 <Condition action="Creation" 2

 object="List" />

 <Condition action="PasteFragment" 3

 from="Table" to="ComboBox"

 repeat="3" />

 <Condition action="PasteFragment" 4

 from="Table" to="List"

 repeat="3" />

 <Condition fact="Relation" from="ComboBox" 5

 to="List" />

</TransformationHint>

This hint activates a specific heuristic for transforming a table into a combo box and a
selection list when the following conditions are satisfied: (1) a combo box has been created,
(2) a selection list has been created, (3 and 4) domain fragments have been pasted from a
table into a combo box and a selection list (at least three times in each one) and (5) there is
an existing relation between the information pasted (in terms of domain knowledge) into
each widget. The searchLength attribute represents the number of actions in the monitoring
model the agent will consider at any one time. This parameter is useful for tracking back the
user’s actions related exclusively to the theme of one particular transformation (more than
one transformation can be nested in the monitoring model). Once activated, the agent runs
transformation heuristics to carry out more elaborated tests to work out how the
transformation will be applied. This involves recognizing iteration patterns and
coordinating data flow among presentation structures.

As already mentioned, the monitoring model comprises a sequence of instructions that
reflect actions performed by the end-user. The following monitoring-model fragment shows

World Wide Web (2008) 11:253–286 269

two different primitives extracted from the previous example: the insertion of the string
Applications and the transformation of a table into a combo box and a selection list:

<InsertText> 1

 <Text> Applications </Text>

 <Context start="09" end="21" 2

 before="T01" after="TB01"> 3

 <Text> Internet </Text>

 </Context>

</InsertText>

<ChangeWidget>

 <From type="Table" id="T01" 4

 relation="subCategories"

 class="HigherCategory"

 objectID="Internet"/>

 <To type="ComboBox" id="C01" 5

 relation="subCategories"/>

 class="HigherCategory"/>

 <To type="List" id="L01" 6

 relation="subCategories"

 class ="LowerCategory" />

</ChangeWidget>

As for the text insertion (1), it is worth noting how DESK uncovered contextual
information about the change (2), that is, where the information is located: starting at the
ninth position besides the string “Internet”, and ending at position twenty-one. Contextual
semantics (3) reflect the fact that the insertion has been accomplished between the table T01
and the tabbed bar TB01 (DESK internally assigns an identifier to every widget when
parsed). With regard to the transformation from a table to a combo box and a selection list,
the code that the transformation heuristic generates comprises a high-level instruction that
includes domain semantics and relationships between the widgets involved. This way, the
code above reflects how a table (4), identified by T01 and generated by the relation
subCategories of class HigherCategory and domain object Internet, is transformed into the
combo box C01 (5) and the selection list L01 (6), keeping the same domain relationship
(subCategories) and belonging to different domain classes (HigherCategory for the combo
box and LowerCategory for the selection list).

In general, the DESK agent can deal with different types of changes by configuring the
agent’s behavior in order to carry through meaningful transformation by using the
monitoring model. Although DESK-Awill be detailed in Section 3.4, interested readers can
refer to [17] in order to find further cases of transformations that have been omitted in this
paper for the sake of brevity.

3.3.2 Exploiting semantics

Once the monitoring model has been sent to the server-side component, the system
carefully analyzes its content, instruction by instruction. Continuing with the example of the
modifications presented above, the first instruction corresponds to the text insertion (the
string “Internet”). For each instruction, the DESK server uses high-level heuristics to search

270 World Wide Web (2008) 11:253–286

the domain model for information matching the domain objects, thereby adding (in the text-
insertion example) the following semantic:

<Context class="Category" attribute ="id"

 objectID="Internet"/>

In this case DESK server-side has found a correspondence with the domain model, and
the system processes the domain-model object that has the identifier “Internet” (which is an
instance of Category). As a result, the system adds the name of the class, the attribute and
the object as semantic context, changing the content of the id attribute to “Internet
Applications” in the domain ontology as well.

In the second example (the transformation of a table into a combo box and a selection
list), the system notices that the change affects the presentation rather than the domain
model, and no contextual information is added this time. Instead, the table is substituted by
a combo box and a selection list in the presentation template for the class HigherCategory.
After this modification, the new presentation template is as follows:

<% if (availableSpace > 5) { %>

 <widget type = "ComboBox">

 <items> <%= subCategories %> </items>

 <selectedItem> <%= selectedID %> </selectedItem>

 </widget>

 <widget type = "List">

 <items>
 <%= subCategories.item(SelectedID).subCategories %>

 </items>

 </widget>

<% } else { %>

 <table>

 <tr> <td> <%= id %> </td> </tr>

 <tr> <td> <%= subcategories %> </td> </tr>

 </table>

<% } %>

The variable SelectedID represents an input parameter used for widgets that involve
selection at runtime, such as the combo box. This parameter is internally generated and
managed by the system, depending on the number of input values needed for each widget.

3.4 Iteration patterns

Iteration patterns can be though of as a generalization of common user actions that can
appear more than once, so that they can be used to apply similar behavior on future
interaction. In a practical way, iteration patterns provide automatic mechanisms to assist the
user in achieving cumbersome tasks.

In order to deal with iteration patterns, the system exploits the monitoring model to
extract meaningful information to reason about. As already explained, the monitoring
model can be regarded as a low-level task model where all the actions that the user achieves
on the web interface are stored and enriched with information about the interface itself. This
way, one of the advantages of using a monitoring model is that a semantic history of user

World Wide Web (2008) 11:253–286 271

actions can be built in real time. In doing so, the system features DESK-A, a specialized agent
included in DESK that analyses and manages the monitoring model to find iteration patterns.

3.4.1 Detecting iteration patterns

Detecting iteration patterns consists of analyzing the history of user actions to find out
meaningful information about the user’s high-level tasks. To carry out this challenge, the
system implements a set of heuristics for identifying relationships among the user’s actions
and the interface’s presentation elements. More precisely, the system detects linear
relationships in the geometric structure of each widget to identify two different types of
interaction patterns: regular patterns and non-regular patterns.

Regular patterns can be considered as linear iteration sequences that can be detected by
means of specialized algorithms. Such algorithms attempt to detect linear relationships on
widget attributes (e.g., columns and rows in a table, a list of numbered items in a selection
list, and so forth). By contrasts, non-regular patterns are meant to be iteration sequences
where no a-priori linear relationships can be found by analyzing widget attributes.
Consequently, they have to be tackled apart.

Regular patterns Regular patterns are detected and processed by means of specialized
heuristics called Iteration Pattern Algorithms (hereafter, IP Algorithms). IP Algorithms are a
set of algorithms specialized in studying widgets and extracting specific properties from
them. Such properties will help find suitable iteration masks for moving elements automatically
from one widget into another, keeping the same domain model values and mappings.

Figure 8 shows some snapshots of DESK where an automatic transformation of widgets
takes place. The figure depicts how the user is attempting to copy elements from a selection

Figure 8 The scenario depicts how DESK-A has detected an automatic transformation of a selection list into
a table.

272 World Wide Web (2008) 11:253–286

list into a table previously created. After a couple of intents, DESK-A asks the user for
confirmation in order to transform the selection list into a table. The tool accomplishes the
transformation automatically once the user has accepted the suggestion. Finally, the
selection list has been replaced with a table that has the same number of items and internal
domain-model mappings.

IP Algorithm is a key component in achieving automatic transformations. There are
several IP Algorithms that can are applied depending on the type of widget the system deals
with. A sample code of one of these algorithms (based on the scenario depicted in Figure 8)
for addressing transformation of tables and selection lists is as follows:

IP_Algorithm (Widget W1, W2, Set TG) {

 ColumnSequence = A.getColumnSequence(W2);

 RowSequence = A.getRowSequence(W2);

 ElemIndexSequence = A.getElementIndexSequence(W1);

 ColJumpSet = ColSequence.getColJumpSet();

 RowJumpSet = RowSequence.getRowJumpSet();

 ColShiftSet = BuildColShiftSet(ColumnSequence,

 ColJumpSet,RowJumpSet);

 RowShiftSet = BuildRowShiftSet(RowSequence,

 ColJumpSet,RowJumpSet);

 Iterator = BuildIterator(W2.getBounds(),

 TG, ColShiftSet, RowShiftSet,

 ElemIndexSequence);

 ...

 While (Iterator.hasNext()) {

 i = Iterator.getNexti(i);

 j = Iterator.getNextj(j);

 k = Iterator.getNextk(k);

 W2.setElementAt(i,j,W1.getElementAt(k));

 }

}

W1 represents the source widget (a selection list) and W2 is the destination one (a table).
TG contains information about the widget’s properties (number of fixed columns and rows).
A is a set that stores information about actions that concern the process of copying elements
from one widget into another. This set is very useful in order to obtain common properties
about the widget’s manipulation sequence (for example, the column insertion sequence of
elements into a table), as well as to obtain an abstract model about the widgets that are
being manipulated by the user throughout the interaction. Properties stored in A can be
accessed by means of specialized methods:

& A.getSize(Widget)
& A.getElementIndexSequence (Widget)
& A.getColumnSequence(Widget)
& A.getRowSequence (Widget)
& A.getElementAt(Widget,i[,j])

World Wide Web (2008) 11:253–286 273

& A.getID(Widget)
& A.getClassName(Widget)
& A.getObjectName(Widget)
& A.getExistsRelation(Widget1,Widget2)

The main goal of the above operators is to provide the inference engine with information
about the widget (and its properties), such as the size of a given widget, the insertion
sequence of elements (index, column and row), the class and the object’s names as they
appear in the domain model, and the existing relationships between the source widget and
the destination one. Therefore, the engine builds an iteration mask (Iterator) that provides
an efficient mechanism for automatically copying elements from the source widget into the
destination one, adapting the properties of the destination widgets as the original one
appears in the underlying models of the interface.

Figure 9 depicts an example (based on Figure 8) as the result of executing the above
algorithm for copying elements from a selection list into a table. Before transforming the
selection list intro a table, the system generates specific sets that store information
concerning the rows and columns involved as well as the jump sequence’s sets. Finally, a
couple of iteration masks are calculated for both column and row, those intended to create
an automatic iteration process for carrying out the transformation among widgets. As
shown in Figure 9, ColumnSequence and RowSequence sets contain, respectively, the
column and the row insertion sequences of elements copied into the table at each user step.
On the other hand, ElemIndexSequence contain the sequence of items selected for being
copied from the selection list. Furthermore, the IP Algorithm calculates the column
(ColJumpSet) and the row (RowJumpSet) jump sets by processing A. The algorithm also
detects whether the insertion is carried out either on rows or columns by comparing both
jump sets. This way, if RowJumpSet is greater (in size) than ColJumpSet, then the insertion
is achieved by iterating through rows, if not the insertion is achieved by iterating through
columns. Otherwise, if both sets have the same size, then special considerations has to be
taken (there is a straight linear relationship between row and column on the insertion

Figure 9 Execution of an IP Algorithm when copying elements from a list into a table.

274 World Wide Web (2008) 11:253–286

sequence). Next, an increment mask is calculated for columns (ColShiftSet) and rows
(RowShiftSet) by using an operator, namely ΔAverage defined in Equation (1).

$Average x1; x2; x3; . . . ; xnð Þ ¼
x2�x1ð Þþ x3�x2ð Þþ...þ xn�xn�1ð Þ

n�1
0;

�
;

n > 1
n � 1

¼
xn�x1
n�1 n > 1
0; n � 1

�
ð1Þ

Equation (1) represents an operator that calculates the average sequence of jumps. The
operator is applied to obtain a couple of masks (ColShiftSet and RowShiftSet sets) that
include the increments used in the loop for column and row jumps. Initial positions are also
considered at the beginning of the loop (Col:2 and Row:1), resulting in this case as follows:
increasing 2 columns for the first time, jumping then two more rows (# in RowShifSet and
2 in ColShiftSet), next jumping 2 columns, and finally repeating the sequence all over
again. All these sets are finally used to create the iteration index intended to iterate though
the widgets and easily complete the iteration sequence previously calculated.

Figure 10 shows several examples of similar transformation processes, where different
cases of tables with different types of insertion sequences are depicted. Those result in
different values for each set depending on each widget’s geometry. As shown, the algorithm
can face correctly a great deal of cases where cut-in columns and rows are detected as part
of the iteration mask, using & symbol for row-based jumps and # for column-based jumps.

Figure 10 Some examples of iteration patterns detected by IP algorithms.

World Wide Web (2008) 11:253–286 275

Figure 10 also shows a case where the iteration pattern is defined as an identity function
(the same number of row jumps than column ones), finely detected by DESK-A as well.

Non-regular patterns Unfortunately, it is not always possible to create an iteration pattern
that best fits a sequence started by the user. Actually, when the system is not able to find out
linear relationships in iterative sequences on the widget’s geometry then had-hoc or
specific-purpose iteration patterns have to be considered.

The system faces the challenge of non-regular patterns by enabling the hand-coded creation
of a pool of pre-defined iteration patterns. Those can be defined by experts. Therefore, it is able
to customize the design and tell the system how to resolve the iteration in order to accomplish
the transformation successfully. The pool of non-regular patterns can be included in the engine
configuration, specifying the behavior for how DESK-A has to deal with each type of widget.

Figure 11 shows an example of two iteration patterns that can be defined in the non-regular
part of the DESK-A configuration file. This example reflects non-regular patterns where
linear relationships are hard to find out, since there is not a straight relationship among the
widget’s attributes (column and row insertion sequences), so that IP Algorithms cannot be
applied directly. In any case, non-regular patterns cannot be considered commonplace.
Actually, they are rather difficult to find in common practice, so that a customized pool of
predefined patterns is used in order for the system to tackle such a kind of patterns.

3.4.2 DESK-A

As shown in Figure 12, DESK-A (DESK-Agent) is a specialized inference assistant for
finding out high-level tasks related to user actions.

While DESK-A is based on Information Agents [1] and Wrappers [14, 27], by contrast it
searches the monitoring model, which has an explicit semantic representation of the user’s
actions, rather than searching the HTML code directly. Therefore DESK-A is able to
activate more complex heuristics in order to find out transformation of presentation
widgets, such as transforming a combo box into a table or transforming a table into a
selection list. DESK-A can also infer more complex intentions automatically, such as
sorting a selection list and copying attributes from one table cell into another.

DESK-Agent detects and manages both regular and non-regular patterns by monitoring
the user input. Basically, DESK-Agent comprises three main states:

& Pre-activation: where the agent checks the monitoring model for high level tasks.
This depends on the configuration set.

& Activation: where the agent searches for specific widget values in the monitoring
model once it is pre-activated. Here, DESK-A analyzes in-depth the history of user
actions and creates different models for each widget involved in the interaction.

& Execution: where the agent executes the transformations taking into account the
values found at the activation step.

Figure 11 Two examples of
non-regular iteration patterns
detected while copying elements
from a selection list into a table.

276 World Wide Web (2008) 11:253–286

DESK-Agent searches the monitoring model for primitives that better fit the require-
ments defined at its configuration. The agent can be set-up by defining a configuration file
on the client-side. That configuration reflects the agent’s behavior:

<TransformationHint>

</TransformationHint>

 ...

 <widget type="List" changeTo="Table">

 <Condition action="Creation"

 widget="Table" />

 <Condition action="PasteFragment"

 from="Table" to="List" />

 <Non_Regular_Pattern_Pool>

 <Pattern col_sequence="1,1,2,2"

 row_sequence="1,2,2,3"

 elem_sequence="1,2,3,4">

 <Resolve i="from 1 to List.getSize(); i++1"

 next_col_sequence="col[i],col[i]"

 next_row_sequence="row[i],row[i+1] "

 next_elm_sequence="elm[i]" />

 </Pattern>

 <Pattern col_sequence="1,2,3,2,3,4"

 row_sequence="1,1,1,2,2,2"

 elm_sequence="1,2,3,4,5,6">

 <Resolve

 next_col_sequence="3,4,5,4,5,6,..."

 next_row_sequence="3,3,3,4,4,4,..."

 next_elm_sequence="7,8,9,10,11,..." />

 </Pattern>

 ...

 </Non_Regular_Pattern_Pool>

 </widget>

 ...

The above code is a fragment of the DESK-A configuration, where <Transformation-
Hint> elements are pre-activation directives that the agent will check for arranging
transformations between both widgets (<widget>), in this case a selection list (type="List")
and a table (changeTo="Table"). Furthermore, DESK-A checks the creation status
(action="Creation") of the table, as reflected in <Condition> elements, and analyses the
copy sequence of elements (action="PasteFragment") from the table into the selection list,
identifying dependences between the two widgets. When all these prerequisites are
satisfied, the agent executes transformation heuristics for detecting iteration patterns (IP
Algorithms) by selecting meaningful information from the monitoring model. Finally, the
process results in transforming the widgets and keeping the same structure that holds the
source widget by firstly asking the user for confirmation.

DESK-Agent also deals with non-regular patterns by supporting the creation of a pool of
pre-defined iteration patterns (<Pattern> element inside <Non_Regular_Pattern_Pool>, in

World Wide Web (2008) 11:253–286 277

the agent configuration code). This way, DESK-A completes and resolves (<Resolve>
element) the iteration sequence in order to accomplish the transformation successfully. Non-
regular patterns are represented by using an indexed-construction, defining a for-like loop
to iterate through columns, rows and selection list items (<Resolve i="from 1 to List.
getSize(); i++1"). Furthermore, DESK-A supports a numerical representation of iteration
sets (<Resolve next_col_sequence = "3,4,5,4,5,6,… ") for column, row and item indexes.
This kind of specification becomes far more natural and easy-to-understand for non-expert
users.

In short, DESK-A provides an intelligent assistant to help end-users carry out different,
sometimes difficult to achieve, kind of actions while editing web pages. The configuration
(file) of the assistant can be customized by experts, in order for DESK-A to act according to
the end-user’s needs. This mechanism can be extended for increasing productivity in user
interaction by means of providing non-expert users with continuous assistance in their daily
solving activities with computer applications as well as generating programming code
without the necessity of learning programming or specification languages. This challenge
can be carried out by exploiting the monitoring and semantic detection strategies. The main
goal is to assist the user in a great deal of different scenarios, such as classical interface
builders and toolkits, authoring tools for generating model-based user interfaces and, in
general terms, programming environments. To this purpose, the abstract mechanism of
pattern detection can be extended and new IP Algorithms can be created, in order for other
kind of user intentions to be detected by the system regardless of the domain and the
interface used. To corroborate this hypothesis, an experiment with real users has been
carried out. That experiment helped to evaluate the accuracy of the intelligent heuristics
implemented and the system’s response to different user modifications.

Figure 12 DESK-A overview.

278 World Wide Web (2008) 11:253–286

4 Evaluation and discussion

The main goal of the work presented is to provide easy-to-use mechanisms for
personalizing dynamic web pages. To achieve this, a methodological approach for
generating and authoring dynamic web pages has been proposed and fully implemented.
While most commercial and other existing approaches are focused on dealing with static
aspects or force the user to create code at some point, this approach protects the user from
having to use programming languages when authoring dynamic web pages. To carry out
such a challenge, the system features an intelligent reverse-engineering mechanism that
helps end-users carry out modifications in a WYSIWYG environment. Therefore the
system accomplishes the changes by automatically modifying the underlying models on the
server, thus providing end-users with a new web page with minimal effort.

An initial experiment has been carried out in order to evaluate and assess the quality of
the approach presented here. Next sections reports on an experiment carried out with real
users that has helped evaluate the authoring mechanisms supported by DESK. Additionally,
a discussion will be provided in order to analyze DESK’s functionality.

4.1 User experiment

For the study, we recruited 12 participants with heterogeneous scientific backgrounds from
our academic institution. The participants were given a 10-minute general introduction to
the goal of the study. This experiment started with the premise that users were expected to
have no or minimal skills in web programming, but to have a basic ability to handle web
navigation. Post-study interviews revealed that only 40% of participants had any web
programming experience, which was limited to creating and modifying simple HTML
pages manually. However, all of them had significant experience in WYSIWYG web
authoring and navigation, which were the only skills required to carry out our experiment.

In general, the main objectives of this experiment were 1) measure DESK’s hit rate in
inferring user intentions from their actions monitored throughout the experiment and 2)
observe each user’s perceived predictability and the ease of use in web page authoring with
DESK. In order to fulfill those objectives, a study was designed, consisting of asking users
to use DESK for authoring a dynamic web page containing a great variety of content and
presentation elements. The changes suggested to users consisted of replacing text,
transforming widgets (such as a bullet list into a table), adding new elements to the table
created, modifying text attributes (color, justification and so on), inserting new text,
removing existing text and moving HTML objects. The task was then to modify the given
page (i.e., carrying out changes to page elements independently of the order) to obtain a
personalized final version with all the changes applied. The lack of a specified order in
which the modifications can be made helped us measure the accuracy of inference, the
expressiveness and the freedom of design provided by DESK, placing no restriction on the
way users carried out the customizations from the initial design. Consequently, different
users could carry out the modifications by following different steps and thereby we expect
the system to respond in different ways. The main objective of this was to get the maximum
information about the operation of the system’s inference mechanisms. The variety of
modifications proposed helped us observe different aspects of the system’s behavior and
inferences made, such as:

– How the system identifies different domain objects by using contextual information
extracted from user modifications.

World Wide Web (2008) 11:253–286 279

– How the user was assisted in the automatic transformation carried out. In this case, it
was interesting to observe the system’s behavior in transforming automatically
presentation elements (e.g., a bullet list into a table), using the mechanisms explained
in previous sections.

– How the system can move, add, remove or insert new domain elements while keeping
the contextual information and relating such modifications with the correct domain
objects.

– How the system can find attributes of domain objects related to style modifications in
the presentation’s templates.

– How the system can control consistency with the new elements created by the
automatically suggested transformation, identifying presentation structures and allow-
ing the user to add new components. The system was expected to discover where to
add the new content in the domain ontology. In this study, the user added new content
to the table automatically created by the system.

This experience revealed interesting aspects from both DESK and the user’s behavior.
For each user intervention, we studied data extracted from internal system variables and
DESK’s monitoring model, with the aim of analyzing DESK’s accuracy and behavior.
Specifically, we studied the following parameters:

a) The time the user took to carry out all the changes.
b) The number of primitives generated in the monitoring model.
c) The inference hit rate (in inferring user intentions.).

Although the study generated a great deal of information, we summarize here the most
important results obtained.

Table 1 shows the numerical values obtained by the experiment. The first column shows
the number of primitives generated during the user interaction and recorded on the
monitoring model. This number differs from one user to another, as maximum and minimum
values indicate. This is principally due to the fact that DESK offers enough expressiveness
for a task to be accomplished in different ways, and so the number of primitives observed
depends on the step each user followed to achieve the changes proposed. The average
number of primitives generated was 200. In the second column, the hit rate shows 95%
success in inferring users’ intentions. This implies that DESK achieves most changes
successfully when carrying out the reverse-path analysis. Any errors were mainly due to
ambiguities when inferring user intentions [17] and they will be considered for future
improvements. The final column shows the time that users spent in accomplishing the
modifications. As we can see, participants spent an average of 5 minutes and 39 seconds on
this part of the experiment. As the standard deviation shows, the spread of times is not very
significant, since all participants were able to use standard web tools and therefore quickly
became familiar with DESK’s features. This corroborates one of our initial assumptions,

Table 1 Total number of primitives, hit rate and time measured.

No. of primitives Hit rate Time consumed

Maximum 281 98% 7 min
Minimum 155 90% 4 min, 11 s
Mean 200 95% 5 min, 39 s
Standard Deviation 34 2.9 0.8

280 World Wide Web (2008) 11:253–286

since users perceived that DESK is similar to other static web tools but includes powerful
mechanisms to modify dynamic web pages automatically.

Additionally, two different questionnaires were used to evaluate human reactions to
the interaction with DESK, covering the topics of satisfaction, ease of use and user
expectations. Users were asked to fill out a questionnaire based on User Interface
Satisfaction [7] and another based on Perceived Usefulness and Ease of Use [11]. The
questions in both questionnaires were selected and customized to mainly focus on DESK,
avoiding asking participants to respond to unrelated questions. The main objective of this
second part of the study was to obtain maximum information about users’ perceptions when
working with DESK.

The evaluation of the questionnaires also revealed interesting conclusions concerning
ease of use and predictability of the authoring tool. The predictability is a value ranged
between 0 (minimum) and 5 (maximum) that users perceived when observing the final
design inferred by the system. This variable can be considered as a way to estimate both
frustration and expectation. A small value reflects the fact that the final design inferred by
DESK did not agree with the user’s intent, whereas a large value reflects the opposite. In
most cases, expectation can be considered proportional to frustration. If the user’s
expectation is high and the system does not respond as desired, frustration will be also high.
The predictability’s result obtained through the experiment was: Maximum=5, Minimum=
3, Mean=4.2 and Deviation=0.6, which indicates a good level of predictability for DESK,
meaning that the final design inferred by DESK matched what users wanted and so in most
cases they ended up with a low rate of frustration. We can also conclude that on average the
authoring tool inferred the changes to the dynamic presentation that the user expected.

With respect to the ease of use, results obtained support the initial hypothesis. All users
(100%) thought of DESK as an easy-to-use authoring tool, very similar in some ways to
other static authoring tools they may have used, but with an extra and powerful capability
of authoring dynamically generated web pages. In this experiment, open questions also
revealed that most users considered DESK to be a useful tool that can be applied to daily
tasks such as authoring personal agendas and CVs, dealing with database-generated pages,
managing dynamic on-line courses and teaching information, managing collaborative
documents, authoring student forums and laboratory web pages, and so forth. Bearing in
mind such opinions, we affirm that there is an obvious and increasing need to provide end-
users with easy mechanisms for dealing with dynamically generated web contents in real
time.

4.2 Related work

This research aims at providing a set of PBE (Programming by Example) techniques
intended for authoring domain-independent web-based user interfaces and dealing with
high-level user tasks. Different domains have been considered in order to validate the tool.
From this point of view, DESK is comparable to other approaches such as Predictive
Interfaces [10] and Learning Information Agents [1], where the system observes and
monitors the user interaction with the software environment. These approaches help the
user by predicting and suggesting some commands to carry out tasks automatically.

One of the main limitations of early PBE systems that monitor user’s actions [9] is that
they are too literal. Some of these systems replay a sequence of actions at the keystroke and
mouse-click level, without taking any account of context or attempting any kind of
generalization. By contrast, later works are based on recording user actions at higher level
of abstraction and making explicit attempts to generalize them. However, such systems

World Wide Web (2008) 11:253–286 281

have been demonstrated only in special, non-standard, often tailor-made software environ-
ments [15].

Eager (described in [9]) is one of the most famous PBE attempts to bring together PBE
and Predictive Interfaces. Eager is a Macintosh-based assistant that detects consecutive
occurrences of a repetitive task and proposes the user complete the loop automatically. The
loop is inferred by observing the user’s actions. Eager needs the user to complete two
consecutive tasks. This becomes a limitation since occurrences do not have to appear
consecutively. Familiar [31] overcomes some Eager’s limitations but it does not address the
previous mentioned problem either. Other works, like APE and SMARTEdit (both
described in [15]) attempt to solve this difficulty by using machine-learning mechanisms
in order to learn efficiently and rapidly when to make a suggestion and which sequence of
actions to suggest to the user. By contrast, DESK analyses the monitoring model regardless
of the number and the sequence of user actions, and it finds meaningful high-level
information about the user’s intent. DESK operates in real time and does not need to learn
about the user’s behavior, by using a rule-based approach rather than machine-learning
algorithms. As well as Familiar, DESK is a domain-independent approach, but in DESK the
domain information is used in order to enhance the inference process.

Mondrian, a Lieberman’s earlier work described in [9], was based on AppleScript to
monitor the user and control applications. However, Mondrian does not provide domain
independence and high-level application knowledge either. Similarly, in TELS [25] the
system takes into account the user’s actions, inferring iteration patterns for addressing loops
and conditions. TELS enables the end-user to meet the inference process, by asking for her/
him opinion. In DESK, the system avoids the user from having to make assumptions about
the inference mechanisms and so the PBE-based inference process becomes totally
transparent. However, in order to solve only ambiguous situations, the system asks the user
for help.

The use of data models was already present in PBE systems like Peridot [27] and
HandsOn [6]. In a very simple form, Peridot enables the user to create a list of sample data
to construct lists of user interface widgets. The data model in Peridot consists of lists of
primitive data types. In HandsOn, the interface designer can manipulate explicit examples
of application data at design-time to build custom dynamic displays that depend on
application data at run-time. Our view in this regard is that it is interesting to lift these
restrictions and support richer information structures. To this end, DESK uses ontology-
based domain information for further user-intent characterization.

Concerning EUD (End-User Development) related work, there have been interesting
contributions during the last years. WebRevenge [29] can track the reverse path of a web
page. WebRevenge generates a CCTT task model [30] by analyzing the interaction and the
interface’s elements. WebRevenge works together with TERESA [26], an abstract authoring
tool for modeling applications from CCTT-based task models. TERESA handles the
forward engineering and WebRevenge the reverse path, in order to provide support to web-
based migration of applications to different platforms. By contrast, DESK is intended to
help the user during the interaction with the system rather than when using it as a multi-
modal generation system. DESK also takes into account both user interaction and an
ontological data model is used during the interaction to improve the inference process.
DESK uses a low-level task model rather than a CCTT-based one, where interface objects,
domain information and user actions are embedded to enrich the monitoring model with
semantics used for further characterizing the user’s intent.

Another interesting work also closely related to EUD paradigm is LAPIS [24]. LAPIS is
a web scraper that allows rendering high-level conceptual information by means of a pattern

282 World Wide Web (2008) 11:253–286

library and using a simple web browser. LAPIS parses the HTML and transforms tag and
link level elements into conceptual representations that help end-user understand web
information easily. As well as LAPIS, DESK parses HTML code and characterizes
information from web pages by using a data model. However, DESK provides the user with
WYSIWYG mechanisms for authoring web pages, analyzing also user’s actions as part of
the characterization process for inferring user intentions.

As for commercial web development tools, probably Microsoft FrontPage and Macro-
media Dreamweaver are the most popular ones. These tools offer a high functionality (i.e.,
a great expressivity and variety of different functions) and provide environments intended
to deal with different web-based languages such as HTML, CSS, XSL, XML, JSP, ASP and
so forth. Although these tools also come with multiple tool bars and debugging facilities,
they are not intended for typical Web users, rather they are intended for Web designers. In
order to modify procedural, content and presentation information the user has to act at some
point as a skilled designer, dealing with web-based languages (or at least with a visual
representation of them) and being subjected to the authoring formalisms. Some studies [33]
revealed that although much progress has been made by commercial web development
tools, most of the end-user tools that they reviewed (including Microsoft FrontPage and
Macromedia Dreamweaver) did not lack functionality but rather ease-of-use. In general, the
cognitive load in carrying out editing tasks by using such environments is very high,
because these commercial tools are mostly intended for professional designers rather than
end-users. Although providing with the highest capability is a first-order concern in
commercial authoring environments, end-users might just want to accomplish custom-
ization and easy changes to concrete parts of a dynamic web interface. This implies
reducing expressiveness in favor of increasing the ease of use, something that is barely
visible in existing commercial authoring tools today. In DESK, the goal is to provide easy
mechanisms for authoring dynamic adaptive web pages, relieving the user from having to
deal with programmatic representations. DESK includes less functionally than commercial
tools in favor of increasing the ease of use. The tools presented here features intelligent
mechanisms intended to fulfill end-user needs, automatically modifying the underlying
ontologies in PEGASUS and traversing the reverse path with no user intervention. This
way, end-users can easily customize and make partial changes to dynamic web pages.
Furthermore, end-users are provided with assistance during the authoring process.
Therefore, users only have to achieve syntactic changes in a WYSIWYG environment,
taking no notice of specification languages and of procedural information that is
automatically tackled by the system.

5 Conclusions

Most of tools and technologies targeted at authoring the dynamic web still require advanced
technical knowledge that domain experts, content producers, graphic designers or even
average programmers usually lack. Commercial development environments have been
provided for these technologies, and they help manage projects and provide code browsing
and debugging facilities; but they are intended for expert developers rather than end-users.
Consequently, web applications are expensive to develop and customize for end-users and
often are of poor quality, which is currently an important hurdle for the development of web
applications.

Many informal user studies revealed that the web development tool that users envision is
typically “Word for Web Apps”, expressing a preference for a desktop-based tool that

World Wide Web (2008) 11:253–286 283

embraces the WIMP, drag-and-drop, and copy-and-paste metaphors, offers wizards,
examples and template solutions [34]. The research presented here is an effort to face
such a challenge. It aims at combining the ease of use of an interactive authoring tool with
the power of the model-based approach, providing an integral solution to enable end-users
to modify adaptive ontology-driven web applications.

Our main contribution is focused on DESK, which provides the designer with an
intuitive authoring environment capable of addressing complex web page designs. The
authoring tool presented is based on the Programming by Example paradigm, where the
user supplies the system with an example of what he or she wants to get and the system
infers the changes to dynamic page generation procedures automatically. From monitoring
user actions, DESK obtains information that will be processed together with semantic
domain knowledge. Such information will be used to infer the knowledge necessary to
provide the user with assistance during the authoring process. Changes are automatically
carried out in the server by using both domain and presentation knowledge from
PEGASUS. DESK tries to infer maximal information from user actions and from existing
semantic knowledge that is independent from the application domain. While DESK is
focused on making changes to presentation objects, PEGASUS’s domain ontologies are
fixed and can only be modified (i.e., insert, add or remove new classes, attributes, relations
and objects) by specific ontology tools such as PERSEUS. However, our contribution is
also focused on supplying support to change some static content on the generated
presentations. This way, we provided DESK with the ability to change content. This
principally means to change the value of some attributes and data fields in the domain
objects of the application’s domain model. This kind of modification does not affect the
ontology classes at all, but only the domain objects created for a concrete presentation. On
the other hand, this kind of atomic-content changes could be useful for the end-users, as
s/he might desire to change some text (corrections, amendments), translate small pieces of
information (into different languages) or simply add some content to customize the
presentation accordingly.

Additionally, DESK features a specialized assistant. Namely DESK-Agent detects the
user’s high-level tasks during the interaction and executes heuristics to achieve trans-
formations on presentation elements with the aim of automating iterative tasks. DESK-A
checks up on pre-activation condition and searches the history of user actions for obtaining
meaningful information about widget characteristics. This automates a great deal of
transformation processes and provides the user with assistance to complete iterative tasks
on him or her behalf.

To test assumptions about our approach’s ease of use, we have carried out an initial user
test. This experiment shows that is possible to reduce the ‘gentle slope’ of complexity by
supplying an easy-to-use WYSIWYG user interface, but has revealed some limitations on
expressive power, owing to the fact that DESK is focused on concrete WYSIWYG
representations rather than abstract ones. The outcome of the experiment revealed a high
satisfaction rate of users with respect to the tool. This was due to the similarity that the
users perceive with respect to ordinary web editing and browsing tools, although by
contrast the proposed system includes some add-on mechanisms that allow for editing
dynamic web pages and assisting the user in accomplishing cumbersome tasks.

All in all, the main goal of the work proposed was not to provide a universal solution to
the issue of end-user authoring, but to find out how far one can go without leaving the
WYSIWYG approach. More precisely, this work makes minimal assumptions about user
skills in web-based languages, supplying with a EUD solution that involves an automatic
process of reverse engineering intended to extract user intent and reduce interaction efforts.

284 World Wide Web (2008) 11:253–286

The presented work is based on well-known disciplines such as Programming By Example
and Model-Based User Interfaces paradigms. In this sense, PBE and MBUI techniques can
be combined together in order to relieve the user from having to deal with web-based
languages and complex non-end-user-intended development environments. Certainly, this
implies to reduce sometimes the expressiveness of MBUI approach, since users do not need
to manipulate declarative specifications of the interface, but to dedicate all their effort to
easily carry out their expectation in software customization [22]. In general terms, the user
should not be aware of the interface’s internal specification processes. This led to research
on formal mechanisms in order to implement intelligent authoring tools that help users
modify dynamic web-based pages and thereby provide them with an approach intended to
deal with their daily, non-programming-oriented creative problem-solving activities.

Acknowledgements The work reported in this paper is being partially supported by the Spanish Ministry of
Science and Technology (MCyT), project number TSI2005-08225-C07-06.

References

1. Bauer, M., Dengler, D., Paul, G.: Instructible information agents for web mining. In: Proceedings of the
International Conference on Intelligent User Interfaces, New Orleans, USA, pp. 21–28 (2000)

2. Boehm, B.W., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost models for future
software life cycle processes: COCOMO 2.0. In: Arthur, J.D., Henry, S.M. (eds.) Annals of Software
Engineering Special Issue on Software Process and Product Measurement. Baltzer AG Science
Publishers, Amsterdam, The Netherlands (1995)

3. Brusilovsky, P., Eklund, J., Schwarz, E.: Web-based education for all: a tool for the development of
adaptive courseware. Comput. Netw. ISDN Syst. 30, 1–7 (1998)

4. Castells, P., Macías, J.A.: An adaptive hypermedia presentation modeling system for custom knowledge
representations. Proceedings of WebNet-World Conference on the WWW and Internet. Orlando, Florida,
pp. 148–153 (2001)

5. Castells, P., Macías, J.A.: Context-sensitive user interface support for ontology-based web applications.
Poster Session of the 1st. International Semantic Web Conference, Sardinia, Italia (2002)

6. Castells, P., Szekely, P.: Presentation models by example. In: Duke, D.J., Puerta, A. (eds.) Design,
Specification and Verification of Interactive Systems, pp. 100–116. Springer-Verlag, New York (1999)

7. Chin, J.P., Diehl, V.A., Norman, K.L.: Development of an instrument measuring user satisfaction of the
human-computer interface. Proceedings of ACM CHI’88 Conference on Human Factors in Computing
Systems, pp. 213–218 (1988)

8. Communications of the ACM. Special Issue on End-User Development. September, Volume 47, Number
9, 2004

9. Cypher, A.: In: Watch What I Do: Programming by Demonstration. The MIT Press, USA (1993)
10. Darragh, J.J., Written, I.H.: Adaptive predictive text generation and the reactive keyboard. Interact.

Comput. 1, 27–50 (1991)
11. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology.

Manage. Inf. Syst. Q. 3, 319–340 (1989)
12. Dean, M., Connolly, D., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider,

P.F., Stein, L.A.: OWL web ontology language 1.0 reference” W3C Working Draft 29 July. Available at
http://www.w3.org/TR/owl-ref (2002)

13. EUD-NET: Network of excellence on end-user development. http://giove.cnuce.cnr.it/EUD-NET
14. Klann, M.: End-user development roadmap. In: Proceedings of the End User Development Workshop at

CHI Conference, Florida, USA (2003)
15. Lieberman, H.: In: Your Wish is My Command. Programming by Example. Morgan Kaufmann

Publishers, USA (2001)
16. Lieberman, H., Paternò, F., Wulf, V.: In: End-user Development. Human-Computer Interaction Series.

Springer Verlag, New York (2006)
17. Macías, J.A. (ed.): Authoring dynamic web pages by ontologies and programming by demonstration

techniques. PhD. Thesis. Departamento de Ingeniería Informática. Escuela Politécnica Superior.
Universidad Autónoma de Madrid. September. http://www.ii.uam.es/~jamacias/tesis/thesis.html (2003)

World Wide Web (2008) 11:253–286 285

http://www.w3.org/TR/owl-ref
http://giove.cnuce.cnr.it/EUD-NET
http://www.ii.uam.es/~jamacias/tesis/thesis.html

18. Macías, J.A., Castells, P.: Dynamic web page authoring by example using ontology-based domain
knowledge. In: Proceedings of the International Conference on Intelligent User Interfaces (IUI) Miami,
Florida, USA (2003)

19. Macias, J.A., Castells, P.: Using domain models for data characterization in PBE. In: Proceedings of the
End User Development Workshop at CHI Conference, Ft. Lauderdale, Florida, USA (2003)

20. Macías, J.A., Castells, P.: An EUD approach for making MBUI practical. In: Trætteberg, H., Molina, P.J.,
Nunes, N.J. (eds.) Proceedings of the First International Workshop on Making model-based user interface
design practical: usable and open methods and tools. Funchal, Madeira, Portugal (2004)

21. Macías, J.A., Castells, P.: Finding iteraction patterns in dynamic web page authoring. Proceedings of the
9th IFIP Working Conference on Engineering for Human-Computer Interaction Hamburg, Germany,
pp 164–178 (2005)

22. Macías, J.A., Paternò, F.: Customization of web applications through an intelligent environment
exploiting logical interface descriptions. Interacting with Computers—The Interdisciplinary Journal of
Human–Computer Interaction 20, (1), 29–47 (2008)

23. McLean, A., Carter, K., Lövstrand, L., Moran, T.: User-tailorable systems: pressing issues with buttons.
ACM Proceedings of CHI, pp. 175–182 (1990)

24. Miller, R.C.: End user programming for web users. In: Proceedings of the End User Development
Workshop at CHI Conference, Ft. Lauderdale, Florida, USA (2003)

25. Mo, D.H., Witten, I.H.: Learning text editing tasks from examples: a procedural approach. Behav. Inf.
Technol. 1, 32–45 (1992)

26. Mori, G., Paternò, F., Santoro, C.: CTTE: support for developing and analysing task models for
interactive system design. IEEE Trans. Softw. Eng. 8, 797–813 (2002)

27. Myers, B.A.: In: Creating User Interfaces by Demonstration. Academic Press, San Diego (1998)
28. Murray, T.: Authoring knowledge based tutors: tools for content, instructional strategy, student model,

and interface design. J. Learn. Sci. 7, (1), 5–64 (1998)
29. Paganelli, L., Paternò, F.: Automatic reconstruction of the underlying interaction design of web

applications. Proceedings of the SEKE Conference, pp. 439–445 (2002)
30. Paternò, F.: In: Model-Based Design and Evaluation of Interactive Applications. Springer Verlag, New

York (2001)
31. Paynter, G.W., Witten, I.H.: Automating iteration with programming by demonstration: learning the

user’s task. Proccedings of the IJCAIWorkshop on Learning about Users. Stockholm, Sweden (1999)
32. Puerta, A.R., Eisenstein, J.: Towards a general computational framework for model-based development

systems. Proceedings of the International Conference on Intelligent User Interfaces (IUI). ACM Press,
New York (1999)

33. Rode, J., Rosson, M.B.: Programming at runtime: requeriments & paradigms for nonprogrammer web
application development. IEEE 2003 Symposium on Human-Centric computing Languages and
Environments, New York, pp. 23–30 (2003)

34. Rode, J., Rosson, M.B., Pérez, M.A.: End-user development of web applications. In: Lieberman, H.,
Paternò, H.F., Wulf, V. (eds.) End-User Development. Human Computer Interaction Series. Springer
Verlag, New York (2006)

35. Sahuguet, A., Azavant, F.: Building Intelligent Web Applications Using Lightweight Wrappers. Data and
Knowledge Engineering (2000)

36. Shneiderman, B.: Leonardo’s Laptop. The MIT Press, USA (2003)

286 World Wide Web (2008) 11:253–286

	Intelligent Assistance in Authoring Dynamically Generated Web Interfaces
	Abstract
	Introduction
	End-user interaction
	Authoring dynamically generated web-based interfaces
	The approach

	Knowledge representation and automatic generation of web interfaces
	PEGASUS’s domain model
	PEGASUS’s presentation model

	Authoring dynamic web pages through DESK
	Inferring user intentions
	Inferring meaningful transformations
	An example
	Assistance in authoring tasks
	Exploiting semantics

	Iteration patterns
	Detecting iteration patterns
	DESK-A

	Evaluation and discussion
	User experiment
	Related work

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

