World Wide Web (2008) 11:117-151
DOI 10.1007/511280-007-0036-7

Path Summaries and Path Partitioning in Modern
XML Databases

Andrei Arion - Angela Bonifati - loana Manolescu -
Andrea Pugliese

Received: 6 February 2006 / Revised: 1 June 2007 /
Accepted: 15 June 2007 / Published online: 6 September 2007
© Springer Science + Business Media, LLC 2007

Abstract XML path summaries are compact structures representing all the simple
parent-child paths of an XML document. Such paths have also been used in many
works as a basis for partitioning the document’s content in a persistent store, under
the form of path indices or path tables. We revisit the notions of path summaries and
path-driven storage model in the context of current-day XML databases. This context
is characterized by complex queries, typically expressed in an XQuery subset, and
by the presence of efficient encoding techniques such as structural node identifiers.
We review a path summary’s many uses for query optimization, and given them
a common basis, namely relevant paths. We discuss summary-based tree pattern
minimization and present some efficient summary-based minimization heuristics.
We consider relevant path computation and provide a time- and memory-efficient
computation algorithm. We combine the principle of path partitioning with the
presence of structural identifiers in a simple path-partitioned storage model, which
allows for selective data access and efficient query plans. This model improves the
efficiency of twig query processing up to two orders of magnitude over the similar

A. Arion - I. Manolescu
INRIA Futurs-LRI, Orsay, France
e-mail: Andrei.Arion@inria.fr

A. Bonifati
ICAR CNR, Palermo, Italy
e-mail: bonifati@icar.cnr.it

1. Manolescu ()

INRIA Futurs, Gemo group, 4 rue Jacques Monod, ZAC des Vignes,
91893 Orsay Cedex, France

e-mail: Joana.Manolescu@inria.fr

A. Pugliese
University of Calabria, Rende, Italy
e-mail: apugliese@deis.unical.it

@ Springer

118 World Wide Web (2008) 11:117-151

tag-partitioned indexing model. We have implemented the path-partitioned storage
model and path summaries in the XQueC compressed database prototype [8]. We
present an experimental evaluation of a path summary’s practical feasibility and of
tree pattern matching in a path-partitioned store.

Keywords path summaries - path partitioning - XML databases

1 Introduction

Path summaries are classical artifacts for semistructured and XML query processing,
dating back to 1997 [24]. The path summary of an XML document is a tree, such that
every path from the root to some (internal or leaf) node in the document appears
exactly once in the summary. The original DataGuide proposal [24] made a clean
distinction between the DataGuide (or summary), which only describes the structure
of the data and can be thought of as a schema extracted from the data, and the data
store itself.

Path summaries inspired the idea of path indexes [39]: the IDs of all nodes on a
given path are clustered together and used as an index. Observe that while the index
holds actual data, the summary can be seen as a catalog of this data. The summary
is exploited at query compile time for query optimization purposes. The path index
may be accessed at query execution time, if the optimizer deems it useful. Subsequent
works have used paths as a basis for clustering the storage itself [8, 11, 28, 57] and as
a support for statistics [1, 33].

The state of the art of XML query processing advanced significantly since path
summaries were first proposed. The current availability of a standard query language
for XML, namely XQuery [52], is one significant change. Another important change
comes from the current availability of many node identification schemes with inter-
esting properties, allowing, for instance, to determine if two nodes are structurally
related just by examining their identifiers. Such identifiers are commonly called
structural IDs [2, 40, 48], and based on them, efficient structural joins [2, 13, 49]
techniques have been developed, enabling efficient processing of XML navigation
as required by XPath and XQuery.

We revisit the notions of path summaries and path-driven storage model in the
context of current-day XML databases.

The principle of path partitioning, combined with structural identifiers, leads to a
simple path-partitioned storage model. We had introduced this model in the context
of the XQueC compressed XML database [7, 8], but in the present paper we consider
its benefits independent of data compression issues.

We review a path summary’s many uses for query optimization, such as access
method selection, query reformulation, and physical query optimization, and identify
the concept of relevant paths as a common basis for all these optimizations. We
consider in more detail two particular optimization techniques:

e The first technique is query tree pattern minimization under the structural
constraints encapsulated in a path summary. We outline the differences between
this problem and similar schema-based minimization problems addressed by
previous works. We provide a simple minimization algorithm which, like pre-
vious algorithms, works by erasing nodes from the original pattern. Previous

@ Springer

World Wide Web (2008) 11:117-151 119

works left open the question of whether such node-erasing algorithm can find the
smallest possible pattern equivalent to the original pattern under the considered
constraints [16]. We show that under summary constraints, smaller equivalent
patterns may exist than those which can be found by erasing original pattern
nodes. This finding opens an interesting direction for future work.

e The second technique involves exploiting relevant paths for choosing the data
access methods to be used to answer a query. In its most general form, this
problem is an instance of query rewriting based on materialized views, under
the constraints encapsulated by a summary. This problem has been addressed in
a separate work [35] and the resulting algorithms are quite complex. We show
that in the particular case of a path-partitioned storage model, one can easily
build query plans exhibiting selective data access and low memory needs during
processing.

All the above optimizations require the computation of relevant paths for a query,
based on a path summary. We describe a time- and memory-efficient relevant path
computation algorithm and show it improves over the simple algorithms previously
considered.

While a strongly fragmented path-partitioned store leads to good pattern match-
ing performance, it significantly complicates the opposite task which is to construct
complex XML subtrees. While existing algorithms can be adapted to the task, they
tend to have high memory needs and are blocking. Therefore, we describe a physical
operator specifically suited to the path-partitioned model, which is pipelined and thus
eliminates these drawbacks.

This paper is organized as follows. Section 2 formally introduces path summaries
and path partitioning. Section 3 addresses query optimization based on path sum-
maries, introduces the notion of relevant paths and provides time- and memory-
efficient algorithm for computing them. Section 4 outlines query planning based on
relevant paths and focuses on the particular case of a path-partitioned store. We have
implemented the path-partitioned storage model and path summaries in the XQueC
compressed database prototype [8]. Subsequently, to be able to exploit the path
summary beyond the XQueC context, we separated our summary implementation in
a standalone library [55]. Section 5 studies the practical feasibility of path summaries,
the performance of our relevant path computation algorithms, and the performance
of tree pattern evaluation on a path-partitioned store. Section 6 compares our work
with related works, then we conclude.

2 Path summaries and path partitioning

In this section, we briefly revise the XML data model we consider and outline
structural node identifiers, on which we will rely in the sequel. Then, Section 2.2
describes path summaries, while Section 2.3 focuses on the path-partitioned XML
storage model.

2.1 Preliminaries

We view an XML document as a tree (N, &), such that A" = N; UN, UN,, where Ny
is a set consisting of exactly one document node, N, is a non-empty set of element

@ Springer

120 World Wide Web (2008) 11:117-151

nodes and M, is a set of attribute nodes. The set of edges & respects the restrictions
imposed by the XML specification [50]. Thus, the node in A is the tree root and
it has exactly one child which belongs to A,. The parent of any node in N, UN,
belongs to N,. For ease of exposition, in the sequel we will ignore the document
node and refer to the unique N, child of the document node as the document’s root.

All N nodes are endowed with a unique identity and with a node label, viewed as
a string. Furthermore, all N nodes have a value, which is also a string. The value of
an element node is the result of applying the XPath function zext() on the node [52].
If an element has multiple text descendant nodes, the fext() function concatenates
them, losing the information about their number and relative order in the document.
To avoid this, a simple extension to our model consists of making text nodes first-
class N citizens, endowed with identity. To keep our presentation simple, we omit
this in the sequel. Figure 1a depicts a sample XML document, which is a simplified
instance of an XMark [51] benchmark document.

To represent node identity, XML databases use persistent identifiers, which are
values uniquely identifying a node within a document (or, more generally, within the
whole database). We can view node identifiers (or, in short, IDs) as values obtained
by applying an injective function f: AN — A, where A is a set of values. We say
the identifiers assigned by a given function f are structural if, for any nodes ny, n,
belonging to the same document, we may decide, by comparing f(n;) and f(n,),
whether n; is a parent/ancestor of n, or not. A very popular structural identifier
scheme is based on tree traversals, as follows. (1) Traverse the XML tree in pre-
order and assign increasing integer labels 1, 2, 3 etc. to each encountered node.
We call this integer the pre label. (2) Traverse the XML tree in post-order and
similarly assign increasing integer labels to each encountered node. We call this the
post label. (3) Assign to each node a depth label corresponding to its depth in the
tree. Thus, the depth of the root is 1, the depth label of the root’s children nodes is
2 etc. (4) The identifier of each node in the XML document is the triple of its pre,
post, depth labels. This scheme was introduced in [2] for XML documents and often
used subsequently [17, 26]. For example, Figure 1a depicts (pre,post) IDs above the
elements. The depth number is omitted in the figure to avoid clutter.

Many variations on the (pre,post,depth) scheme exist. A simple variant assigns
to each element its start and end positions in the document, obtained as follows.
All opening and closing tags in the document are numbered in the order in which

(157) b

a site 1
Al :
12 56
peOP $ i g .
(12 :sas)/eglok(gsrssé 2 pedple 10 re’I ions
+
37 10 (14 24) (78 34 11asia europe24
phtadn &erSQ _ liep GRAY @gasxdgse +
1511 it
@ id= n(a,1ng) g e) de(sc \pt\gn 3person * 12“16‘"" ! Tm25
5 rsont” l 2 #ext
@< Sl audss Umbrella 22 ~ name4)
p?rsono g) 6 I leaye /Ear @id et egail name description] 4
M. Wil fladr (a2 5 Htext
istitel istites address goxt Xt parlist15
counl) <y) ‘ g/ > — \7 6/1 \ﬂ +‘
| “ 15‘) (23 16) (25 18) ?') Sintry7 | street 1Qlistitem
UsA Tampa Wile@ 1tel.com pﬂrl k(g 109rd empl J‘ y City N 23
36 MeCrossin St 1/5?1@ gold —plated A special ‘ companion ~ #ext ‘ #text 17emph 18parlist (eIt 22 keyword
@) @13) gold #ext 1Qlistitem #text #text
text T e *
Rolex wristwatch zotixt emph21
#text #text

Figure 1 XMark document snippet and its path summary.

@ Springer

World Wide Web (2008) 11:117-151 121

they are found in the document 1,2,3 etc. and each element is given as start number
the number of its opening tag, and as end number the number of its closing tag.
More advanced structural IDs have been proposed, such as DeweyIDs [48] or
ORDPATHS [40]. While we use (pre,post,depth) for illustration, the reader is invited
to keep in mind that any structural ID scheme can be used.

2.2 Path summaries

The path summary S(D) of an XML document D is a tree, whose nodes are labeled
with element names from the document. The relationship between D and S(D) can
be described based on a function ¢ : D — S(D), recursively defined as follows:

1. ¢ maps the root of D into the root of S(D). The two nodes have the same label.

2. Let child(n,) be the set of all the /[-labeled XML elements in D, children of the
XML element n. If child(n,) is not empty, then ¢ (n) has a unique /-labeled child
ny in S(D) and for each n; € child(n, 1), ¢ (n;) is n;.

3. Letval(n) be the set of #PCDATA children of an element n € D. Then, ¢ (n) has
a unique child n, labeled #text and furthermore, for each n; € val(n), ¢ (n;) = n,.

4. Let att(n, a) be the value of the attribute named a of element n € D. Then, ¢ (n)
has a unique child n, labeled @a and for each n; € att(n, a), we have ¢ (n;) = n,.

Clearly, ¢ preserves node labels and parent-child relationships.

Paths and path numbers Let rooted path denote a path of the form /I,/L/.../lx
going from the root to some (leaf or non-leaf) node of the document. In the sequel,
for simplicity, path is used to refer to a rooted path, unless otherwise specified. For
every path in D, there is exactly one node reachable by the same path in S(D).
Conversely, each node in S(D) corresponds to a path in D.

Figure 1b shows the path summary for the XML fragment at its left. We assign an
integer number to every summary path; these numbers appear in large font next to
the summary nodes, e.g. 1 for /site, 2 for /site/people etc. Thus, there is one number
for each summary node and for each path present in the document or summary; we
may interchangeably refer to one by means of another. For instance, we may say that
the XML node identified by (2,10) in Figure 1a is on path 2 in Figure 1b.

Path summaries as defined above and used in this work correspond to strong
DataGuides [24] in the particular case of tree-structured data (recall that DataGuides
were originally proposed in the context of graph-structured OEM data [24, 41]).

Similar XML documents may have the same summary. We say a document D
conforms to a summary Sy, denoted Sy = D, if S(D) = Sy. Thus, a given summary
may be used as a repository of structural information concerning several documents
in a database.

We add some more structural information to summaries, as follows. Let S be a
summary. An enhanced summary S" based on S is a tree obtained by copying S, and
labeling each edge with one symbol among 1, + and *. We say a document D conforms
to the enhanced summary S’ thus defined if S = D and furthermore, for any x node
in $" and y child of x:

e [f the edge x — y is labeled 1, then all D nodes on path x have exactly one child
on path y;
@ Springer

122 World Wide Web (2008) 11:117-151

e [f the edge x — y is labeled +, then all D nodes on path x have at least one child
on path y;

e [If the edge x — y is labeled *, then no information is available concerning the
number of y children of nodes on path x.

Edge labels in enhanced summaries play the role of cardinality constraints and are
used for query optimization, as Section 3 will show.

Building and storing summaries For a given document, let N denote its number of
element and attribute nodes and |S| the number of nodes in its path summary. In
the worst case, |S| = N, raising the possibility that summaries may be quite large. In
Section 5, we present empirical evidence that in many practical cases, the summary
is much smaller than the document. A summary (without edge annotations) is built
during a single traversal of the document in ®(N) time, using ©(|.S|) memory [1, 24].

Summaries must be serialized and stored in the XML database’s catalog, using
some tree serialization format. Let S be a summary and x, y and z be S nodes, such
that x is the parent of y and x is an ancestor of z. Recall that x, y and z also designate
S label path starting from the root, thus we will use them in the remainder of this
section to refer to these paths. Edge annotations can be stored according to one of
the following alternatives:

1. A simple way to encode the symbol annotating the edge connecting x and y is
to associate this symbol to node y and include it in y’s serialization. We call
this encoding of edge annotations direct encoding. This encoding is simple and
compact, yet it has some disadvantages. Consider a document D such that S = D
and let n, be a D node on path x (for each path in D, there is a node in S on
the same path, which we use to designate the path itself). To know how many
descendants on path z can n, have, we need to inspect the annotations of all
summary nodes between x and z.

2. Letu, v be two summary nodes. The up-and-down path from u to v is the shortest

sequence of § edges connecting u to v. If u is an ancestor of v, the up-and-down
path from u to v follows the edges going down from u to v. Otherwise, the up-
and-down path from u to v goes up from u to the closest common ancestor of u
and v, then down from that ancestor to v (thus the name).
We define the I-partition of a summary S to be a partition of its nodes, such that
two S nodes belong to the same partition set iff all edges on the up-and-down
path between the two nodes are annotated with 1. It can be easily shown that the
1-partition of a summary is unique. Similarly, we define the +-partition of S as a
partition of the nodes of S, such that two S nodes belong to the same partition
set iff all edges on the up-and-down path connecting them are annotated with 1
or +. The +-partition of a summary S is also unique. We assign distinct integer
numbers to each 1-partition set and similarly distinct numbers to each +-partition
set. We annotate every S node with:

e The number of the 1-partition set this node belongs to, denoted n1 and
e The number of the +-partition set this node belongs to, denoted n+.

We serialize each node’s n1 and n+ numbers with the node. We call this approach
for encoding summary edge annotations pre-computed encoding; it simplifies

@ Springer

World Wide Web (2008) 11:117-151 123

<site symbol="1"> <site n1="1" n+="1">
<people symbol="1"> <people n1="1" n+="1">
<person symbol="+“> <person n1="2" n+="1">
<@id symbol="1"> <name symbol="1" /> <@id n1="2" n+="1"> <name n1="2" n+="1" />
<address symbol="*"> <address n1="3" n+="2">
<country symbol="1" /> <city symbol="1" /> <country n1="3" n+="2" /> <city n1="3" n+="2"
<street symbol="1" /> <street n1="3" n+="2" />
</address> </address>
</person></people> </person></people>
<regions symbol="1">... <regions n1="1" n+="1">...

Figure 2 Sample summary serializations: at left, direct encoding; at right, pre-computed encoding.

summary-based reasoning in the following sense. Consider, as previously, a
summary S, an S node x and let z be a descendent of x in S. Let D be a document
such that § = D and let n, be a D node on path x. If (and only if) x.n1=z.n1, then
n, has exactly one descendant on path z. Similarly, zn, has at least one descendant
on path z if x.n+=z.n+.

Figure 2 exemplifies direct and pre-computed encoding of edge annotations on
the summary in Figure 1b. In Figure 2, each summary node is serialized as an XML
element. Clearly, other serialization methods may be used.

Direct encoding of edge annotations requires thus 2 bits per summary node if
direct encoding is used and 2 x [log»(]S])] bits per summary node if pre-computed
encoding is used. The presence of edge annotations does not affect the time or
space complexity of summary construction; if pre-computed encoding is applied to
edge annotations, the time complexity increases by ®(|S]) since an extra pass on the
summary is needed.

2.3 The path-partitioned storage model

Path summaries do not store XML document contents. However, a simple storage
model for XML documents can be devised based on the document’s paths and
structural identifiers as follows.

Let D be an XML document. Each D node is assigned a structural ID. The path-
partitioned storage model consists of materializing two sets of storage structures:

e For each path, an ID path sequence, which is the sequence of the structural IDs
of all D nodes on that path, in document order.

e For each path an ID and value sequence, which is the sequence comprising the
(structural ID, value) pairs obtained from all D nodes on that path, in document
order.

The above model is complete, i.e., it stores all the information needed to describe
an XML document, in the sense of the data model described in Section 2.1. Figure 3
depicts some of the path-partitioned storage structures resulting from the document
in Figure 1.

XML storage structures similar to the path partitioned model have been used in
many previous works; we outline the differences between these models and ours
in Section 6.

@ Springer

124 World Wide Web (2008) 11:117-151

[site (157) /site/people/person/@id ‘(3 7) person0 ‘(10 9) persont

/site/people

~
-
2

Isite/people/person/name/#text ‘(4 1) M. Wile ‘(11 8) T. Limaye

/site/people/person/address/country/#text |(6 2) USA

o

Isite/people/person | (3 7) (10 9
/site/regions/asialitem | (14 24)

Figure 3 Sample path-partitioned storage structures.

3 Path summary-based XML query optimization

In this section, we consider summary usage for XML query optimization. Section 3.1
briefly describes the query language and query patterns we consider. Section 3.2 out-
lines the classes of optimizations enabled by summaries and casts them in a common
light based on the notion of relevant paths for a query pattern. Section 3.3 delves into
one particular summary-enabled optimization, namely pattern minimization under
constraints. This problem is related to schema-based minimization, but as we show,
there are interesting differences. Finally, Section 3.4 addresses the performance
issues raised by relevant path sets computation and provides efficient algorithms to
this purpose.

3.1 Query language and query patterns

Query language We consider the XQuery subset Q characterized as follows.

(1) XPath!///+[1 ¢ Q, that is, any core XPath [38] belongs to Q. We allow such
XPath expressions to end with a call to the function text(), returning the text value
of the node it is applied on. This represents a subset of XPath’s absolute path
expressions, whose navigation starts from the document root. Navigation branches
enclosed in [] may include complex paths and comparisons between a node and a
constant c. Predicates connecting two nodes are not allowed in this class; they may
be equivalently expressed in XQuery for-where syntax (see below). (2) Let $x be
a variable bound in the query context [52] to a list of XML nodes and p be a core
XPath expression. Then, $x p belongs to Q and represents the path expression p
applied with $x’s bindings list as initial context list. This class captures relative XPath
expressions in the case where the context list is obtained from some variable bindings.
We denote the set of expressions (1) and (2) above as P, the set of path expressions.
(3) For any two expressions e; and e, € Q, their concatenation, denoted ey, e,, also
belongs to Q. (4) If ¢ is a tag and e € Q, element constructors of the form (¢){e}{/t)
belong to Q. (5) All expressions of the following form belong to Q:

for $x; in py, $xz in py, ..., $xx in pyi

where pii1 01 pr2and ... and py—1 6 pm

return g(xi, X2, . .., Xk)
where pi, pa, ..., Pk, Dk+1s ---» Pm € P, any p; starts either from the root of some
document D or from a variable x; introduced in the query before p;, 6, ..., 6; are
some comparators, and g(xi, ..., xx) € Q. Observe that a return clause may contain

other for-where-return queries, nested and/or concatenated and/or grouped inside
constructed elements.

@ Springer

World Wide Web (2008) 11:117-151 125

A Q query may perform one or both of the following types of processing:
(1) retrieving, from the input data, the nodes that should be part of the result;
this step may involve complex navigation, evaluation of value predicates etc. and
always produces a set of nodes or values from the input document; (2) constructing
new elements, typically including copies of the elements produced by step (1). Tree
patterns are commonly used to represent step (1). In the sequel, we outline the XAM
(XML access modules) tree pattern formalism we introduced in [4], on which this
work relies, and justify why we use it instead of similar formalisms.

XAMs A XAM is a tree pattern of the form ¢ = (n,, ¢,), where n;, is a set of XAM
nodes and ¢, is a set of XAM edges. We distinguish two types of n;, nodes: element
nodes and attribute nodes. The specification of each n, node consists of: a (possibly
empty) set of predicates, constraining the XML nodes that may match the XAM
node, and a (possibly empty) set of projected attributes, specifying which information
is retained by the pattern from every XML node matching the XAM node.

The predicates annotating a XAM node can be of the form: (1) [Tag = c], where
c is a node label, denoting the fact that only XML nodes having the label ¢ will match
the node; (2) [Val 6 c], when c is a constant and 6 is a simple comparison operator
such as =, <, < etc., denoting the fact that only XML nodes whose value satisfies this
predicate will match the node.

Each XAM node can specify between zero and four information items, that
the pattern retains from every XML node matching that node. The XAM node
labels Tag, Val, ID and Cont denote the fact that the labels (respectively, values,
identifiers, or contents) of the XML nodes matching the n, node are retained
(projected) by the XAM. The contents of an XML node denotes the full subtree
rooted at that node.

Each XAM edge is specified by a simple (respectively double) line to denote
parent-child relationships (respectively ancestor-descendant) relationships. More-
over, each edge is specified by a solid line to denote mandatory children (or
descendants), or a dashed line to denote optional children (or descendants). Finally,
each edge may be labeled n to denote that matches for the child (resp. descendant)
node at the lower end of the edge are nested inside the match for the parent (resp.
ancestor) node at the higher end of the edge.

The semantics of a XAM pattern ¢ on a document D, denoted #(D), is a (po-
tentially nested) relation, whose schema is determined by ¢, and whose content is
extracted from D. The semantics is formally defined in [4]. To make this paper self-
contained, we illustrate this via three examples in Figure 4, showing the semantics of
each pattern on the document in Figure 1 as a table underneath the pattern. Pattern
t; has only mandatory edges, thus only one person element contributes data to ¢, (D).
In 1,, the optional edge allows the second person element in Figure 1 to contribute,
although it does not have a child with a street descendant. Observe that node 3 is
optional with respect to node 2, and node 4 is mandatory with respect to node 3.
The missing child leads to a null (L) in % (D). Pattern #; has a nested edge, and
accordingly the second attribute of (D) is a nested table, containing the values of
the text descendants of every /site//asia//listitem element.

XAMs resemble generalized tree patterns (or GTPs) [16], however there are
important differences between the two. (1) The main difference is that a GTP for
a nested XQuery may consist of several nested blocks, one per for-let-where-return

@ Springer

126 World Wide Web (2008) 11:117-151

ty E [Tag="site"] tr [Tag="site"] t3 [Tag="site"]
[Tag="person"] [Tag="person"] [Tag="asia"]
Cont (3) [Tag="@id"] Val Cont [Tag="@id"] Val [Tag="listitem"] ID
wn
@ Ta @'text“ Val
[Tag="street"] [Tag="street"] [Tag !
ID i
Cont Val Cont Val oo
<address><country>USA</country> id1 <address><country>USA</country> id1 (1 8. 1 7) Rolex
<city>Tampa</city> <city>Tampa</city> ’ gold—plated
</address><street>35 McCrossin St</street> </address><street>35 McCrossin St</street> (20, 14)
L 42 (24, 21) |A special

Figure 4 Sample XAM patterns and their semantics on the XML document in Figure 1.

(FLWR) block, whereas a single XAM can capture several nested FLWR blocks.
As explained in [6], capturing a larger part of an XQuery with a single pattern
is preferable, since it allows to take a bigger advantage of efficient tree pattern
evaluation methods (such as e.g. using a materialized view or index matching the
pattern). In the context of the present paper, larger patterns are preferable as
they provide a larger scope for the static analysis we perform, based on the path
summary. (2) GTPs do not specify which information is retained from XML nodes
matching pattern nodes, as XAMs do. However, from an optimizer’s viewpoint, there
is significant difference between a query such as //a/text() which only requires the
values (Val) of a elements and may be answered e.g. by scanning a node value
index, and the query //a, which requires the full element contents (Cont). (3) GTPs
include universal quantifiers and value joins, while XAM patterns focus only on the
structured navigation performed by queries, which can be exploited for summary-
based static analysis. Abstract Tree Patterns (APTs) [43] edges generalize GTP (and
XAM) edges by specifying how many matches for a child pattern node are allowed
for a given match of the parent node (exactly one, at least one, zero or more etc.)
We rely on XAMs for this work, mainly due to the differences denoted (1) and (2)
above, which still hold between APTs and XAMs.

3.2 Summary-based static analysis on query patterns

In this section, we outline several usages of a path summary as a static analysis tool
for query optimization. We consider a summary S (with 1 and + edge annotations)
and a query g € Q and assume one or several XAM patterns have been extracted
from ¢ as described in [6]. Each query pattern is typically analyzed in isolation. Thus,
without loss of generality, we consider only one XAM pattern ¢.

We say t is S-satisfiable if there exists a document D, such that S = D, and t(D;) #
@ (where ¢ denotes an empty table).

Let ¢ be an S-satisfiable pattern. We say a path p € S is relevant for a node x € ¢ if
and only if for some document D such that S = D, and some D node n, on path p,
n, matches the pattern node x. Observe that the notion of path relevance does not
depend on the value predicates of ¢.

Several paths may be relevant for a given pattern node. For example, Figure 5
shows a sample query, its corresponding pattern, and a table comprising the set of

@ Springer

World Wide Web (2008) 11:117-151 127

a b [Tag="asia"] C 17273 T2aT35 T8 7
for $i in //asiallitem[//text], " 23]
$d in $i/description item’] /7//,13
where $i//keyword="gold" — " [
return <gift>y ¢ [Tag="text'] [Tag= "™ © gg?f'gi;elg"f]’ord 11z 14 17
<name>{$i/name}</name> i "description"}, N N 24
d// h N a "
</é?ﬁ> emph} [Tag="name"] 22
[Tag="emph"] Cont 20
Val

Figure 5 Sample query, resulting pattern, and relevant paths for the pattern and the summary
in Figure 1.

relevant paths from the summary depicted in Figure 1 for each pattern node. Ignore
for now the shaded bubbles in the Figure; they will be discussed in Section 3.3.
Relevant path sets are organized in a tree structure, mirroring the relationships
between the nodes to which they are relevant in the pattern.

The S paths relevant for the nodes of a pattern ¢ can be used in many ways:

The original DataGuide work [24] exploits them to replace wildcards (node
labels or node paths left unspecified by the user) by precise paths.

Relevant path sets can be used to perform query pattern minimization under
summary constraints, in the style of minimization under integrity constraints [3]
or under schema constraints [16]. While the principles are similar, the classes of
considered constraints and the minimized patterns attainable, are different. We
discuss this in Section 3.3.

When summaries are used in conjunction with a path index or a path-partitioned
store, the relevant paths for the tree pattern node are used to build data access
plans [8, 11, 28, 39, 57].

Formalisms like XAM patterns can be used to describe a large variety of the
existing proposals for XML stores, indexes, and materialized views, as well as
custom (user-defined) materialized views over a given document D [4]. In this
context, the (possibly nested) table (D) is the data actually stored in a persistent
structure (e.g. table in a relational store, index in a native system etc.) The
relevant path sets of a storage pattern #, can be used:

e To infer properties of the storage structure interesting for physical query
optimization, as [16] suggests based on schemas;

o Together with the relevant path sets of a query pattern ¢, to determine the
usefulness of #, for the query from which 7, was obtained. This generalizes
the analysis performed for path-partitioned stores or indices to storage
structures described by arbitrary X AMs.

In the following section we are going to focus on tree pattern minimization while
optimizations along the lines of 3 and 4 above will be discussed in more detail in
Section 4.

3.3 Tree pattern minimization under summary constraints

We say two patterns ¢y, t, are equivalent under the constraints of S, denoted t; =g 1,
if and only if #; (D) = (D) for any document D such that § = D. Observe that this

@ Springer

128 World Wide Web (2008) 11:117-151

equality only makes sense if #; and #, have the same nested tables signature (leading
to the same number of attributes). More generally, one can only judge whether
t; =g t, for a given isomorphism ¢ between the returned nodes of #; (those labeled
with I D, Val or Cont) and the returned nodes of #,.

Let ¢ be a pattern and ¢ be a pattern obtained from ¢ by erasing one ¢ node
and re-connecting the remaining nodes among themselves. If ¥ =g ¢, we say ¢ is an
S-contraction of t'. A pattern ¢ is said to be minimal under S-contraction if and only
if no pattern ¢ obtained from ¢ via S-contraction satisfies t =g ¢'.

The process of minimizing a pattern t by S-contraction consists of finding all the
patterns ¢, minimal under S-contraction, which can be derived from ¢. Observe that
several such patterns ¢ may exist. For instance, in Figure 6, the patterns #; and #, are
the result of minimizing the pattern ¢ by S-contraction. No pattern obtained from
t} or t, by S-contraction is still equivalent to ¢. (Notice that a pattern of the form
//a//d//e, obtained by erasing one node from ¢| or t,, is no longer equivalent to ¢,
since it also returns e nodes on the path /a/d/e, which do not belong to t).

It turns out that S-contraction does not always yield the smallest possible patterns
S-equivalent to # (where pattern p; is smaller than p, if p; has fewer nodes than p,).
For instance, in Figure 6, the pattern ¢ is smaller than both 7| and #}, yett =5 ¢”. The
intuitive reason is that the summary brings in more nodes than are available in the
original pattern. The process of minimizing a pattern t under S constraints consists of
finding all patterns ¢ that are S-equivalent to ¢, and such that no pattern ¢’ smaller
than ¢ is still S-equivalent to ¢. This may yield smaller patterns than those found by
S-contraction only.

In general, there may be more than one such smallest equivalent pattern. For
instance, if we modify the summary in Figure 6 to add a g node between the f
node and its child e, the pattern ¢” corresponding to the query //a//g//e is also
S-equivalent to ¢, smaller than #] and ¢}, and ¢ has the same size as t”.

No pattern smaller than ¢’ and still S-equivalent to ¢ can be found.

To keep the example simple, in Figure 6 we assumed no edges are annotated +
or 1. Clearly, such annotations also provide opportunities for minimization, as we
will show next.

Let us compare minimization under S constraints with minimization considered in
previous works.

Tree pattern minimization (without constraints) yields a unique minimal pattern
and can be performed in polynomial time in the size of the pattern [3]. In the presence
of constraints of the form “every a element has a b child (or descendant)”, minimiza-
tion remains polynomial in the size of the pattern and a unique minimal pattern
exists [3]. A polynomial algorithm for minimization under child and descendant
constraints is also outlined in [16], and it yields a unique solution.

A different class of constraints introduced in [16] has the form “between every a
element and its ¢ descendant, there must be a b element”. Minimization under such
constraints alone leads in polynomial time to a unique solution [16]. Minimization
under such constraints and child and descendant constraints is shown to lead, in some
cases, to several equal-size patterns [16]; the minimization algorithm of [16] only

1Observe that ¢ =g ¢ requires that no returned node of ¢ has been erased.

@ Springer

World Wide Web (2008) 11:117-151 129

S t t; t t"
/:’\e (@ [Tag="2"] @) [Tag="2"] (I) [Tag="a"] [Tag="a"]
Z ! @ Tag=""] (@) [Tag="0"] ? [Tag="c'] [Tag="r
e/‘d é [Tag="c"] @l, [Tag="d"] (3 [Tag="d"] [Tag="¢"] Cont
f (ill [Tag="d"] (!) [Tag="e"] Cont ¢!) [Tag="e"] Cont
e

(4) [Tag="e"] Cont

Figure 6 Sample summary, a pattern ¢ and some smaller, equivalent patterns.

applies contraction (erases nodes from the initial pattern). The question whether a
pattern smaller than these exists is left open [16].

The differences between such minimization algorithms and the ones enabled by
a summary are well illustrated by Figure 6. This example shows that minimization
under S constraints, whether by S-contraction or in the general case, does not lead to
a unique solution. The question left open in [16] is answered by ¢’ in Figure 6: smaller
patterns than can be found by contraction (as described in [16]) do exist, and there
may be several such patterns of equal size.

It is also worth pointing out that summary constraints have finer granularity than
child and descendant constraints at tag level, considered in [3, 16]. Consider e.g. a
constraint like “between every b element and its d descendant, there must be a ¢
element”, implied by the summary in Figure 6, and which could be exploited by the
algorithm in [16]. If we add a d child to the b summary node, the constraint no longer
holds, thus the algorithm of [16] cannot even find #|. However, ¢; would still be an
S-equivalent rewriting of ¢ under the constraints of the modified S.

We have thus identified two minimization problems under summary constraints,
which, to our knowledge, have not been considered in previous works: minimization
by contraction and general minimization (which may bring in nodes not present in
the original pattern, such as the ¢’ node labeled f in Figure 6).

A simple algorithm for minimization by S-contraction consists of trying to erase
pattern nodes (that are not annotated with Val 6 ¢ or with Val, ID nor Cont), and
checking if the pattern thus obtained is still equivalent to the original one. An
algorithm for deciding pattern equivalence under summary constraints is provided
in [35]. However, performing a large number of equivalence tests may be considered
expensive, making some faster techniques desirable. Pattern minimization under §
constraints in the general case is an area where we expect to work in the future.

We now show how two simple minimization techniques (using useless paths and
trivial existential node paths) , initially proposed in [16] based on constraints at tag
level, can be exploited to reduce pattern size under summary constraints. These
techniques are interesting as they can be very efficiently applied based on relevant
path sets (for which, in turn, we developed efficient computation algorithms). Thus,
some minimization is applied at a very low price, piggy-backed on the efficient
process of relevant path computation (which has many other useful uses).

We recall to the reader’s attention the pattern and its relevant paths depicted in
Figure 5.

@ Springer

130 World Wide Web (2008) 11:117-151

Useless paths The path 14, relevant for the pattern node 4, has no impact on the
query result, on a document conforming to the path summary in Figure 1. This is
because: (1) the pattern node 4 is not annotated with Val or Cont, thus its data is
not returned by the query; (2) it follows from the path summary that every element
on path 12 (relevant for the pattern node 2) has exactly one child on path 14. This
can be seen by checking on the summary annotations (recall Figure 1). Thus, query
evaluation does not need to find bindings for the variable $d (to which the pattern
node 4 corresponds).

In general, a path p, relevant for a pattern node n, corresponding to a “for”
variable $x is useless as soon as the following two conditions are met:

1. n, is not annotated with Val or Cont;

2. If n, has a parent n, in the query pattern, let p, be the path relevant for n,,
ancestor of p,. Then, all summary nodes on the path from some child of p,,
down to p,, must be annotated with the symbol 1. If, on the contrary, n, does
not have a parent in the query pattern, then all nodes from the root of the path
summary to p, must be annotated with 1.

Such a useless path p, is erased from its path set. In Figure 5, once 14 is found
useless, 12 will point directly to the paths 17 and 21 in the relevant set for the pattern
node 6.

Trivial existential node paths We say a pattern node is existential if neither this node
nor its descendants in the pattern are annotated with Val, Cont, or a value predicate.

The path summary in Figure 1 guarantees that every XML element on path 12 has
at least one descendant on path 22. This is shown by the 1 or + annotations on all
paths between 12 and 22. In this case, we say 22 is a trivial path for the existential
node 3. If the annotations between 12 and 20 are also 1 or +, path 20 is also trivial.
The execution engine does not need to check, on the actual data, which elements on
path 12 actually have descendants on paths 20 and 22: we know they all do. Thus,
paths 20 and 22 are discarded from the set of pattern node 3.

In general, let p, be a path relevant for an existential node n,; this node must have
a closest non-existential ancestor n, in the pattern. There must be a path p, relevant
for ny, such that p, is an ancestor of p,. We say p, is a trivial path if the following
conditions hold:

1. For all paths p, as described above, all summary nodes between p, and p, are
annotated with either 1 or +.

2. All paths descendant of p,, and relevant for nodes below n, in the query pattern,
are trivial.

3. No value predicate is applied on n, or its descendants.

A trivial path as p, above is eliminated from the relevant path set of node n,.
For the query pattern in Figure 5, the trivial and useless paths are those shaded
in grey.

Pattern contraction based on path pruning After pruning out useless and trivial
paths, nodes left without any relevant path are eliminated from the pattern. For the

@ Springer

World Wide Web (2008) 11:117-151 131

query pattern in Figure 5b, this yields exactly the result in Figure 5c from which the
grey-dotted paths, and their pattern nodes, have been erased.

Observe that the relevant path sets of a pattern node n may be diminished, yet
not empty. In this case, n remains in the pattern, and its reduced path set may be
exploited by the optimizer to construct a data access plan for n that reads less data
than if the original path set had been kept. The ability of the optimizer to do so
depends on the storage model chosen; in particular, the path-partitioned storage
model does allow such optimization. This will be discussed in more detail in Section 4.

3.4 Computing relevant paths

Having defined relevant paths, the question is how to efficiently compute them.
Given a summary S and a pattern p, we have defined relevant paths based on the
set of documents conforming to S. The basic observation underlying summary-based
optimization since the DataGuide work [24] is that relevant paths can be computed
by evaluating the tree pattern over the path summary (patterns like GTPs [16] or
XAMs [4] require simple modifications to handle optional edges).

A straightforward method is a recursive parallel traversal of S and ¢, checking
ancestor conditions for a path to be relevant for a pattern node during the descent
in the traversal [1, 24]. When a path p satisfies the ancestor conditions for a
pattern node n, the summary subtree rooted in p, is checked for descendant paths
corresponding to the required children of » in the pattern. This simple method is
suboptimal in terms of running time, since it may traverse a summary node more
than once. For instance, consider the query //asia//parlist//listitem: on the summary in
Figure 1, the subtree rooted at path 19 will be traversed once to check descendants
of path 15, and once to check descendants of the path 18.

A more efficient method consists of performing a single traversal of the summary
and collecting potentially relevant paths that satisfy the ancestor path constraints,
but not necessarily (yet) the descendant path constraints. When the summary subtree
rooted at a potentially relevant path has been fully explored, we check if the
required descendant paths have been found during the exploration. Summary node
annotations are also collected during the same traversal, to enable identification of
useless and trivial paths. This algorithm may run: (1) on the in-memory summary,
which has the drawback of requiring ®(]S|) memory space; (2) more efficiently,
traversing the summary in streaming fashion, using only O(%) memory (where 4 is
the summary height) to store the state of the traversal.

A remaining problem of such a time-efficient method concerns the total size of
the relevant path sets. Figure 7 illustrates this on a summary S of size s, and a
pattern ¢ having k nodes, all of which are annotated Val. All pattern node labels
are unspecified. A straightforward evaluation of ¢ over S, as envisioned in [1, 24],
computes a set of k-tuples of the form ¢t = (py, p2, ..., px), such thatforany 1 < j <
k, pjis arelevant path for g’s node j, and for any 1 < j < (k — 1), p; is an ancestor of
pj+1. For the pattern g in Figure 7, there will be k! x (s — k)!/s! such tuples (assuming
s > k, which we expect is the frequent case). Some of these tuples are shown close
to g, at its right, in Figure 7. In general, ancestor-descendant edges and unspecified
pattern node labels may lead to large sets of relevant path tuples.

While such computations apply on summaries which are typically much smaller
than the database, some combinations of summaries and queries can still lead to large

@ Springer

132 World Wide Web (2008) 11:117-151

S 1 9 D val (@ ag, a1 a)
(@, @g, - 8k_1, 841)

2 Val (ay, ag, .. ag_q, ag)

(@ ag, ... @y, ag49

W) o) (O]

3

Val (31, ag, ...,ay, aS)

w
=

ag val skt dke2 1%)
Figure 7 Sample query pattern and relevant path sets: at the center, relevant path tuples; at right,
paths encoded on stacks (see Algorithm 1).

memory needs. Relevant path identification is just one among many steps needed
during query optimization, and therefore it should be frugal with both running time
and needed memory, especially in a multi-user, multi-document database. Therefore,
a compact encoding of relevant path sets is needed.

Algorithm 1 shows how to compute relevant paths in a single streaming summary
traversal, encoding the answers in a space-efficient way to avoid an explosion in
answer size. Algorithm 1 runs in two phases.

Phase 1 (finding relevant paths) traverses the summary, and applies Algorithm 2
whenever entering a summary node and Algorithm 3 when leaving the node.
Algorithm 1 uses one stack for every pattern node, denoted stacks(n). Potentially

Algorithm 1: Finding minimal relevant path sets

Input : query pattern ¢
Output: the minimal set of relevant paths paths(n) for each pattern node n
/* Phase 1: finding relevant paths */
/* Create one stack for each pattern node: */
1 foreach pattern node n do
2 L stacks(n) < new stack

3 currentPath < 0

4 Traverse the path summary in depth-first order:
5 foreach node n visited for the first time do

6 L Run algorithm beginSummaryNode

7 foreach node n whose exploration is finished do
8 L Run algorithm endSummaryNode

/* Phase 2: minimizing relevant path sets */
9 foreach node n in q do

10 foreach stack entry se in stacks(n) do

11 if n is existential and

12 alll or+(se.parent.path, se.path) then

13 L se is trivial. Erase se and its descendants from the stack.

14 if n is a “for” var. andn and its desc. are not boxed and alll (se.parent.path,se.path) then
15 se is useless. Erase se from stacks(n) and

16 connect se’s parent to se’s children, if any

17 | paths(n)« paths in all remaining entries in stacks(n)

@ Springer

World Wide Web (2008) 11:117-151 133

Algorithm 2: beginSummaryNode

1

2

3

® 9 S w;m

10

11
12

Input: current path summary node labeled ¢

/* Uses the shared variables currentPath, stacks */
currentPath ++;
/* Look for pattern query nodes which ¢ may match: #/
foreach pattern node n s.t. t matches n’s label do

/* Check if the current path is found in the correct context wrt n: */

if (1) n is the topmost node in q, or (2) n has a parent node n’, stacks(n’) is not empty, and
stacks(n’).top is open then
if the level of currentPath agrees with the edge above n, and with the level of
stacks(n’).top then
/* The current path may be relevant for n, so create a candidate entry for stacks(n): */
stack entry se «<— new entry(currentPath)
se.parent — stacks(n’).top
if stacks(n) is not empty and stacks(n).top is open then

L se.selfParent — stacks(n).top

else
L se.selfParent— null

se.open «— true
stacks(n).push(se)

relevant paths are gathered in stacks and eliminated when they are found irrelevant,

usel

ess, or trivial. An entry in stacks(n) consists of:

A path (in fact, the path number).

A parent pointer to an entry in the stack of n’s parent, if n has a parent in the
pattern, and null otherwise.

A selfparent pointer. This points to a previous entry on the same stack, if that
entry’s path number is an ancestor of this one’s, or null if such an ancestor does
not exist at the time when the entry has been pushed. Self-pointers allow to
compactly encode relevant path sets.

An open flag. This is set to true when the entry is pushed, and to false when all
descendants of p have been read from the path summary. Notice that we cannot
afford to pop the entry altogether when it is no longer open, since we may need
it for further checks in Algorithm 3 (see below).

A set of children pointers to entries in n’s children’s stacks.

Algorithm 3: endSummaryNode

Input: current path (node in the path summary), labeled ¢
/* Uses the shared variables currentPath, stack */
1 foreach query pattern node n s.t. stacks(n) contains an entry se for currentPath do
/* Check if currentPathhas descendants in the stacks of non-optional n children: i
foreach non-optional childn’ of n do
if se has no children in stacks(n’) then
if se.ownParent # null then
connect se children to se.ownParent
pop se from stacks(n)

A UM AR W R

else
pop se from stacks(n)
pop all se descendant entries from their stack

® 2

10 se.open «— false

@ Springer

134 World Wide Web (2008) 11:117-151

Figure 7 (right) shows the content of all stacks after relevant path sets have been
computed for the pattern g in the same figure. Bidirectional arrows between stacks
represent parent and children pointers; vertical arrows between nodes in the same
stack represent selfparent pointers, which we explain shortly.

In Algorithm beginSummaryNode, when a summary node (say p) labeled ¢ starts,
we need to identify pattern nodes n for which p may be relevant. The final tag in
p must be ¢ or *x in order to match a t-labeled pattern node. Moreover, at the time
when traversal enters p, there must be an open, potentially relevant path for n’s
parent which is an ancestor of p. This can be checked by verifying that there is an
entry on the stack of #’, and that this entry is open. If n is the top node in the pattern,
if it should be a direct child of the root, then so should p. If both conditions are met,
an entry is created for p, and connected to its parent entry (lines 5-6).

The selfparent pointers, set at the lines 7-10 of Algorithm 2, allow sharing children
pointers among node entries in the same stack. For instance, in the relevant path sets
in Figure 7, node a; in the stack of pattern node 1 only points to a; in the stack of
pattern node 2, even though it should point also to nodes as, ..., a; in the stack of
pattern node 2, given that these paths are also descendants of a;. The information
that these paths are children of the a; entry in the stack 1 is implicitly encoded by the
selfparent pointers of nodes further up in the stack 1: if path a3 is a descendant of the
a; entry in this stack, then aj; is implicitly a descendant of the a; entry also.

This stack encoding via selfparent guarantees relevant paths are encoded in only
O(|q| x |S]) space. Our experimental evaluation in Section 5 shows that this upper
bound is very relaxed. The encoding is inspired from the Holistic Twig Join [13]. The
differences are: (1) we use it when performing a single streaming traversal over the
summary, as opposed to joining separate disk-resident ID collections; (2) we use it
on the summary, at a smaller scale, not on the data itself. However, as we show in
Section 5, this encoding significantly reduces space consumption in the presence of
large summaries. This is important, since real-life systems are not willing to spend
significant resources for optimization.

In line 11 of Algorithm 2, the new entry se is marked as open, to signal that
subsequent matches for children of n are welcome, and pushed in the stack.

Algorithm endSummaryNode, before finishing the exploration of a summary node
p, checks and may decide to erase the stack entries generated from p. A stack
entry is built with p for a node n when p has all the required ancestors. However,
endSummaryNode still has to check whether p had all the required descendants.
Entry se must have at least one child pointer towards the stacks of all required
children of n; otherwise, se is not relevant and is discarded. In this case, its descendant
entries in other stacks are also discarded, if these entries are not indirectly connected
(via a selfparent pointer) to an ancestor of se. If they are, then we connect them
directly to se.selfparent and discard only se (lines 4-9).

The successive calls to beginPathSummaryNode and endPathSummaryNode lead
to entries being pushed on the stacks of each query node. Some of these entries
left on the stacks may be trivial or useless; we were not able to discard them
earlier, because they served as “witnesses” that validate their parent entries (check
performed by Algorithm 3).

Phase 2 (minimizing relevant path sets) in Algorithm 1 goes over the relevant sets
and prunes out the trivial and useless entries. The predicate alll(p,, p,) returns true

@ Springer

World Wide Web (2008) 11:117-151 135

if all nodes between p, and p, in the path summary are annotated with 1. Similarly,
alllor+ checks if the symbols are either 1 or +. Useless entries are “short-circuited”,
just like Algorithm 3 did for irrelevant entries. At the end of this phase, the entries
left on the stack are the minimal relevant path set for the respective node.
Evaluating alll and alllor+ takes constant time if the pre-computed encoding is
used (Section 2). With the basic encoding, Phase 2 traverses the summary again (for
readability, Algorithm 1 does not show it this way). For every p, and p, such that
Phase 2 requires evaluating alll(p,, py) and alllor+(py, p,), the second summary
traversal verifies the annotations of paths from p, to p, using constant memory.

Overall time and space complexity The time complexity of Algorithm 1 depends
linearly on |S]. For each path, some operations are performed for each query pattern
node for which the path may be relevant. In the worst case, this means a factor of |g|.
The most expensive among these operations is checking that an entry had at least one
child in a set of stacks. If we cluster an entry’s children by their stack, this has ®(|q|)
time complexity. Putting these together, we obtain ©(|S| x |g|?) time complexity.
The space complexity in O(|S| x |q|) for encoding the path sets. In practice, path sets
are much smaller, as Section 6 shows.

4 Query planning and processing based on relevant path sets

We have shown how to obtain for every query pattern node n, a set of relevant
paths paths(n). A large family of existing XML storage, indexing and materialized
view proposals can be described by XAM patterns [4]. This family includes, e.g.,
the relational tables described in [23], the different storage strategies of [47], tag
indexes [29, 36], path indexes [11, 36], and the materialized views exploited in [10, 56].

e Consider an index grouping IDs by the element tags, as in [29] or the LIndex
in [36]. A single-node pattern can be drawn for each tag ¢ in the document,
labeled with [Tag = ¢] and with ID.

e A path index such as PIndex [36] or a path-partitioned store [11] provides access
to data from one path at a time.

e A view expressed in core XPath as in [56] also yields a XAM pattern.

Let storage structure designate any among: a storage structure (e.g. a table
in [23, 47]), an index (e.g. tag index [29]), or a materialized view (e.g. an XPath
view [56]). Let p; be a XAM pattern describing such a storage structure, and consider
a summary S and a document D such that § &= D.

As explained before, a query g € Q yields one or more XAM patterns p,. The
task of access method selection when processing g consists of choosing among all the
available storage structures, the ones to use to answer g. This implies (1) finding all
such suitable structures, and (2) choosing among the possible alternatives, presum-
ably with the help of some cost model.

Consider one query pattern p, and a p, node n, labeled with Val or Cont
(intuitively, n, represents some data that the query must return). A storage structure
described by a pattern p, can be used to provide some of the data required by n, if
and only if p, has a node ny, such that the relevant paths of n, and the (descendants
of) relevant paths of n, have a non-empty intersection.

@ Springer

136 World Wide Web (2008) 11:117-151

The relevant paths of n, may be a superset of n,’s paths (e.g. if the query is /a/b,
ps is a materialized view of the form //b, and the summary implies b elements occur
on paths /a/b and /a/c/b). The opposite can also arise, i.e. the relevant paths of n,
are a superset of n,’s paths. To see why we compare the paths of n, with descendants
of n’s relevant paths observe that if #n, is labeled Cont, one can extract from the
storage structure f; all descendants of elements matching »n; by XPath navigation.

In the most general case, enumerating the ways in which the data required by a
query pattern p, can be computed out of the storage patterns p;, p2, ..., p? amounts
to query rewriting under summary constraints and is addressed in [35]. Section 4.1
considers a particular case where this rewriting problem is very simple, namely when
a path-partitioned storage model is used, and shows it can lead to time- and memory-
efficient query execution plans. Such plans are enabled by the high fragmentation
degree of the path partitioned model, which understandably raises problems when
complex XML subtrees must be returned. Section 4.2 discusses efficient algorithms
for this purpose.

4.1 Constructing query plans on a path-partitioned store

With a path-partitioned store, IDs and/or values from every path are individually
accessible. In this case, the general access method selection approach becomes:
(1) construct access plans for every query pattern node, by merging the corre-
sponding ID or value sequences (recall the logical storage model from Figure 3);
(2) combine such access plans as required by the query, via structural joins, semijoins,
and outerjoins. To build a complete query plan (QEP), the remaining steps are:
(3) for every relevant path p,. of an expression appearing in a “return” clause,
reconstruct the subtrees rooted on path p,.; (4) re-assemble the output subtrees in
the new elements returned by the query. For example, Figure 8 depicts a QEP for the
sample query from Figure 5. In this QEP, IDs(n) designates an access to the sequence
of structural IDs on path n, while IDsAndVal(n) accesses the (ID, value) pairs where
IDs identify elements on path n, and values are text children of such elements. The
left semi-join (><) and the right outer-joins (><C) are structural, i.e. they combine
inputs based on parent-child or ancestor-descendant relationships between the IDs
they contain. Many efficient algorithms for structural join exist [2, 13]; we are only
concerned here with the logical operator.

The plan in Figure 8 is directly derived from the relevant path sets from Figure 5c
and the query. The selection o has been taken from the query, while the Merge
fuses the information from the two relevant paths for $2 (emph element). The final

Figure 8 Complete QEP for XMLize
the query in Figure 5. ‘
>
><C Merge
~ T~ IDsARGVal(17)~
><" IDsAndVal(13) IDsAndVal(21)

IDs(12) Oyai="gold"

IDsAndVal(23)

@ Springer

World Wide Web (2008) 11:117-151 137

XMLize operator assembles the pieces of data in a result. Section 4.2 studies this in
more detail.

We do not delve into more plan construction detail, as the process is similar to
the one described in [16]. The difference is that QEPs built on a path-partitioned
store benefit from relevant paths to access only a very small subset of the data. For
instance, with path partitioning only asian item IDs are read, whereas in [16] (which
uses a tag index) all item IDs need to be read. In the query planning approach of [43],
which builds on [16], data structures manipulated during query processing include
(pointers to) subtrees in a persistent tree store. The path partitioned model does not
include a persistent tree, and the corresponding QEPs only manipulate IDs until the
last stage in the plan (which reconstructs full trees). The advantage of manipulating
IDs only is to avoid scanning from the disk useless sub-elements. For instance, our
approach does not need to read item description elements, which are quite large. The
disadvantage of not having a persistent tree lies in the difficulty to assemble complex
XML elements in the output (addressed in Section 4.2).

Thus, the path partitioned storage model, coupled with a summary and with
relevant path computation on query patterns, leads to efficient query plans. These
plans access less data than if the common tag-based index is used [16, 22, 29, 43],
manipulate small intermediary results (mostly IDs), and (like the plans built in [16,
43]) can scale up well in the input data size, due to the usage of efficient structural
join operators [2]. More specialized indexes or views can clearly be added on top of
a path-partitioned store; we simply aim here at highlighting the opportunities of the
basic model.

Physical optimizations We end this section by showing how physical optimization
techniques previously presented [16, 42] are directly supported by relevant path sets.

Path expressions used in XPath and XQuery need to return duplicate-free lists of
nodes. Let op;, op, be two operators, such that op;.X and op,.Y contain structural
IDs. The outputs of op; and op, are ordered by the document order reflected by
X, resp. Y, and are assumed duplicate-free. Assume we need to find the op,.Y IDs
that are descendants of some op;.X IDs. If an ID y, from op,.Y has two different
ancestors in op;.X, the result of the structural join op><lop, will contain y, twice.
If the X column was not needed after the join, a duplicate elimination operator is
required on the Y column. Moreover, the join result order depends on the physical
algorithm employed [2], and may or may not fit the order requirements for the other
query operators (e.g. other structural joins). This may bring the need for explicit Sort
operators subsequently. Consider the particular case when op;.X contains IDs of
elements of a single tag a and op,.Y contains IDs of elements of a single tag b. In
this case, it has been shown [16] that if the schema implies that a elements cannot
have a descendants, no duplicate elimination or sort is needed, as the join output is
duplicate-free and follows both op;.X and op,.Y orders.

Relevant path sets allow generalizing this observation. Consider, as before, a
structural join of the form op; D><x 4y 0p2, Where the join checks whether IDs from
op;.X correspond to ancestors of elements in op,.Y. If, for any two possible paths
p1, p2 of element whose IDs are in op;. X, p; is not an ancestor p,, then the output
does not contain duplicate values in the X or Y columns, and its order respects
both the X and Y input orders. In particular, if op; is IDs(p) for some path p, this
condition is satisfied, unlike the case when all element IDs are stored together [49, 57]

@ Springer

138 World Wide Web (2008) 11:117-151

or partitioned by the tags [29]. This order descriptor of the storage can be given as
input to an optimization algorithm handling complex orders as described in [42].

Finally, group-by and duplicate elimination avoidance techniques have been
proposed based on schema-derived cardinality constraints of the form “every a
element has at most one b descendant” [16]. Relevant path sets enable the same
class of optimization at the finer granularity of paths.

Observe that relevant paths may enable some more optimizations than a schema
does, in the case where the schemas are loosely specified. For instance, the DBLP
DTD (http://www.informatik.uni-trier.de/~ley/) does not state that a phdthesis has
exactly one author child (which for obvious reasons is always the case), whereas
the DBLP summary does capture this. Moreover, associating relevant paths to
patterns allows such optimizations in the general case, even if the pattern is loosely
specified. For instance, given the query /dblp/*[school="U.Florida”)/author, relevant
path computation shows that the * node can only be labeled masterthesis or phdthesis
(since these are the only DBLP publications having school children elements), and
that such elements have only one author child.

4.2 Reconstructing XML elements

The biggest performance issues regarding a path-partitioned store are connected to
the task of reconstructing complex XML subtrees, since the data has been partitioned
vertically. In this section, we study algorithms for gathering and gluing together data
from multiple paths when building XML output.

A first approach is to adapt the SortedOuterUnion [47] method for exporting
relational data in XML to a path-partitioned setting with structural IDs. The plan
in Figure 8 does just this: the components of the result (name and emph elements)
are gathered via two successive structural outerjoins. In general, the plan may be
more complex. For instance, consider the query:

for $x in //item return <res> {$x//keyword} {$x//emph} </res>

The plan in Figure 9a cannot be used for this query, because it introduces multi-
valued dependencies [21]: it multiplies all emph elements by all their keyword cousins,
while the query asks for the keyword and emph descendants of a given item to
be concatenated (not joined among themselves). The plan in Figure 9b solves this
problem, however, it requires materializing the item identifiers (highlighted in grey),
to feed them as inputs in two separate joins.

If the materialization is done on disk, it breaks the execution pipeline and slows
down the evaluation. If it is done in memory, the execution will likely be faster, but
complex plans end up requiring more and more materialization. For instance, the
simple query //person leads to the plan in Figure 9c, where the IDs on both paths 3
(person) and 5 (address) need to be materialized to avoid erroneous multiplication
of their descendants by successive joins. The sub-plan surrounded by a dotted line
reconstructs address elements, based on city, country and street. The complete plan
puts back together all components of person.

The I/O complexity of this method is driven by the number of intermediate
materialization steps and the size of the materialized results. Elements on path x must
be materialized if they must be combined with multiple children, and some child path
y of x is not annotated with 1. Some IDs are materialized multiple times, after joins

@ Springer

http://www.informatik.uni-trier.de/~ley/

World Wide Web (2008) 11:117-151 139

a b
><C OuterUnion
e e

IDs(item) IDsAndVal(keyword) IDsAndVal(emph) IDs(item) IDsAndVal(keyword)

OuterUnion c

IDsAndVal(8).

IDsARdVal(4)

;‘lesAndVal(e) IDs(5) |DsAn alQ)-*:

IDsAndVal(3/@id) IDs(3)

Figure 9 Sample outer-union QEPs with structural joins.

with descendant IDs at increasing nesting level. For instance, in Figure 9, person IDs
are materialized once, and then a second time after being joined with address IDs.
In the worst case, assuming IDs on all paths in the subtree to be reconstructed must
be materialized on disk, this leads to O(N x h/B) I/O complexity, where B is the
blocking factor and 4 the document height. If in-memory materialization is used, the
memory consumption is in O(N x h). The time complexity is also O(N x h).

To reduce the space requirements, we devise a physical operator specialized
for the path-partitioned store, named Reconstruct. It reads in parallel the ordered
sequences of structural IDs and (ID, value) pairs from all the paths to recombine,
and produces directly textual output in which XML markup (tags) and values taken
from the inputs are concatenated in the right order. The Reconstruct takes this order
information:

e From the path summary: children elements must be nested inside parent ele-
ments. Thus, a (person) tag must be output (and a person ID read from IDs(3))
before the (name) child of that person, and a {/name) tag must be output (thus, all
values from IDsAndVal(4) must have been read and copied) before the (/person)
tag can be output.

e From the structural IDs themselves: after an opening (person) tag, the first child
of person to be reconstructed in the output comes from the path n, such that the
next structural ID in the stream IDs(#n) is the smallest among all structural ID
streams corresponding to children of person elements.

Figure 10a outlines a Reconstruct-based plan, and Figure 10b zooms in into
the Reconstruct itself (the shaded area). Reconstruct uses one buffer slot to store
the current structural ID and the current (ID, value) pair from every path which
contributes some data to the output. The IDs are used to dictate output order, as
explained above; the values are actually output, properly nested into markup. The
buffers are connected by thin lines; their interconnections repeat exactly the path
summary tree rooted at person in Figure 1.

A big advantage of Reconstruct is that it does not build intermediate results. Thus,
it has a smaller memory footprint than the SortedOuterUnion approach. Contrast the
QEPs in Figures 9b and 10b: the former needs to build address elements separately,
while the latter combines all pieces of content directly. A second advantage is that the
Reconstruct is pipelined, unlike the SortedOuterUnion, which materializes person
and address IDs.

@ Springer

140 World Wide Web (2008) 11:117-151

a b Reconstruct

s!rud ID struct. ID val

D|[struct. ID val struct, ID [struct.ID|[struct.1D,vall

|DS(3) IDsAndVaI(SI@ d)

Reconstruct

IDs(9) IDsAndVal(9)
DS Ds Ds(. 1D5(6)~IDS s(8) Ds(9) IDS(4) IDsAndVal(4) S"”C‘ [stuctin]

IDsAndVal(3/@id) ID: (4) ID: (6) "ID: (7)

IDs(5)

hstruc(.IDHstrucl.ID,val\J Il struct.lDHstrucLlD,val\] hs(ruct.lDHstruc(.ID,vaI\]

IDs(6) IDsAndVal(6) IDs(7) IDsAndVal(7) IDs(8) IDsAndVal(8)

Figure 10 Reconstruct plans for /person on XMark data.

The Reconstruct has O(N) time complexity. It needs one buffer page to read from
every path which contributes some data to the output. Thus, it has O(n) memory
needs, where n is the number of paths from which data is combined. Especially for
large documents, n << N * h/ B, thus the Reconstruct is much more memory-efficient
than the SortedOuterUnion approach.

5 Experimental evaluation

We have implemented path summaries and the path-partitioned storage model
within the XQueC system [7, 8]. Subsequently, we isolated XQueC’s path summary
construction and manipulation algorithms in a standalone Java library called XSum
(available for download [55]) in order to use it in other projects. This section
describes our experience exploiting summaries, alone or in conjunction with a path-
partitioned store.

Experiments are carried on a Latitude D800 laptop, with a 1.4 GHz processor,
1 GB RAM, running RedHat 9.0. We use XQueC’s path-partitioned storage sys-
tem [7], developed based on the popular persistent storage library BerkeleyDB from
www.sleepycat.com. The store uses B+-trees and provides efficient access to the IDs
or (ID,val) pairs from a given path in document order. All our development is Java-
based; we use the Java HotSpot VM 1.5.0. All times are averaged over 5 runs.

5.1 Summary size

In this section, we study summary sizes for a variety of XML documents: some are
obtained from [54], to which we add a set of XMarkn documents produced by the
XMark data generator [51] to the size of n MB, and two DBLP snapshots from
2002 and 2005 (http://www.informatik.uni-trier.de/~ley/). Table 1 shows the docu-
ment sizes, number of document nodes N, number of summary nodes |S|, and the
ratio |S|/N.

For all but the TreeBank document, the summary has at most a few hundreds
of nodes and is 3 to 5 orders of magnitude smaller than the document. As the
XMark and DBLP documents grow in size, their respective summaries grow very
little. Intuitively, the structural complexity of a document tends to level out as more
data is added, even for complex documents such as XMark, with 12 levels of nesting,
recursion etc. TreeBank, although not the biggest document, has the largest summary
(also, the largest we could find for real-life data sets). TreeBank is obtained from

@ Springer

http://www.informatik.uni-trier.de/~ley/

World Wide Web (2008) 11:117-151 141

Table 1 Sample XML documents and their path summaries.

Doc. UW Course Shakespeare Nasa Treebank SwissProt
Size 3MB 7.5 MB 24 MB 82 MB 109 MB

N 84,051 179,690 476,645 2,437,665 2,977,030

|S| 18 58 24 338,738 117

IS|/N 2.1x107* 32x107* 5.0x107° 1.3x107! 3.9%x1073
Doc. XMarkl11 XMark111 XMark233 DBLP (2002) DBLP (2005)
Size 11 MB 111 MB 233 Mb 133 MB 280 MB

N 206,130 1,666,310 4,103,208 3,736,406 7,123,198

[S] 536 548 548 145 159

IS|/N 2.4x1073 3x107* 1.3x107* 3.8x107° 22x107°

natural language text, into which tags were inserted to isolate parts of speech. While
we believe such documents are rare, robust algorithms for handling such summaries
are needed, if path summaries are to be included in XML databases.

We now consider the sizes attained by serialized stored summaries. Two choices
must be made: (1) XML or binary serialization, and (2) direct or precomputed
encoding of parent-child cardinalities (Section 2), for a total of four options. XML
serialization is useful since summaries may be easily inspected by the user, e.g.
in a browser. Summary nodes are serialized as elements and their annotations as
attributes with 1-character names. Binary serialization yields more compact sum-
maries; summary node names are dictionary-encoded, summary nodes and their
labels are encoded at byte level. Pre-computed serialization is more verbose than
the direct one, since n1 and n+ labels may occupy more than 1 and + labels.

Table 2 shows the smallest serialized summary sizes (binary with direct encoding).
Properly encoded, information-rich summaries are much smaller than the document:
2 to 6 orders of magnitude smaller, even for the large TreeBank summary (recall
Table 1).

We measured XML-based summary encodings for the documents in Table 2 and
found they are 2 to 5 times larger than the direct binary one. We also measured the
size of the binary pre-computed summaries and found it always within a factor of 1.5
of the direct binary one, which is quite compact.

A path summary is built during a single traversal of the document, using O(|S])
memory [1, 24]. We gather 1 and + labels during summary construction and traverse
the summary again if the pre-computed encoding is used, making for ®(N + |S|)
time and O (]S|) memory. As a simple indication, the time to build and serialize the
summary of the 280 MB DBLP document (in XML format) is 45 s.

Table 2 Serialized summary sizes (binary format, direct encoding).

Doc. Shakespeare XMarkll XMark233 SwissProt DBLP 2005 TreeBank
Size (MB) 7.5 11 233 109 280 82
Binary, direct (KB) 0.68 4.85 4.95 3.11 1.62 2318.01
Binary, direct / size 8x107 4x10~4 2x1073 2x1073 5%x1076 3x1072

@ Springer

142 World Wide Web (2008) 11:117-151

Table 3 Computing relevant paths for the XMark queries.

Query and time

Query no. 1 2 3 4 5 6 7 8 9 10
Time (ms) 14 14 14 15 14 14 14 29 46 29
Query no. 11 12 13 14 15 16 17 18 19 20
Time (ms) 28 28 14 14 15 16 15 14 15 14

5.2 Relevant path computation

We now study the performance of the relevant path set computation algorithm from
Section 3.4. Computing the relevant paths for a tree pattern is part of the query
optimization stage and it only involves the summary (no access to the persistent
repository takes place).

The setting for these measures is the following. Summaries for the XMark111 and
Treebank document have been previously computed and serialized in binary format,
using the pre-computed encoding. We use the XMark111 summary as representative
of the moderate-sized ones and Treebank as the largest (see Table 2). For the
measure, the file containing the serialized summary is opened and traversed by an
event-based parser we wrote. The parser computes the relevant paths as described
in the algorithm from Section 3.4. We measure the time taken by this traversal and
computation.

Table 3 shows the relevant path computation time on patterns resulting from the
20 queries of the XMark benchmark [51], on the XMark111 summary. The query
patterns have between 5 and 18 nodes. Path computation is very fast and takes less
than 50 ms, demonstrating its scalability with complex queries.

We now measure the impact of the serialization format on the relevant path
computation time. Table 4 shows this time for the XMark queries 1 and 9, for which
Table 3 has shown path computation is fastest, resp. slowest. Path computation on
an XML-ized summary is about four to five times slower than on the binary format,
reflecting the impact of the time to read the summary itself. The running time on
a pre-computed summary is about half of the running time on a direct-encoded
one. This is because with direct encoding, path set minimization requires a second
summary traversal, as explained in Section 3. The space saving of the binary, direct
encoding over the binary pre-computed encoding (less than 50%) is overcome by
the penalty direct encoding brings during relevant path sets computations. We thus
conclude the binary, pre-computed encoding offers the best time-space compromise
and will focus on this one only from now on. If the optimizer caches query plans,
however, the binary direct encoding may be preferable.

Table 4 Impact of summary serialization format on relevant path computation time.

Query no. XML dir. (ms) XML pre-cp. (ms) bin. dir. (ms) bin. pre-cp (ms)
1 73.0 37.0 223 14.2
2557 133.6 98.6 46.4

@ Springer

World Wide Web (2008) 11:117-151 143

Table 5 XPath renditions of query patterns on TreeBank data.

Renditions of query patterns

TKn: //SIVP/(NP/PP)" /NP T0://A TL /NP T2://NNP
T3: //WHADVP T4://NP//NNP T5: //S[NPP][_COMMA_]/PP
T6: //ADJP/PP/NP T7: /FILE/EMPTY/S[VP/S)/NP/VP

We now consider the TreeBank summary (in binary pre-computed encoding) and
a set of query patterns, shown in Table 5 as XPath queries for simplicity (however,
we compute relevant path sets for all query nodes). Treebank tags denote parts of
speech, such as S for sentence, VP for verb phrase, NP for noun phrase etc. TKn
denotes a parameterized family of queries taken from [14], where the steps /NP/PP
are repeated n times. Figure 11 (left) shows the times to compute the relevant paths
for these queries. Due to the very large summary (2.3 MB), the times are measured
in seconds, two orders of magnitude above those we registered for XMark. Queries
TO to T3 search for a single tag. The time for TO is spent traversing the summary only,
since the tag A is not present in the summary,? thus no stack entries are built. The
other times can be decomposed into: the constant summary traversal time, equal to
the time for TO; and the time needed to build, check, and prune stack entries.

T1 takes slightly more than T2, which takes more than T3, which is very close to
TO. The reason can be seen by considering the number of resulting paths at the right
in Figure 11: T1 yields many more paths (about 50,000) than T2 (about 10,000) or T3
(about 1,000). Each relevant path is a stack entry to handle.

The time for T4 is the highest, since there are many relevant paths for both nodes.
Furthermore, an entry is created for all NP summary nodes, but many such entries are
discarded due to the lack of NNP descendants. TS, T6 and T7 are some larger queries;
T6 creates some ADJ entries which are discarded later, thus its relatively higher time.
The times for TKn queries decreases as n increases, a tendency correlated with the
number of resulting paths, at the right in Figure 11. Large n values mean more and
more selective queries. Thus, entries in the stacks of nodes towards the beginning of
the query (S, VP) will be pruned due to their lack of required descendants (NP and
PP in the last positions in the query).

The selfparent encoding proved very useful for queries like T4. For this query, we
counted more than 75,000 relevant path pairs (one path for NP, one for NPP), while
with the selfparent encoding only 24,000 stack entries are used. This demonstrates
the value of selfparent pointers in cases where there are many relevant paths, due to
a large summary and/or * query nodes.

5.3 Tree pattern evaluation based on a path-partitioned store

We measured the time needed to evaluate some tree patterns (that is, find the
structural ID tuples corresponding to their matching elements) on a path partitioned

A tag dictionary at the beginning of the summary allows detecting erroneous tags directly. We
disabled this feature for this measure.

@ Springer

144 World Wide Web (2008) 11:117-151

Figure 11 Relevant path 8 S
computation times on 71 § 4.5 ETo WTK2
TreeBank (leff) and resulting ol 0 4 HT [7K3
relevant path set size (right, % | E3-5 12 [JTk4
log scale). g3 £ 3 073 WTKs
§ 41 ,2‘2.5 W4
a g%
o3 > OTs
£ v
=2 s W6
L gt 07
208 M«
0 0

store. We identify relevant paths based on the summary, read the ID sequences
for relevant paths, and perform structural joins if needed. For comparison, we also
implemented in XQueC a similar store, but where IDs are partitioned by their tags,
not by their paths, as in [26, 29]. On both stores, the StackTreeDesc [2] structural
algorithm was used to combine structural IDs.

We start by considering the simplest case when looking for the IDs of all nodes of
a given tag. This experiment quantifies the overhead of path partitioning in the case
where the access is not performed by the path. At the top left in Figure 12, we show
the execution times for finding the IDs of the elements corresponding to the queries
/[item, //description, //bold, //category on the 111 MB XMark document, as well as the
queries //title and //author on the 128 MB DBLP document. We have chosen these
queries because these tags occur on up to a hundred different paths in the respective

40

70
Tag parti-
60 Dtiogir’]’g OTagparti ||
) ioning
50 [} F_’ath parti- [l Path parti-
40 tioning tioning
20
30
20 , M
10
Jlitem ~ Ilbold Ihitle " ar 3 a5 a7 Q9
Ildescription Ilcategory Ilauthor @ Q Q6 Q8 Q10
Q1 /leurope//item/descr Q6 //[Entry//METAL//Descr

Q2 //regions//item//descr Q7 /Icateg//listitem//text
Q3 //leurope//parlist//bold Q8 /Iparlist//listitem//text
Q4 /leurope//parlist/listitem Q9 //dblp//book//author
Q5 //item//descr//keyword Q10 //dblp//book//title

[Path parti-) _
tioning (scan; 1
o o o i Pl for $x in //person, $y in $x//name, $z in $x//watch
e] P2 for $x in //asia, $y in $x//item, $z in $y//description
- I8 Tag partton- M P3 for $x in //item, Sy in $x//description, $z in $x//parlist
[Tag partiton- H P4 for $xin //item, $y in $x//parlist, $z in $x//keyword
o vy m— | P5 for $x in //categories, $y in $x//parlist, $z in $x//text
. i L_ing (tora N0 P6 for $x in //article, $y in $x//title, $z in $x//year
e :
P1 P2 P3 P4 P5 P6

Figure 12 Tree pattern evaluation with path and tag partitioning.

@ Springer

World Wide Web (2008) 11:117-151 145

documents. The execution times at the top left of Figure 12 show that the overhead
of path partitioning, that is, the effort to merge the ID sequences corresponding to
all paths, is quite small.

In general, the effort to produce one output tuple when merging k sequences
is of the order of [log,(k)]. This effort may remain moderate even for large k
values. Thus, we believe path partitioning does not incur a strong overhead over tag
partitioning, even in the case when all elements of the same tag are required together.
However, excessive fragmentation incurred by path partitioning may raise problems
of a different nature. When loading the TreeBank document in our path-partitioned
store, the number of storage structures filled in by loading (equal to the summary
size, see Table 1) outgrew the default number of files one can simultaneously open
(1,024 on our system). Since we implemented each storage structure as a BerkeleyDB
database hosted in a separated file, this posed problems. We implemented an open
file counter that closed and re-opened files to stay within reasonable limits, but the
more general lesson is that very large numbers of paths may require some careful
engineering of the store.

The other graphs in Figure 12 show the execution times for 10 XPath queries (Q6
on SwissProt, Q9 and Q10 on DBLP, the others on a 111 MB XMark document),
and 6 tree patterns (P1 to P6 on the 111 MB XMark). In Figure 12, path partitioning
achieves important performance improvements (up to a factor of 400 !) over tag
partitioning. This is because often, many paths in a document end in the same tag, yet
only a few of these paths are relevant to a query, and our relevant path computation
algorithm identifies them precisely. For the patterns P1 to P6, we split the binding
time in ID scan and ID structural join. We see that the performance gain of path
partitioning comes from its reduced scan time, confirming the advantage of path-
based indexing over tag-based indexing.

Impact of path minimization Relevant path computation finds that the second tag
in Q1-QS5 is useless (Section 3), thus IDs for those tags are not read in the measures
in Figure 12. Turning minimization off increased the running time by 15% to 45%.

Figure 13 SortedOuterUnion 100
and Reconstruct performance. 9% -
—~ 80
v _
g 0 [//person, SOU
s 60 M //person,Rec.
2 50 [1//address,
< 1 Sou
® 40 []//address,Rec.
& 30 [| /ggawepage,
20 [/homepage,R
ec.
10 J I
0

15 29 55 83 116
XMark document size (Mb)

@ Springer

146 World Wide Web (2008) 11:117-151

Table 6 Sample summary-based query unfolding.

Query
for $x1 in document(“xmark.xml”)/site
return <site> { for $x2 in $x1/people
document(“xmark.xml”)//person return <people> for $x3 in $x2/person
return $x3
</people> }

</site>

5.4 Reconstructing path-partitioned data

We tested the performance of the two document reconstruction methods described
in Section 4.2 on our path-partitioned store. Figure 13 shows the time to build the
full serialized result of //person, //address and //homepage on XMark documents of
increasing sizes. The sorted outer union (denoted SOU in Figure 13) materialized
intermediate results in memory. On the XMark111 document, /person outputs about
15 MB of result. As predicted in Section 4.2, both methods scale up linearly. The
Reconstruct is noticeably faster when building complex elements such as address and
person. Furthermore, as explained in Section 4.2, it uses much less memory, making
it interesting for a multi-user, multi-query setting.

5.5 Conclusions of the experiments

Our experiments have shown that path summaries can be serialized very compactly;
the binary encoded approach yields the best trade-off between compactness and
relevant path computation performance. Our path computation algorithm has robust
performance and produces intelligently-encoded results, even for very complex
summaries. Path partitioning takes maximum advantage of summaries; used in con-
junction with structural identifiers and efficient structural joins, it provides for very
selective access methods. Scalable reconstruction methods make path partitioning an
interesting idea in the context of current-day XML databases.

6 Related work

The idea of summarizing semi-structured data can be traced back to the work
on representative objects [41]. Representative objects are meant as a help in for-
mulating queries, and they allow detecting empty-result queries without accessing
the repository. Path summaries have been used as a basis for optimization in
many works [12, 39]. In [12], the authors propose a tree pattern pruning operator
whose task is similar to computing relevant paths. However, the authors only
consider XPath (conjunctive) patterns and do not consider summary-based pattern
minimization. Optimizations proposed in [12], concerning ordering the structural
joins needed to process a conjunctive tree pattern, can easily be adapted to the path-
partitioned storage model.

@ Springer

World Wide Web (2008) 11:117-151 147

Two kinds of optimizations were considered in [24, 39]. (1) Summaries were
used to make queries more specific by replacing node label or path wildcards by
precise paths. This is an important optimization in that context since path query
evaluation was based on navigation in the data graph, with quite poor access locality
and thus poor performance. Precise navigation meant fewer data blocks to visit.
In our context, the presence of structural identifiers allows evaluating path queries
without navigating. Some recent works have shown that navigation and structural
joins combined achieve the best performance [26]. While the basic path-partitioned
model does not provide a persistent tree to navigate in, the two are not fundamentally
incompatible. (2) Path indices were used to evaluate parts of the query’s navigation.
Our data access method selection approach (Section 4) follows directly this idea, with
the difference that we combine such data access plans by more scalable structural
joins, unavailable at the time of [39]. More generally, we have pointed at data access
method selection based on relevant paths, when the storage structures are described
by arbitrary patterns.

Storage models organized based on element paths have been used in [11, 28, 57].
These works exploited more or less explicitly a path summary as a key to the storage
structures. In [28, 57], paths are stored as string attributes in a relational table, and
relevant path computation is performed by string pattern matching. While this is
appropriate for linear path queries, more processing is required for tree pattern
queries, and for complex patterns involving optional nodes. The work described

n [12], discussed above, is the most recent follow-up on [11] regarding summary
usage.

The work on Dataguides [24] advocates using summaries as a basis for path
indexing. Index structures more complex than path indexes have been proposed
e.g. in [30]. A complete F&B index [30] is more complex to build and to maintain
than a path index. Therefore the authors provided alternative schemes building only
partial indices [30, 31, 46]. In contrast, for us the path-partitioned set of IDs is the
storage itself, thus it has to be complete. Complex F&B indices can be added to the
path-partitioned store. If they are restricted to forward navigation and do not use
ID-IDREF connections, they may be described by XAMs and exploited by access
method selection as outlined in Section 4. If backward navigation is used, relevant
path computation becomes more complex, but is still possible.

Path indexing schemes such as APEX [18], the D(k) index [46], and multires-
olution indexing [27] only materialize a path in the index if the path appears in
the workload. In particular, multiresolution indexing allows different degrees of
detail to co-exist in the index. This allows the index to closely track the workload
query needs.

Besides indexing, summaries have also been used as a support for cardinality
statistics about an XML tree [20, 45]. The statistic-annotated summary of an XML
tree is built to fit the space budget that the user is willing to pay for the precision of
its estimations. This support for statistics is significantly more complex to build than
a simple path summary. However, a simple summary (as considered in this work),
when used as a support for path cardinalities, is likely to yield poor-quality cardinality
estimations, thus the need for more elaborate schemes [45].

An interesting class of compressed structures is described in [14] and is used as a
basis for query processing. This approach compresses the XML structure tree into
a compact DAG, associating to each DAG node the set of corresponding XML

@ Springer

148 World Wide Web (2008) 11:117-151

element nodes. We have performed measures (omitted for brevity) showing that
the path summary is generally smaller, in some cases by two orders of magnitude,
than this DAG. This is explained by the fact that for two XML nodes to correspond
to a single summary node, a path summary only requires that their incoming paths
be the same. In contrast, the DAG summary introduced in [14] also requires that
the tree structure found below the two nodes be similar. The difference increases in
the presence of recursive, variable and repeated structure. We thus argue that path
summaries are generally much more robust and therefore of practical interest.

In [15], the authors propose a specialized query processing framework based
on the summaries described in [14]. The authors present an approach for han-
dling DAG-compressed structures throughout the query processing steps, which
reduces the risk that the unfolded compressed structure would outgrow the available
memory. In contrast, we make the point that path summaries can be added with
minimal effort into existing XQuery processing systems, and that they marry well
with efficient techniques such as structural identifiers and structural joins.

Path information has been used recently for XPath materialized view-based
rewriting [10] and for access method selection [5, 12]. The summary-based rewriting
algorithm based on materialized views we described in [35] generalizes these ap-
proaches. In the present work, we aimed at casting summary-enabled optimization
techniques, including, but not limited to access method selection, in a single frame-
work, and highlight the advantages of the simple path-partitioned storage model for
XML query processing.

The only previous relevant path computation algorithm we could find concerns
simple linear path queries only [1, 24]. It works in memory in a top-down manner
and does not perform any path minimization. The algorithm we have described bears
similarities with existing stack-based tree pattern matching algorithms [13]. Its time
complexity is not surprising, since it follows the results of [25]. Its advantage is to
require very little memory, which is a desirable feature given that relevant paths
have to be computed during query optimization, with a small memory budget.

Many works target specifically query minimization, sometimes based on con-
straints, e.g. [3, 16, 19, 32]. We have outlined the differences between our work
and existing works on minimization under constraints in Section 3.3. Constraints can
be obtained from an (a priori) XML Schema or from a summary extracted from
the data. A first big advantage of summary-based minimization (and optimization
in general) is that it can apply even when schemas are unavailable (a frequent
case [37]) and can use information that even an available schema doesn’t provide, as
our example at the end of Section 3.3 shows. Constraint-independent minimization
techniques such as [19] are orthogonal to our work and can be combined.

With respect to path partitioning, we considered the task of retrieving IDs
satisfying given path constraints as in [10, 12, 39] and show that structural IDs
and joins efficiently combine with path information. Differently from [10, 12, 39]
which assume available a persistent tree structure, we also considered the difficult
task of re-building XML subtrees from a path-partitioned store. We studied an
extension of an existing method and proposed a new one, faster and with much lower
memory needs.

Complex, richer XML summaries have also been used for data statistics;they
tend to grow large, thus only limited-size subsets are kept [44]. Since path indices
represent the store itself in our context, we must keep it complete.

@ Springer

World Wide Web (2008) 11:117-151 149

The starting point of this work is the XQueC compressed XML prototype [7, 8].
The contributions of this paper on building and exploiting summaries for optimiza-
tion have a different scope. An early version of this work has been presented in an
informal setting, within the French database community only [34]. A 2-pages poster
based on this work has been recently published [9].

7 Conclusion and perspectives

We have described a practical approach for building and exploiting path summaries
as metadata in a persistent XML repository, i.e., information about the structure en-
countered in the XML document. We have shown how summaries can be combined
with path partitioning to achieve efficient, selective data access, a plus for processing
queries with complex navigation requirements.

Our own experience developing the summary was first included in our XQueC
[7, 8] XML compression project. Subsequently, we isolated it out of the XQueC
prototype and found it useful in some applications which we briefly describe below.
Our summary library is freely available [55].

Apprehending varied-structure data sources In the framework of the INEX? col-
laborative effort, we concentrated on designing an integrated conceptual model out
of heterogeneously-structured bibliographic data sources. As a side effect of building
summaries, XSum also generates image files of such summaries [55]. We used this
feature to get acquainted with the sources and visualize their structure. This is in
keeping with the initial Dataguide philosophy of using summaries for exploring data
sets [24].

Physical data independence We developed a materialized view management tool
for XQuery, called ULoad [5]. This tool includes a query rewriting module based
on views, which naturally leads to containment and equivalence problems. ULoad
judges containment and equivalence under summary constraints, thus exploiting
summaries and path annotations.

Query unfolding An ongoing work in the Gemo group requires a specific form
of query unfolding. As soon as an XQuery returns some elements found by some
unspecified navigation path in the input document (that is, using the descendant
axis), the query must be rewritten so that it returns all elements on the path from
the document root to the returned node, not just the returned node as regular XPath
semantics requires. For instance, the query //person in an XMark document must be
transformed into the query in Table 6. This work is still ongoing.

Perspectives Our ongoing work focuses on adding to the XSum library a version
of the containment and equivalence algorithms implemented in ULoad. We are
also considering the joint usage of summary and schema information for XML

3INEX stands for Initiative for the Evaluation of XML Information Retrieval; see http:/inex.is.
informatik.uni-duisburg.de.

@ Springer

http://inex.is.informatik.uni-duisburg.de
http://inex.is.informatik.uni-duisburg.de

150 World Wide Web (2008) 11:117-151

tree pattern query rewriting and containment; we anticipate that this combined usage
provides increased information and thus more opportunities for optimization.

We are also currently extending ULoad to support XQuery updates; accordingly,
we expect to implement summary maintenance under data modifications in XSum. It
is to be noted that summary maintenance has very low complexity, using our notion
of summary [24], thus we do not expect this to raise difficult issues.

Acknowledgements The authors are grateful to Christoph Koch for providing us with his XML
compressor code [14], and to Pierre Senellart for sharing with us his query unfolding application.

References

1. Aboulnaga, A., Alamendeen, A.R., Naughton, J.F.: Estimating the selectivity of XML path
expressions for internet scale applications. In: VLDB (2001)
2. Al-Khalifa, S., Jagadish, H.V., Patel, .M., Wu, Y., Koudas, N., Srivastava, D.: Structural joins: A
primitive for efficient XML query pattern matching. In: ICDE (2002)
3. Amer-Yahia, S., Cho, S., Lakshmanan, L.: Minimization of tree pattern queries. In: SIGMOD
(2001)
4. Arion, A., Benzaken, V., Manolescu, I.: XML Access Modules: Towards Physical Data Indepen-
dence in XML Databases. XIME-P Workshop (2005)
5. Arion, A., Benzaken, V., Manolescu, 1., Vijay, R.: ULoad: choosing the right storage for your
XML application. In: VLDB (2005)
6. Arion, A., Benzaken, V., Manolescu, I., Vijay, R.: Algebra-based tree pattern extraction in
XQuery. In: FQAS Conference (2006)
7. Arion, A., Bonifati, A., Costa, G., D’Aguanno, S., Manolescu, 1., Pugliese, A.: XQueC: Pushing
queries to compressed XML data (demo). In: VLDB (2003)
8. Arion, A., Bonifati, A., Costa, G., D’Aguanno, S., Manolescu, 1., Pugliese, A.: Efficient query
evaluation over compressed XML data. In: EDBT (2004)
9. Arion, A., Bonifati, A., Manolescu, 1., Pugliese, A.: Path summaries and path partitioning in
modern XML databases (poster). In: WWW (2006)
10. Balmin, A., Ozcan, F., Beyer, K., Cochrane, R., Pirahesh, H.: A framework for using materialized
XPath views in XML query processing. In: VLDB (2004)
11. Barbosa, D., Barta, A., Mendelzon, A., Mihaila, G.: The Toronto XML engine. In: WIIW
Workhshop (2001)
12. Barta, A., Consens, M., Mendelzon, A.: Benefits of path summaries in an XML query optimizer
supporting multiple access methods. In: VLDB (2005)
13. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern matching.
In: SIGMOD (2002)
14. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: VLDB (2003)
15. Buneman P., Choi B., Fan, W., Hutchison, R., Mann, R., Viglas, S.: Vectorizing and querying
large XML repositories. In: ICDE, pp. 261-272 (2005)
16. Chen, Z., Jagadish, H.V., Lakshmanan, L., Paparizos, S.: From tree patterns to generalized tree
patterns: on efficient evaluation of XQuery. In: VLDB (2003)
17. Chien, S., Vagena, Z., Zhang, D., Tsotras, V.: Efficient structural joins on indexed XML
documents. In: VLDB (2002)
18. Chung, C.W., Min, J.K., Shim, K.: APEX: an adaptive path index for XML data. In: SIGMOD
(2002)
19. Deutsch, A., Papakonstantinou, Y., Xu, Y.: The NEXT logical framework for XQuery.
In: VLDB, pp. 168-179 (2004)
20. Drukh, N., Polyzotis, N., Garofalakis, M.N., Matias, Y.: Fractional XSKETCH synopses for XML
databases. In: XSym (2004)
21. Fagin, R.: Multivalued dependencies and a new normal form for relational databases. ACM
Trans. Database Syst. 2(3), 262-278 (1977)
22. Fiebig, T., Helmer, S., Kanne, C., Moerkotte, G., Neumann, J., Schiele, R., Westmann, T.:
Anatomy of a native XML base management system. VLDB J. 11(4), 292-314 (2002)

@ Springer

World Wide Web (2008) 11:117-151 151

23.

24.

25.
26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.
40.

41.

42.
43.

44.

45.

46.

47.

48.

Florescu, D., Kossmann, D.: Storing and querying XML data using an RDMBS. In: IEEE D.
Eng. Bull (1999)

Goldman, R., Widom, J.: Dataguides: enabling query formulation and optimization in semistruc-
tured databases. In: VLDB. Athens, Greece (1997)

Gottlob, G., Koch, C., Pichler, R.: The complexity of XPath query evaluation. In: PODS (2003)
Halverson, A., Burger, J., Galanis, L., Kini, A., Krishnamurthy, R., Rao, A.N., Tian, F., Viglas, S.,
Wang, Y., Naughton, J.F., DeWitt, D.J.: Mixed mode XML query processing. In: VLDB (2003)
He, H., Yang, J.: Multiresolution Indexing of XML for Frequent Queries. In: ICDE (2004)
Jiang, H., Lu, H., Wang, W., Yu, J.: Path materialization revisited: an efficient XML storage
model. In: AICE (2001)

Jagadish, H.V., Al-Khalifa, S., Chapman, A., Lakshmanan, L.V.S., Nierman, A., Paparizos, S.,
Patel, J., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu, C.: Timber: a native XML database.
VLDB J. 11(4), (2002)

Kaushik, R., Bohannon, P., Naughton, J., Korth, H.: Covering indexes for branching path queries.
In: SIGMOD (2002)

Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting local similarity for indexing paths
in graph-structured data. In: ICDE (2002)

Lakshmanan, L., Ramesh, G., Wang, H., Zhao, Z.: On testing satisfiability of tree pattern queries.
In: VLDB (2004)

Lee, M., Li, H., Hsu, W., Ooi, B.: A statistical approach for XML query size estimation. In: DataX
workshop (2004)

Manolescu, 1., Arion, A., Bonifati, A., Pugliese, A.: Un mode¢le de stockage xml basé sur les
séquences. Ing. Syst. Inf. 2(10), 9-37 (2005)

Manolescu, 1., Benzaken, V., Arion, A., Papakonstantinou, Y.: Structured materialized views for
XML queries. INRIA Tech. Report No. 1233, Available at http://hal.inria.fr.

McHugh, J., Widom, J., Abiteboul, S., Luo, Q., Rajaraman, A.: Indexing semistructured data.
Technical Report (1998)

Mignet, L., Barbosa, D., Veltri, P.: The XML web: a first study. In: WWW Conference (2003)
Miklau, G., Suciu, D.: Containment and equivalence for an xpath fragment. In: PODS, pp. 65-76
(2002)

Milo, T., Suciu, D.: Index structures for path expressions. In: ICDT (1999)

O’Neil, P., O’Neil, E., Pal, S., Cseri, 1., Schaller, G., Westbury, N.. ORDPATHs: insert-friendly
XML node labels. In: SIGMOD (2004)

Nestorov, S., Ullman, J.D., Wiener, J.L., Chawathe, S.S.: Representative objects: concise repre-
senations of semistructured, hierarchical data. In: ICDE (1997)

Paparizos, S., Jagadish, H.V.: Pattern tree algebras: sets or sequences? In: VLDB (2005)
Paparizos, S., Wu, Y., Lakshmanan, L., Jagadish, H.: Tree logical classes for the efficient evalua-
tion of XQuery. In: SIGMOD (2004)

Polyzotis, N., Garofalakis, M.N.: Statistical synopses for graph-structured XML databases.
In: SIGMOD (2002)

Polyzotis, N., Garofalakis, M.N.: Structure and value synopses for xml data graphs. In: VLDB
(2002)

Qun, C, Lim, A., Ong, K.W.: D(k)-Index: an adaptive structural summary for graph-structured
data. In: SIGMOD (2003)

Shanmugasundaram, J., Kiernan, J., Shekita, E., Fan, C., Funderburk, J.: Querying XML views
of relational data. In: VLDB (2001)

Tatarinov, 1., Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita, E., Zhang, C.: Storing and
querying ordered XML using a relational database system. In: SIGMOD (2002)

. Teubner, J., Grust, T.,van Keulen, M.: Bridging the GAP between relational and native XML

storage with staircase join. In: VLDB (2003)

. W3: The extensible markup language (XML). www.w3.org/TR/XML (2006)

. Schmidt, A.: The XMark benchmark. www.xml-benchmark.org (2002)

. Marchiori, M.: The XQuery 1.0 language. www.w3.org/XML/Query (2000)

. Ullman, J.: Principles of database and knowledge-base systems. Computer Science Press (1989)
. University of Washington’s XML repository www.cs.washington.edu/research/xmldatasets

(2004)

. XSum: www-rocq.inria.fr/gemo/XSum (2005)
. Xu, W., Ozsoyoglu, M.: Rewriting XPath queries using materialized views. In: VLDB (2005)
. Yoshikawa, M., Amagasa, T., Uemura, T., Shimura, S.: XRel: a path-based approach to storage

and retrieval of XML documents using RDBMSs. In: ACM TOIT (2001)

@ Springer

http://hal.inria.fr
www.w3.org/TR/XML
www.xml-benchmark.org
www.w3.org/XML/Query
www.cs.washington.edu/research/xmldatasets
www-rocq.inria.fr/gemo/XSum

	Path Summaries and Path Partitioning in Modern XML Databases
	Abstract
	Introduction
	Path summaries and path partitioning
	Preliminaries
	Path summaries
	The path-partitioned storage model

	Path summary-based XML query optimization
	Query language and query patterns
	Summary-based static analysis on query patterns
	Tree pattern minimization under summary constraints
	Computing relevant paths

	Query planning and processing based on relevant path sets
	Constructing query plans on a path-partitioned store
	Reconstructing XML elements

	Experimental evaluation
	Summary size
	Relevant path computation
	Tree pattern evaluation based on a path-partitioned store
	Reconstructing path-partitioned data
	Conclusions of the experiments

	Related work
	Conclusion and perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

