
World Wide Web (2008) 11:93–116
DOI 10.1007/s11280-007-0030-0

Control-theoretic Analysis of Admission Control
Mechanisms for Web Server Systems

M. Kihl · A. Robertsson ·
M. Andersson · B. Wittenmark

Received: 1 November 2005 / Revised: 10 February 2007 /
Accepted: 11 April 2007 / Published online: 15 August 2007
© Springer Science + Business Media, LLC 2007

Abstract Web sites are exposed to high rates of incoming requests. The servers may
become overloaded during temporary traffic peaks when more requests arrive than
the server is designed for. An admission control mechanism rejects some requests
whenever the arriving traffic is too high and thereby maintains an acceptable load in
the system. This paper presents how admission control mechanisms can be designed
with a combination of queueing theory and control theory. In this paper we model an
Apache web server as a GI/G/1-system and then design a PI-controller, commonly
used in automatic control, for the server. The controller has been implemented as
a module inside the Apache source code. Measurements from the laboratory setup
show how robust the implemented controller is, and how it corresponds to the results
from the theoretical analysis.

Keywords system design · queueing theory · control theory · admission control

M. Kihl (B) · M. Andersson
Department of Electrical and Information Technology,
Lund University, Box 118, 221 00, Lund, Sweden
e-mail: maria.kihl@eit.lth.se

M. Andersson
e-mail: mikael.andersson@eit.lth.se

A. Robertsson · B. Wittenmark
Department of Automatic Control,
Lund University, Box 118, 221 00, Lund, Sweden
e-mail: andersro@control.lth.se

B. Wittenmark
e-mail: bjorn@control.lth.se

94 World Wide Web (2008) 11:93–116

1 Introduction

Today a web site can receive millions of hits per day and it may become overloaded
as the arrival rate exceeds the server capacity. Capacity planning is therefore needed,
which includes modelling and analysing the system with for example simulation tools.
The need for good performance models of server systems has been discussed in, for
example, [23]. Web servers can be modelled as queueing systems with one or more
servers processing incoming requests at a certain rate. The web servers have a queue
where requests wait for service.

One problem with web servers is that they are sensitive to overload. The servers
may become overloaded during temporary traffic peaks when more requests arrive
than the server is designed for. Because overload usually occurs rather seldom, it is
not economical to overprovision the servers for these traffic peaks, instead admission
control mechanisms can be implemented in the servers. Admission control may also
be used to ensure that the system never crashes. An admission control mechanism
rejects some requests when the traffic causes overload in the server.

Both capacity planning and the design of admission control mechanisms need
performance models that are valid in the overloaded work region. Several attempts
have been made to create performance models for web servers. In [22] servers
were modelled as tandem queueing networks. In [31] web servers were modelled
and analysed with colored Petri nets. In [7] a generalized processor sharing perfor-
mance model for Internet access lines was proposed. The research concerning
admission control has shown that the problem of optimally controlling the arrivals
at a queueing system is a difficult task. The main problem comes from the fact that
queueing systems usually are analyzed with queueing theory. However, there are
no queueing theoretic methods that can be used when developing and designing
controllers for the systems. Another solution is, therefore, to use control theory.

Control theory has since long been used to analyse different types of automatic
control systems. Also, it contains a number of mathematical tools that may be used
to analyse both the stability of a controlled system and to find good control schemes
with respect to performance. One well-known controller in automatic control is
the PID-controller, which enables a stable control for many types of systems (see,
for example, [5]). The PID-controller uses three actions: one proportional, one
integrating, and one derivative. Before designing the PID-controller, the system
must be analyzed so that its dynamics during overload are known. This means
that the system must be described with a control theoretic method. If the model is
linear, it is easily analyzed with linear control theoretic methods. However, a queue-
ing system is both nonlinear and stochastic. The main problem is that nonlinear
models are much harder to analyse with control theoretic methods.

There are numerous early papers about admission control of server systems, in
particular so called Stored Program Control (SPC) systems. An overview of this
research field is given in [19]. One classical controller is the step-controller [13]. The
objective of the control law is to keep the value of the control variable between an
upper and a lower level. If the value of the variable is higher than the upper level,
the admittance rate is decreased linearly. If the value is below the lower level, the
admittance rate is increased.

Recent research on admission control mechanisms for server systems has mainly
been focused on web servers. In [6] a queue length control with priorities was

World Wide Web (2008) 11:93–116 95

developed. By optimizing a reward function, a static control was found in [10].
An on-off load control mechanism regulating the admittance of client sessions was
developed in [12]. In [30] a control mechanism was proposed that combines a load
control for the CPU with a queue length control for the network interface.

Few papers have investigated admission control mechanisms for web server
systems with control theoretic methods, but it has gained a growing interest during
the last years, see [14]. In [1] and [2] a web server was modelled as a static gain to find
controller parameters for a PI-controller. A scheduling algorithm for an Apache web
server was designed using system identification methods and linear control theory
in [21]. In [9] a PI-controller is used in an admission control mechanism for a web
server. However, no analysis is presented on how to design the controller parameters.
A queue length control with priorities was developed in [8]. Chen and Iyengar [11]
investigated overload control schemes for distributed web sites.

In [16] and [24], we analyzed controllers for M/G/1-systems. The control objective
in these papers was to keep the queue length at a certain level. For this rather
simple system, it is possible to use fluid flow models that mimic the behavior of
the queuing system. In the papers, we developed a nonlinear fluid flow model,
based on the model in [3], and used this model for designing a PI-controller for the
system. We demonstrated that linear models of this system are insufficient, since
the nonlinearities in the gate and queue introduce system dynamics that must be
considered in the design process.

In this paper we instead analyze control mechanisms that will keep the CPU
utilization on a certain level. The target system here is a web server system, which we
model as a GI/G/1-system. For this system, the simple fluid flow models used in [16]
and [24] are not applicable. We extend the investigations presented in the conference
papers [17] and [18]. We develop and validate a control theoretic model of a GI/G/1-
system that can be used for the design of CPU load controllers. We show that the
model is valid for an Apache web server. Further, we design controller parameters
for a PI-controller. We evaluate the controller both numerically and experimentally.
Also, we perform a nonlinear stability analysis and determine a stability region for
the PI-controller, see also [25]. Finally, the paper contains a discussion about the
limitations with both linear control theoretic models of queueing systems and linear
design methods.

2 Investigated system

The investigated system is shown in Figure 1. The server system is modelled as a
GI/G/1-system with an admission control mechanism. New requests arrive according
to a stochastic process with mean λ requests per second. If a request is admitted
by the gate, it continues to an infinite queue. The service times have a statistical
distribution with mean E[X] seconds.

The admission control mechanism consists of three parts: a gate, a controller and
a monitor. Continuous control is not possible in computer systems. Instead, time
is divided into control intervals of length h seconds. Time interval [kh, kh + h] is
denoted interval kh. The objective of the control mechanism is to keep the server
utilization as close as possible to a reference value, ρref .

96 World Wide Web (2008) 11:93–116

Figure 1 Queueing model.

Gate

Controller

System

Monitor

ρ

u

λ u σ

ref

ρ

The monitor measures the average value of the so called control variable, in
this case the server utilization, ρ, during interval kh, ρ(kh). At the end of interval
kh, the controller calculates the desired number of admitted requests for interval
kh + h, denoted u(kh + h). The gate rejects those requests that cannot be admitted.
The requests that are admitted proceed to the rest of the system. Since the number
of admitted requests, ū(kh), may never be larger than the number of arrived requests
during interval kh, denoted α(kh), the actual number of admitted requests is ū(kh) =
min[u(kh), α(kh)].

2.1 Gate

Several gates have been proposed in the literature, for example Percent blocking,
Token bucket and Dynamic window mechanisms. In this paper we use the token
bucket algorithm to reject those requests that cannot be admitted. New tokens are
generated at a rate of u(kh) tokens per second during time interval [kh, kh + h].
If there is an available token upon the arrival of a request, the request consumes
the token and enters the web server. If there are no available tokens, the request is
rejected. Rejected requests are assumed to leave the system without retrials.

2.2 Controllers

There are a variety of controllers to choose from when designing an admission
control mechanism. Here follows a description of the controllers that are used in
this paper.

2.2.1 Step controller

The step-controller is a classical controller in the telecommunication field. The
objective of the control law is to keep the control variable between an upper and a
lower level. If the value of the variable is higher than the upper level, the admittance

World Wide Web (2008) 11:93–116 97

rate is decreased linearly. If the value is below the lower level, the admittance rate is
increased. This means that the control law is as follows:

u(kh + h) =
⎧
⎨

⎩

u(kh) − s, i f ρ(kh) > ρref + ε

u(kh) + s, i f ρ(kh) < ρref − ε

u(kh), else
(1)

where the value of s decides how much the rate is increased/decreased and the value
of ε (size of dead-zone) decides how much the control variable may deviate from the
reference value.

2.2.2 PI-controller

The PI-controller is a well-known controller in automatic control. It uses two actions:
one proportional and one integrating. The discrete-time control law is given by:

u(kh + h) = K · e(kh) + K
Ti

·
k−1∑

i=0

e(ih) (2)

where e(kh) = ρref − ρ(kh) is the error between the reference and actual value of the
control variable. The gain K and the integral time Ti are the controller parameters
that are set so that the controlled system behaves as desired. For many systems a large
value of K makes the controller faster, but weakens the stability. The integrating
action eliminates stationary errors, but may also make the system less stable. This is
however dependent on the system dynamics and needs to be formally analyzed.

2.2.3 RST-controller

For a more general controller structure, the polynomial methods proposed in [5] can
be used. The controller will be a two-degree-of-freedom controller, which allows for
separate feedback and prefiltering design (pole-placement and handling of reference
values). The control law in discrete-time for a general so-called RST-controller is
given by

R(q)u(kh) = T(q)ρref (kh) − S(q)ρ(kh) (3)

where R(q), T(q), and S(q) are functions expressed in the forward-shift operator q
(i.e., qu(kh) = u(kh + h)). R, S, and T are designed so that the closed loop system
behaves as desired.

3 Control theoretic model

Control theory is a powerful tool for performance analysis of computer controlled
systems. The system must be described in terms of transfer functions or differential
(or difference) equations. A transfer function describes the relationship between
the z-transforms (or Laplace transforms in case of continuous-time systems) of the

98 World Wide Web (2008) 11:93–116

arrival
generator

departure
generator

Controller Monitor

Gate
Queue

Gc(z)

delay

−

σmax(kh)

1

z

1

z

α kh)(

u(kh)

u(kh)
x ≥ 0

x(kh)x(kh + h)

ρ kh)(

σ ref

min(u+ x
σmax

, 1)

Figure 2 A control theoretic model of a GI/G/1-system with admission control.

input and the output of a system. In this case, the input to the system is the actual
admittance rate, ū, whereas the output is the server utilization, denoted ρ.

We use the discrete-time control theoretic model shown in Figure 2. The model
is a flow or liquid model in discrete-time. The model is an averaging model in the
sense that we are not considering the specific timing of different events, arrivals,
or departures from the queue. We assume that the sampling period, h, is chosen to
guarantee that the quantization effects around the sampling times are small, see [5].
The system consists of an arrival generator, a departure generator, a controller, a
queue and a monitor.

There are two stochastic traffic generators in the model. The arrival generator
feeds the system with new requests. The number of new requests during interval kh
is denoted α(kh). α(kh) is an integrated stochastic process over one sampling period
with a distribution obtained from the underlying interarrival time distribution. If, for
example, the arrival process is Poisson with mean λ, then α(kh) is Poisson distributed
with mean λh. The departure generator decides the maximum number of departures
during interval kh, denoted σmax(kh). σmax(kh) is also a stochastic process with a
distribution given by the underlying service time distribution. If, for example, the
service times are exponentially distributed with mean 1/μ, then σmax(kh) is Poisson
distributed with mean μh. It is assumed that α(kh) and σmax(kh) are independent
from between sampling instants and uncorrelated to each other.

The gate is constructed as a saturation block that limits the number of admitted
requests during interval kh, ū(kh), to be

ū(kh) =
⎧
⎨

⎩

0 u(kh) < 0
u(kh) 0 ≤ u(kh) ≤ α(kh)

α(kh) u(kh) > α(kh)

World Wide Web (2008) 11:93–116 99

The queue is represented by its state x(kh), which corresponds to the number of
requests in the system at the end of interval kh. The difference equation for the queue
is given by

x(kh + h) = f (x(kh) + ū(kh) − σmax(kh))

where the limit function, f (w), equals zero if w <0 and w otherwise. The limit
function assures that x(kh + h) ≥ 0. When the limit function is disregarded then the
queue is a discrete-time integrator.

The monitor must estimate the server utilization since this is not directly measur-
able in the model. The server utilization during interval kh, ρ(kh), is estimated as

ρ(kh) = min
(

ū(kh) + x(kh)

σmax(kh)
, 1

)

The objective of the controller is to minimize the difference between the server
utilization during interval kh, ρ(kh), and the reference value, ρref . The control law is
given by the transfer function, Gc(z).

4 Stability analysis of closed loop system

In this section we will consider the stability properties of the controlled server system,
when using a PI-controller for admission control. First, we will consider an approach
based on a linear queue model and compare with the admission control parameters

Figure 3 Decomposition of the upper original model into a linear block (Gz) and a nonlinear block
(φ) under negative feedback.

100 World Wide Web (2008) 11:93–116

derived from nonlinear analysis. The analysis is based on the Tsypkin/Jury-Lee
stability criterion (discrete-time versions of the Popov criterion) [29].

The original model in Figure 2 contains three nonlinearities in the gate, the queue
and the monitor, respectively, where investigations showed that the queue-limitation
is the dominating nonlinearity. Therefore, in this analysis only the queue-limitation
will be considered. The saturation due to limited arrival rate can be handled with a
standard implementation of an anti-reset windup scheme, see [24].

The new model is shown in the upper part of Figure 3. Here, σ is the average
value of σmax. We introduce three states {x1, x2, x3} corresponding to the queue
length, the (delayed) server utilization ρ and the integrator state in the PI-controller,
respectively. A standard PI-controller is used, which has the transfer function
Gc(z) = K(1 + 1

Ti
· h

z−1). The queue limitation is denoted ϕ.
To analyse the stability of the closed loop system where we take the queue

nonlinearity into account, we partition the system into a linear part in feedback
connection with the nonlinearity, φ, as shown in the lower part of Figure 3.

4.1 Linear design (neglecting saturations)

Neglecting the nonlinearities in Figure 2, by assuming that ϕ(z) = z (i.e., linear and
no saturation) will result in the closed loop dynamics

Gc = Gc(1 + Gq)Gm

1 + Gc(1 + Gq)Gm

= z · K/σ (z − 1 + h/Ti)

z · (z2 + (K/σ − 2)z + (1 − K/σ + Kh/(σ Ti))
(4)

where Gq and Gm represent the queue and monitor dynamics, respectively.
To match the characteristic polynomial

z · (z2 + (K/σ − 2)z + (1 − K/σ + Kh/(σ Ti)) (5)

with a desired characteristic polynomial

z · (z2 + a1z + a2) (6)

we get the control parameters

K = (2 + a1) σ, Ti = h (2 + a1)/(1 + a1 + a2)

Using the parameters of the PI-controller it is thus possible to make an arbitrary
pole-placement, except for the pole z = 0, which corresponds to a time delay.
A simplified linear analysis will thus predict stability for the closed loop for all
coefficients {a1, a2} belonging to the stability triangle

{ a2 < 1, a2 > −1 + a1, a2 > −1 − a1 }, (7)

see [5] for more details.

World Wide Web (2008) 11:93–116 101

4.2 Model with queue limitation

Consider the upper part of Figure 3. The state space model will be

x1(kh + h) = ϕ (u + x1(kh) − σ)

x2(kh + h) = 1
σ

(u + x1(kh))

x3(kh + h) = Kh/Ti(ρref − x2(kh)) + x3(kh) (8)

where u = K(ρref − x2) + x3 and ϕ(·) is the saturation function in Figure 3. By
introducing the forward shift operator and leaving out the time arguments, we get

q x1 = ϕ
(
K(ρref − x2) + x3 + x1 − σ

)
(9)

q x2 = 1
σ

(
K(ρref − x2) + x3 + x1

)
(10)

q x3 = Kh/Ti (ρref − x2) + x3 (11)

The equilibrium for the system (9–11) satisfies qx = x.
From (11) we get

x3 = Kh/Ti (ρref − x2) + x3 ⇒ xo
2 = ρref (12)

Inserting this in (9) and (10) we get

xo
1 = ϕ(xo

3 + xo
1 − σ)

xo
2 = ρref = 1

σ

(
xo

3 + xo
1

)

⇒
xo

1 = ϕ
(
σ(ρref − 1)

)
(13)

As ρref ∈ [0, 1] and using the fact that ϕ(z) = 0, ∀z ≤ 0 we get

⎧
⎨

⎩

xo
1 = 0

xo
2 = ρref

xo
3 = σ xo

2 = σρref

(14)

By introducing the change of variables

⎧
⎨

⎩

z1 = x1 − 0 x1 = z1

z2 = x2 − ρref or x2 = z2 + ρref

z3 = x3 − σρref x3 = z3 + σρref

102 World Wide Web (2008) 11:93–116

y y

ϕ
φ

σ 1− ρref)(

Figure 4 φ(y) = ϕ(y − σ(1 − ρref)) where σ > 0 and ρref ∈ [0, 1].

we get

q z1 = q x1 − 0 =ϕ (−Kz2 + z3 + z1 − σ)

q z2 = q x2 − ρref = 1
σ

(−Kz2 + z3 + σρref + z1
) − ρref

q z3 = q x3 − σρref = − Kh/Ti z2 + z3 + σρref − σρref

The equation system above can be rewritten as a linear system in negative
feedback with the nonlinear function φ : y → ϕ(y − σ(1 − ρref)), as shown in the
lower part of Figure 3. The system is given by

qz = Azz + Bzuz = Azz + Bzφ(−y)

y = Czz (15)

z =
⎡

⎣
z1

z2

z3

⎤

⎦ , Az =
⎡

⎣
0 0 0

1/σ −K/σ 1/σ

0 −Kh/Ti 1

⎤

⎦ , Bz =
⎡

⎣
1
0
0

⎤

⎦ , Cz = [−1 K −1
]

Note that for ρref ∈ [0, 1] the function φ(·) will belong to the same cone as ϕ(·),
namely [α, β] = [0, 1], see Figure 4. The incremental variation will also have the
same maximal value (=1).

The transfer function Gz = Guz→yz(z) from cut B to cut A in Figure 3 will be

Gz = Cz(zI − Az)
−1 Bz

= −z · (z − 1)

z · (z2 + (−1 + K/σ) z + K (h − Ti) /(σ Ti))
(16)

4.3 Stability analysis for the discrete-time nonlinear system

In the forthcoming stability analysis we determine for which controller parameters
the linear subsystem Gz is stable. The poles of (16) are stable, i.e., inside the unit
circle (|z| < 1), for the area depicted in Figure 5 for the normalized parameters K/σ

and h/Ti.

World Wide Web (2008) 11:93–116 103

Figure 5 (Upper:) The
internal of the triangle
corresponds to the stability
area for the characteristic
polynomial z · (z2 + a1z + a2)

of Gz. (Lower:)
Corresponding stabilizing
control parameters
{K/σ, h/Ti}. –3 –2 –1 0 1 2 3

–2

–1

0

1

2

a
1

a 2

–0.4 –0.2 0 0.2 0.4
–60

–40

–20

0

20

40

60

K/σ

h/
T

i

To determine the stability for the nonlinear system in (15) we can use the
Tsypkin criterion or the Jury-Lee criterion which are the discrete-time counterparts
of the Popov criterion for continuous time systems [20, 29]. Sufficient conditions for
stability are that Gz has all its poles within the unit circle and that there exists a
(positive) constant η such that

Re
[
(1 + η(1 − z−1))Gz(z)

] + 1
k

≥ 0 for z = eiω, ω ≥ 0 (17)

where the nonlinearity φ belongs to the cone [0, k = 1].
In the upper left plot of Figure 6 we have the stability triangle for the characteristic

polynomial of (5). By choosing coefficients for the characteristic polynomial (5) in

Figure 6 (Upper:) The large
triangle is the stability area a
linear model would predict.
However, from this parameter
set, nonlinear analysis
guarantees only stability for
parameters {a1, a2} in the
upper left triangle (A1, ′∗′).
(Lower:) Pole location
corresponding to
{a1, a2} ∈ A1.

–6 –4 –2 0 2 4 6
–2

–1

0

1

2

a
1

a 2

Stability region of characteristic polynomial z2+a
1
z+a

2

–3 –2 –1 0 1 2 3

–0.5

0

0.5

pole location

A1

104 World Wide Web (2008) 11:93–116

Figure 7 Set of Tsypkin plots
which all satisfy the fre-
quency condition (17) for
Gz = Gz(K, Ti), where
(K, Ti) correspond to pole
locations to the left upper
stability triangle A1 i Figure 6.

–5 0 5 10
–5

0

5

10
Tsypkin plot

Re(G(z))

R
e(

1–
1/

z)
G

(z
)

the upper left triangle (A1) we will get controller parameters {K, Ti} which also
will give a stable transfer function Gz. The corresponding poles are plotted in the
lower diagram of Figure 6. Figure 7 shows a graphical representation of the Tsypkin
condition (17) for this set of control parameters. The dashed non-intersecting line
in Figure 7 corresponds to the existence of a positive parameter η satisfying (17).
Thus, absolute stability for the nonlinear system also is guaranteed for this choice of
parameters.

Remark: The Tsypkin criterion guarantees stability for any cone bounded nonlin-
earity in [0, 1] and we can thus expect to have some robustness in addition to stability
in our case.

5 Numerical investigations

In the numerical investigations, the queueing model was represented by a discrete-
event simulation program implemented in C. Also, the control theoretic model was
implemented with the Matlab Simulink package. The objectives of the numerical
investigations were to validate the control theoretic model and thereafter design
suitable controllers for an example system.

During all investigations, the reference load, ρref , was set to 0.8, and the average
arrival rate, λ, was 150 jobs per second. Two systems were used in the numerical
investigations, one M/M/1-system and one M/H2/1-system. In both cases the average
service time, E[X] = 0.02 s. The parameters for the H2-distribution was μ1 =20,
μ2 =600, and p1 =0.38 which gives a squared coefficient of variance of 3.74. Note that
the controller design is independent of the type of arrival process and the service
time distribution, since the system dynamics only depend on the average service
time. However, the system becomes more difficult to control if there is more variation
in the system. This will be shown in the results.

World Wide Web (2008) 11:93–116 105

5.1 Performance metrics

The admission control mechanism has two control objectives. First, it should keep
the control variable at a reference value, i.e., the control error, e = ρref − ρ, should
be as small as possible. Second, it should react rapidly to changes in the system, i.e.,
the so-called settling time should be short.

Therefore, we compare the controllers in two ways. First, we show the steady-
state distribution of the server utilization, by plotting the estimated distribution
function, i.e., P(ρ ≤ ρ0) where 0 ≤ ρ0 ≤ 1. The distribution function shows how well
the controller meets the first control objective. Second, we plot the step response
when starting with an empty system. The step responses show the transient behavior
of the controllers.

5.2 Validation of the control theoretic model

We have numerically validated that the open system, that is without control feed-
back, is accurate in terms of the server utilization distribution. The distribution
functions of the server utilization for varying arrival rates are shown in Figures 8 and
9. The distribution function was estimated from 5,000 measurements of the server
utilization for a specific parameter setting. As can be seen, the control theoretic
model and the queueing model behave similar. There is a slight deviation for low
loads, however this is not important since the concerned region for our investigations
is when the load is high. Also, we have validated the closed loop system for various
controllers and traffic cases. The results showed that the control theoretic model is
accurate enough to be used when designing controllers for the “real” system, that is
the queueing system.

Figure 8 Server utilization
distributions for the open
M/M/1-system. a l=10, b l=25,
c l=40 Dotted line: control
theoretic model, solid line:
simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a b c

ρ0

P
(

)
≤

0
ρ

ρ

106 World Wide Web (2008) 11:93–116

Figure 9 Server utilization
distributions for the open
M/H2/1-system. a l=10,
b l=25, c l=40 Dotted line:
control theoretic model,
solid line: simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a b c

ρ0

P
(

)
≤

0
ρ

ρ

5.3 Controller design

In this section four controllers are designed for the system. We use a static controller
as a benchmark and then compare this controller with a step controller, a
PI-controller, and an RST-controller.

5.3.1 Static controller

A static controller uses a fixed acceptance rate, ufix, that is set so that the average
value of the control variable should be equal to the reference value. ufix is given by

ufix = ρref E[X]

which in this case is equal to 40 jobs per second.

5.3.2 Step controller

The parameters for the step-controller are the step size, s, the marginal, ε, and the
sampling period, h. These parameters are usually chosen by ad hoc methods, that is,
with “trial and error” methods. Our investigations demonstrated a problem with the
step-controller. If the sampling period is too short, the controller will overestimate
the load of the system, and thereby create a stationary error in the controlled load.
For our system, a sampling period of 2 s was necessary to eliminate the stationary
error. Also, we selected a step size of 5, and a marginal of 0.05. With these parameters
the steady-state behavior of the controlled system became close to the benchmark
controller. It was not possible to find a step-controller that had a better steady-state
behavior than the static controller.

World Wide Web (2008) 11:93–116 107

5.3.3 PI-controller

The behavior of the PI-controller becomes better when the sampling period is short
(should match desired dynamics). Therefore, for these investigations we used a
sampling period of 0.2 s (h=0.2). This means that σ = 10, since σ is the average
maximum number of departured jobs during a control interval. Choosing {K, Ti}=
{12, 0.6} the (uncanceled) roots of the characteristic polynomial in (5) will be
0.4 ± 0.2i. These poles are inside the stability area A1 of Figure 6.

5.3.4 RST-controller

For a pole placement design the controller polynomials (R, S, and T) are found by
solving a Diophantine equation,

A(q)R(q) + B(q)S(q) = Am(q)Ao(q) (18)

describing the relationship of the process polynomials (A and B), the controller
polynomials and the desired closed loop polynomials (Am and Ao). The linear
system has

A(q) = q2 − q

B(q) = 1
σ

· q (19)

Am and A0 are chosen so that the poles of the closed loop system are placed
as desired. Note that there is a stable pole-zero cancellation at z=0 in the transfer
function from the control signal u to the load. If the sampling interval is set to h=0.2
seconds and the desired closed loop poles are chosen as {0.4, 0.2} we get

Am Ao = q2 − 0.6q + 0.08 (20)

If we impose the controller to have integral part, the controller polynomials are
given by

R(q) = q − 1

S(q) = 14q − 9.2

T(q) = 6q − 1.2 (21)

The polynomial control structure used in this section could also allow for minimum
variance and LQ/LQG control criteria design, see [5].

5.4 Controller comparisons

This section contains a comparison of the controllers that were designed above.

5.4.1 Distribution function

The distribution functions for the two systems are shown in Figures 10 and 11.
The optimal distribution function is zero for 0 ≤ ρ ≤ 0.8 and one for 0.8 ≤ ρ ≤ 1.

108 World Wide Web (2008) 11:93–116

Figure 10 Distribution
functions for the
M/M/1-system. solid line: static
controller, dashed line:
step-controller, dotted line:
PI-controller, dash-dotted line:
RST-controller.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ0

P
(

)
≤

0
ρ

ρ

The systems with a step-controller behaves similar to the systems with a static
controller. We can conclude that the M/H2/1-system is more difficult to control than
the M/M/1-system, since the distribution functions are remoter from the optimum
function. However, as can be seen, the systems with a PI-controller and an RST-
controller actually behave better than the systems with a static controller. This
phenomenon is due to that those controllers can adapt to the stochastic variations in
the system. This behavior requires a short sampling period. With a longer sampling
period, for example one second, the controllers behave as the static controller.

Figure 11 Distribution
functions for the
M/H/1-system. solid line: static
controller, dashed line:
step-controller, dotted line:
PI-controller, dash-dotted line:
RST-controller.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ 0

P
(

)
≤

0
ρ

ρ

World Wide Web (2008) 11:93–116 109

Figure 12 Step responses
for the load controlled
M/M/1-system. a static
controller, b step-controller,
c PI-controller,
d RST-controller.

0 10 20 30
0

0.2

0.4

0.6

0.8

1
a

Time (seconds)
0 10 20 30

0

0.2

0.4

0.6

0.8

1
b

Time (seconds)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
c

Time (seconds)
0 10 20 30

0

0.2

0.4

0.6

0.8

1
d

Time (seconds)

ρ
ρ

ρ
ρ

5.4.2 Average step response

The step responses for the load controlled M/M/1-system are shown in Figure 12.
The step responses for the M/H2/1-system are similar. As can be seen, the con-
trollers have very divergent step responses. The fastest controller is of course the
static controller, since it already from start is set to an accurate admittance rate.
However, the PI-controller has found a correct admittance rate only after a few
seconds, whereas the RST-controller is slightly slower. The step-controller is very
slow. Even after 30 s it has not managed to find a correct admittance rate. This
is the main problem with the step-controller. In order to achieve a good steady-
state behavior, the step size must be small and the sampling period must be long.
However, this means that it takes a long time for the controller to adapt to changes in
the system.

5.4.3 Robustness

A good controller should maintain a good performance even when the system
parameters change, that is the controller should be robust to modelling errors. In
a real system, it is likely that the average service time will change slowly with
time, for example due to changes in the user behavior. Therefore, we investi-
gated the robustness of the controllers by changing the average service time in
the system. In the first case, the average service time was increased with 30%
(E[X] = 0.026 s), and in the second case the average service time was decreased with
30% (E[X] = 0.014 s).

All controllers were tested, however we only show the results for the PI-controller
in Figure 13. As can be seen, the PI-controller works well even when the average
service time is changed. The step-controller has a similar result, The RST-controller
is very robust, since the distribution function is the same even when the average
service time is changed with 30%. The static controller is, of course, dependent on a

110 World Wide Web (2008) 11:93–116

Figure 13 Robustness
of PI-controller:
Server utilization
distribution function.
Solid line: x̄ = 0.020 s,
dotted line: x̄ = 0.014 s,
dashed line = x̄ = 0.026 s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ0

P
(

)
≤

0
ρ

ρ

correct service time, which means that it cannot operate properly when the service
times change.

5.5 Discussion

The analysis in Section 4.3 gives sufficient conditions and a region for control
parameters which guarantee stability of the nonlinear closed loop as well as for the
simplified linear model. We are of course not restricted to choose parameters from
only this region as the main objective is that the nonlinear system should be stable.
However, we can conclude that

– Pole-placement based on a linear model is OK in a restricted area (region A1 in
Figure 6).

– There are choices of parameters that gives stable closed loop poles, but where
the linear analysis would indicate an unstable closed loop systems.

During simulation studies the dominant nonlinear effect has come from the queue
nonlinearity ϕ. The saturation due to limited arrival rate can be handled with a
standard implementation of an anti-reset windup scheme, see [24].

6 Experimental investigations

The models and analysis in this paper are based on a web server system that can be
modelled as a queuing system. In the experimental evaluation of the controllers we
have used an Apache web server [4], which is further described below.

6.1 Web servers

A web server like Apache, contains software that offers access to documents stored
on the server. Clients can browse the documents in a web browser. The documents

World Wide Web (2008) 11:93–116 111

can be for example static Hypertext Markup Language (HTML) files, image files
or various script files, such as Common Gateway Interface (CGI), Java scripts or
Perl files. The communication between clients and server is based on HTTP [28].
An HTTP transaction consists of three steps: TCP connection setup, HTTP layer
processing and network processing. The TCP connection setup is performed through
a threeway handshake, where the client and the server exchange TCP SYN, TCP
SYN/ACK and TCP ACK messages. Once the connection has been established,
a document request can be issued with an HTTP GET message to the server.
The server then replies with an HTTP GET REPLY message. Finally, the TCP
connection is closed by TCP FIN and TCP ACK messages in both directions.

Apache, which is a well-known web server and widely used, is multi-threaded.
This means that a request is handled by its own thread or process throughout the life
cycle of the request.

6.2 Experimental system

Our experimental investigations used one server computer and one computer repre-
senting the clients connected through a 100 Mbits/s Ethernet switch. The server was
a PC Pentium III 1,700 MHz with 512 MB RAM running Windows 2000 as operating
system. The computer representing the clients was a PC Pentium II 400 MHz with
256 MB RAM running RedHat Linux 7.3. Apache 2.0.45 was installed in the server.
We used the default configuration of Apache. The client computer was installed with
an HTTP load generator, which was a modified version of S-Client[6]. We modified
the S-Client code to use Poissonian arrivals instead of the original deterministic ones.
The client program was programmed to request dynamically generated HTML files
from the server. The CGI script was written in Perl. It generates a number of random
numbers, adds them together and returns the summation. The average request rate
was set to 100 requests per second in all experiments except for the measurements in
Figure 14. In all experiments, the sampling period, h, was set to 1 s.

6.3 Admission control

The admission control mechanism was implemented in the Apache web server.
Apache is made up of a core package and several modules that handle different
operations, such as Common Gateway Interface (CGI) execution, logging, caching
etc. A new module was created that contains the admission control mechanisms. The
new module was then hooked into the core of Apache, so that it was called every time
a request was made to the web server. The module could then either reject or admit
the request according to the control mechanism. The admission control mechanism
was written in C and tested on a Windows platform.

The Monitor was implemented as a thread that samples the server utilization every
control interval. The server utilization is calculated as one minus the fraction of time
an idle process has been able to run during the last control interval. The idle process’
priority level is set to the lowest possible, which means that it only runs whenever
there is no request requiring CPU work. This way of measuring the load on the CPU
results in a quantization effect in server utilization. The reason to this is that the
operating system where the admission control mechanism runs has a certain time
resolution in function calls regarding process uptimes. This means that the control

112 World Wide Web (2008) 11:93–116

Figure 14 Average server
utilization for the open system.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

S
er

ve
r

ut
ili

za
tio

n

requests/second

interval cannot be chosen arbitrary. It has to be long enough not to be affected by
the time resolution effects, and short enough so that the controller responds quickly.

The controller tries to minimize the error between the server utilization and the
reference value, ρref . The controller’s output is forwarded to the gate module. In this
paper we have implemented and evaluated a PI-controller.

6.4 Validation of the model

We have validated that the queueing model (GI/G/1) is an accurate representation
of the experimental system, in terms of average server utilization. The average server
utilization for varying arrival rates are shown in Figure 14. For a single-server queue,
the server utilization is proportional to the arrival rate, and the slope of the server
utilization curve is given by the average service time. The measurements in Figure 14
gives an estimation of the average service time in the web server, E[X]=0.0225 s.
Further, we have in a number of experiments validated that the GI/G/1-model

Figure 15 Server utilization
distribution of measurements
from the real system together
with simulations of the M/M/1
and the M/D/1 system.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
(u

til
is

at
io

n
<

=
 x

)

x

(20, 2.8)

(20, 0.1)

M/M/1

M/D/1

World Wide Web (2008) 11:93–116 113

can be used when designing admission control mechanisms for an Apache web
server system.

6.5 Controller design

Control parameters for the PI-controller are chosen from the stability area A1

in Figure 6. In the simulations and experiments below we use {K, Ti}={20, 2.8}.
The parameter setting is also compared to {K, Ti}={20, 0.1}, found outside the
stability area.

6.6 Distribution function

The distribution function was estimated from measurements during 1,000 s with
the specific parameter setting. Figure 15 shows the estimated distribution function
for the PI-controller. Both good and bad parameter settings were used. An ideal
admission control mechanism would show a distribution function that is zero until
the wanted load, and that is one thereafter. In this case, the load was kept at 0.8,

Figure 16 a Example of a
realisation with good
parameters. b Example of a
realisation with bad
parameters.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

S
er

ve
r

ut
ili

sa
tio

n
(%

)

Time (s)

a Good Parameters

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

S
er

ve
r

ut
ili

sa
tio

n
(%

)

Time (s)

b Bad Parameters

114 World Wide Web (2008) 11:93–116

and the parameter setting, {K, Ti}={20, 2.8}, chosen from results in a controller that
behaves very well in this sense. The parameter setting, {K, Ti}={20, 0.1}, as can be
seen, perform worse. Also, as comparison, results from simulations of the M/D/1
system and the M/M/1 system are given in Figure 15, when using {K, Ti}={20, 2.8}.

6.7 Step response

Figure 16 shows the behaviour of the web server during the transient period. The
measurements were made on an empty system that was exposed to 100 requests
per second. The good parameter setting, {K, Ti}={20, 2.8}, exhibits a short settling
time with a relatively steady server utilization. The bad parameter setting, {K, Ti}=
{20, 0.1} has its poles outside the unit circle and behaves badly with large load
oscillations.

6.8 Bursty arrival traffic

As stated before, the design of controller parameters is independent of the arrival
process. To show this, we also performed experiments using a more bursty arrival
process. The arrival process was a two-state Markov Modulated Poisson Process
(MMPP-2). An MMPP is a doubly stochastic Poisson process where the rate process
is determined by a continuous-time Markov chain. An MMPP-2 means that the
Markov chain consists of two different states, S1 and S2. The Markov chain changes
state from S1 to S2 with intensity r1 s−1, and transits back with intensity r2 s−1. When
the MMPP is in state S1, the arrival process is a Poisson process with rate λ1 requests
per second, and when the MMPP is in state S2, the arrival rate is λ2 requests per
second. We used r1 = 0.05, r2 = 0.95, λ1 = 75, and λ2 = 475.

MMPPs have been commonly used to model bursty arrival processes, for example
to web servers. In [27] web traffic was modeled as MMPPs. In [15], an HTTP
generator was constructed from analyzed traffic samples. The chosen traffic model
was MMPP. Yoshihara et al. [32] and Salvador et al. [26] showed how traffic that
exhibit self-similar properties can be modeled as MMPPs.

Figure 17 Server utilization
distribution of measurements
from the real system.
M = Poisson process.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
(u

til
is

at
io

n
<

=
 x

)

x

(20, 2.8) Poisson

MMPP

World Wide Web (2008) 11:93–116 115

Figure 17 shows the steady state server utilization distribution for the experimen-
tal system, when using a PI-controller with {K, Ti}={20, 2.8}. As comparison, the
results for the Poisson process is also shown in the figure. As can be seen, the system
behaves as predicted, even though the bursty arrival traffic makes the system harder
to control.

7 Conclusion

Admission control mechanisms have since long been developed for various server
systems. Traditionally, queueing theory has been used when investigating server
systems, since they usually can be modelled as queueing systems. However, there are
no mathematical tools in queueing theory that can be used when designing admission
control mechanisms. Therefore, these mechanisms have mostly been developed with
empirical methods. Control theory contains many mathematical tools that can be
used when designing admission control mechanisms.

In this paper, we have designed load control mechanisms for a GI/G/1-system
with control theoretic methods. We have compared a PI-controller and an RST-
controller, both commonly used in automatic control, with a static controller and a
step controller, both commonly used in telecommunication systems. We have shown
that, when considering transient and stationary behavior, and robustness, both the
PI-controller and the RST-controller behave better than the other controllers.

Also, we perform a nonlinear stability analysis for a PI-controlled system. We
show that linear design is sufficient for stability of the nonlinear system. However,
there are some limitations with linear design, which should be considered. One
conclusion of this paper is that it is possible to use control theoretic methods when
designing admission control mechanisms for server systems.

The designs have been verified with simulations for discrete-event systems based
on queuing theory. and with experiments on an Apache web server. We have shown
that the control theoretic model can be used when designing admission control
mechanisms for the Apache web server.

References

1. Abdelzaher, T., Lu, C.: Modeling and performance control of internet servers. In: Proceedings
of the 39th IEEE Conference on Decision and Control, pp. 2234–2239 (2000)

2. Abdelzaher, T., Shin, K., Bhatti, N.: Performance guarantees for web server end-systems: a
control theoretic approach. IEEE Trans. Parallel Distrib. Syst. 13(1), 80–96 (2002)

3. Agnew, C.: Dynamic modeling and control of congestion-prone systems. Oper. Res. 24(3),
400–419 (1976)

4. Apache Web server, home page: http://www.apache.org, as of 2007
5. Åström, K., Wittenmark, B.: Computer-controlled Systems. Theory and Design, 3rd edn.

Prentice-Hall, Englewood Cliffs, NJ (1997)
6. Banga, G., Druschel, P.: Measuring the capacity of a web server under realistic loads. In: World

Wide Web Journal, vol. 2, pp. 69–83. Springer, Berlin Heidelberg New York (1999)
7. Beckers, J., Hendrawan, I., Kooij, R.E., van der Mei, R.: Generalized processor sharing perfor-

mance model for internet access lines. In: 9th IFIP Conference on Performance Modelling and
Evaluation of ATM and IP Networks, Budapest (2001)

8. Bhatti, N., Friedrich, R.: Web server support for tiered services. IEEE Netw. 64–71. Sept/Oct
(1999)

http://www.apache.org

116 World Wide Web (2008) 11:93–116

9. Bhoj, P., Ramanathan, S., Singhal, S.: Web2K: bringing QoS to web servers. HP Labs Technical
report, HPL-2000-61 (2000)

10. Carlström, R.R.J.: Application-aware admission control and scheduling in web servers. In: Pro-
ceedings of Infocom (2002)

11. Chen, H., Iyengar, A.: A tiered system for serving differentiated content. In: World Wide Web
Journal, vol. 6, pp. 331–352. Springer, Berlin Heidelberg New York (2003)

12. Cherkasova, L., Phaal, P.: Predictive admission control strategy for overloaded commerical web
servers. In: Proceedings of the 8th International IEEE Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pp. 500–507 (2000)

13. Farel, R., Gawande, M.: Design and analysis of overload control strategies for transaction
network databases. In: Proceedings of the 13th International Teletraffic Congress, pp. 115–120
(1991)

14. Hellerstein, J.L., Yixin Diao, Parekh, S., Tilbury, D.M.: Control engineering for computing
systems. IEEE Control Syst. Mag. 25(6), 56–68 (2005)

15. Hryń, G., Jerzak, Z., Chydziński, A.: MMPP-based HTTP traffic generation with multiple emu-
lated sources. Arch. Inform. Teor. Stosow. 16, 321–335 (2004)

16. Kihl, M., Robertsson, A., Wittenmark, B.: Analysis of admission control mechanisms using
non-linear control theory. In: Proceedings of IEEE International Symposium on Computer
Communications (2003)

17. Kihl, M., Robertsson, A., Wittenmark, B.: Performance modelling and control of server systems
using non-linear control theory. In: Proceedings of the 18th International Teletraffic Congress
(2003)

18. Kihl, M., Robertsson, A., Wittenmark, B.: Control theretic modelling and design of admission
control mechanisms for server systems. In: Proceedings of IFIP Networking (2004)

19. Körner, U., Nyberg, C.: Overload control in communication networks. In: Proceedings of Globe-
com’91, pp. 1331–1335 (1991)

20. Larsen, M., Kokotovic, P.V.: A brief look at the Tsypkin criterion: from analysis to design. Int. J.
Adapt. Control Signal Process. 15(2), 121–128 (2001)

21. Lu, C., Abdelzaher, T., Stankovic, J., So, S.: A feedback control approach for guaranteeing
relative delays in web servers. In: Proceedings of the 7th IEEE Real-Time Technology and
Applications Symposium, pp. 51–62 (2001)

22. Mei, R.D.V.D., Hariharan, R., Reeser, P.K.: Web server performance modeling. Telecommun.
Syst. 16(3–4), 361–378 (2001)

23. Robb, D.: Up to capacity. In: Computerworld, no. Aug 29, pp. 24–26 (2005)
24. Robertsson, A., Kihl, M., Wittenmark, B.: Analysis and design of admission control in web-server

systems. In Proceedings of American Control Conference (2003)
25. Robertsson, A., Wittenmark, B., Kihl, M., Andersson, M.: Admission control for web server

systems—design and experimental evaluation. In: Proceedings of IEEE Conference on Decision
and Control (CDC2004), pp. 531–536. Paradise Island, Bahamas (2004)

26. Salvador, P., Valadas, R., Pacheco, A.: Multiscale fitting procedure using Markov modulated
poisson processes. Telecommun. Syst. 23(1–2), 123–148 (2003)

27. Scott, S.L., Smyth, P.: The Markov modulated Poisson process and Markov Poisson cascade with
applications to Web traffic modeling. In: Bayesian Statistics, vol. 7. Oxford University Press,
London, UK (2003)

28. Stallings, W.: Data and Computer Communications, 6th edn. Prentice-Hall, Englewood Cliffs,
NJ (2000)

29. Tsypkin, Y.Z.: Frequency criteria for the absolute stability of nonlinear sampled-data systems.
Autom. Remote Control 25(3), 261–267 (1964)

30. Voigt, T., Gunningberg, P.: Adaptive resource-based web server admission control. In: Proceed-
ings of the 7th International Symposium on Computers and Communications (2002)

31. Wells, L., Christensen, S., Kristensen, L.M., Mortensen, K.H.: Simulation based performance
analysis of web servers. In: Proceedings of the 9th International Workshop on Petri Nets and
Performance Models (PNPM 2001), pp. 59–68. IEEE Computer Society, Los Alamitos, CA
(2001)

32. Yoshihara, T., Kasahara, S., Takahashi, Y.: Practical time-scale fitting of self-similar traffic with
Markov-modulated poisson process. Telecommun. Syst. 17(1–2), 185–211 (2001)

	Control-theoretic Analysis of Admission Control Mechanisms for Web Server Systems
	Abstract
	Introduction
	Investigated system
	Gate
	Controllers
	Step controller
	PI-controller
	RST-controller

	Control theoretic model
	Stability analysis of closed loop system
	Linear design (neglecting saturations)
	Model with queue limitation
	Stability analysis for the discrete-time nonlinear system

	Numerical investigations
	Performance metrics
	Validation of the control theoretic model
	Controller design
	Static controller
	Step controller
	PI-controller
	RST-controller

	Controller comparisons
	Distribution function
	Average step response
	Robustness

	Discussion

	Experimental investigations
	Web servers
	Experimental system
	Admission control
	Validation of the model
	Controller design
	Distribution function
	Step response
	Bursty arrival traffic

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

