
Clustered Chain Path Index for XML Document:
Efficiently Processing Branch Queries

Hongqiang Wang & Jianzhong Li & Hongzhi Wang

Received: 20 December 2006 /Revised: 21 December 2006 /
Accepted: 11 April 2007 / Published online: 13 September 2007
Springer Science + Business Media, LLC 2007

Abstract Branch query processing is a core operation of XML query processing. In recent
years, a number of stack based twig join algorithms have been proposed to process twig
queries based on tag stream index. However, in tag stream index, each element is labeled
separately without considering the similarity among elements. Besides, algorithms based on
tag stream index perform inefficiently on large document. This paper proposes a novel
index, named Clustered Chain Path Index, based on a novel labeling scheme. This index
provides efficient support for processing branch queries. It also has the same cardinality as
1-index against tree structured XML document. Based on CCPI, efficient algorithms, KMP-
Match-Path and Related-Path-Segment-Join, are proposed to process queries efficiently.
Analysis and experimental results show that proposed query processing algorithms based
on CCPI outperform other algorithms and have good scalability.

Keywords XML . index . clustered chain path . CCPI . TwigStack . 1-index

1 Introduction

XML data is often modeled as labeled and ordered tree. Queries on XML data are
commonly expressed in the form of tree patterns, which represent a very useful subset of
XPath [19] and XQuery [20].

World Wide Web (2008) 11:153–168
DOI 10.1007/s11280-007-0029-6

This paper is partially supported by Natural Science Foundation of Heilongjiang Province, Grant No. zjg03-05
and National Natural Science Foundation of China, Grant No. 60473075 and Key Program of the National
Natural Science Foundation of China, Grant No. 60533110.

H. Wang (*) : J. Li : H. Wang
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
e-mail: hqwang@hit.edu.cn

J. Li
e-mail: Lijz@mail.banner.com.cn

H. Wang
e-mail: wangzh@hit.edu.cn

Query processing on XML document is usually based on some kind of index. 1-index
[13] uses Bi-Simulation relationship to classify nodes into many sets. 1-index is brilliant for
its very small size against tree structured XML document. It’s efficient to process source
path (path from root to element containing only Parent–Child relationship) queries based on
1-index. However, 1-index discourages us when evaluating branch queries because (1) the
exact PC relationships between elements are lost; (2) the nodes in the same set are
indistinguishable.

Bruno et al. [2] proposed the holistic twig matching algorithms TwigStack which is I/O
optimal for queries with only ancestor-descendant edge. TwigStack uses tag streams which
group all elements with the same tag together and assign each element a region-encoding.
The tag streams can be regarded as a trivial index of XML document. Recently, many works
[6, 10, 11] are proposed to improve TwigStack by reducing intermediate results. However,
Enumerative indexing in tag stream index loses similarity of nodes and brings large
cardinality of index. Queries are processed inefficient against large XML document.

Based on the observation of the structure similarity of nodes with same source path, we
propose a novel labeling scheme, named Clustered Chain Path labeling scheme (CCP for
brief) which can group all elements with the same source path into one labeling in index.
With CCP labeling scheme, the cardinality of index is extremely reduced to a very small
“skeleton”. Actually, CCPI has the same cardinality as 1-index against tree structured XML
document. Being different from 1-index, each CCP in CCPI contains all its ancestors.
Besides, each element in a CCP distinguishes itself from others. These properties support
CCPI for processing branch queries efficiently.

The main contributions of this paper include:

& We propose a novel labeling scheme, CCP labeling which can cluster all elements with
the same source path into one CCP.

& We propose a novel index structure CCPI based on CCP labeling by group all CCPs
with same leaf tags together. The cardinality of the index equals to the cardinality of 1-
index against tree structured document.

& Based on CCPI, we develop efficient algorithms, KMP-Match-Path to process queries
without branch and Related-Path-Segment-Join to process queries with branch.

& We perform a comprehensive experiment to demonstrate the benefits of our algorithms
over previous approaches.

Organization The rest of this paper proceeds as follows: Firstly we discuss preliminaries in
Section 2. Then the CCPI index structure is presented in Section 3. We present query
processing algorithms in Section 4. Section 5 is dedicated to our experimental results and we
end this paper by related works and a conclusion in Section 6 and Section 7.

2 Preliminaries

In this Section, we first introduce XML data model and pre-ordered path labeling in
Section 2.1. Then we define query pattern matching problem based on pre-ordered path
labeling in Section 2.2.

154 World Wide Web (2008) 11:153–168

2.1 Data model and pre-ordered path

In this paper, we model XML document as a rooted, ordered and labeled tree. We only
focus on elements since it is easy to generalize our methods to other types of nodes. A
commonly used subset of XPath queries consisting of child axis navigation (/), descendant
axis navigation (//), wildcard (*), and branches ([..]) is concerned.

We first give a brief introduction of pre-ordered element (Figure 1a) which is an element
being labeled with its tag T and a number p where p is the pre-order of the element by left-
to-right pre-order traversal of document tree. A pre-ordered path POP of a pre-ordered
element E is denoted as (1) if E is root, POP(E)=null; (2) if else, let pre-ordered element P
is the parent of E, then POP(E)=POP(P)/E. For example, the pre-ordered path of element B
[3] (Figure 1a) is “/A[1]/B[3]”.

2.2 Query pattern matching

A query Q is usually considered as a pattern tree containing branches and related paths. A
branch is a root-to-leaf path in the pattern tree. If two or more branches share a crotch, the
path from root to the crotch is named related path of these branches. Among all the
branches, there is one branch which contains the element to be returned. This branch is
called trunk.

A match from a pre-ordered path POP to a branch B is defined as (1) for each element Ei

in B, there is a pre-ordered element POEi in POP which matches Ei; (2) for any two
elements Ei and Ej in B, if they satisfy axis μ ɛ {/, //},the pre-ordered element POEi and
POEj which match Ei and Ej separately satisfy μ.

If a pre-ordered path POP matches a branch B with related path RP, the part in POP
which matches RP is denoted as related path segment (RPS for brief) of POP. The source
path of a RPS is denoted as SRPS.

Given an XPath query Q and an XML document D, a match of Q in D is identified by a
mapping from a pre-ordered paths set of D to query Q, such that (1) for each root to leaf
branch B in Q, there is a pre-ordered path in the set matches B; (2) for each related path RP
in Q, the pre-ordered paths which matched each branch separately shares the related path
segment that matches RP.

Example 2.1 Query Q=“//B[./C]/D” has two branches (Figure 2), which are “//B/D” and “//
B/C”. The two branches have related path “//B”. Pre-ordered path set OPS={P1=/A[1] /B
[3]/C[3], P2=/A[1]/B[3]/D[4]} is a match from sample xml to query Q because pre-ordered
path P1 and P2 match branch “//B/C” and “//B/D” separately, besides P1 and P2 share the

Figure 1 Sample XML tree and
1-index of sample XML. a sam-
ple XML, b 1-index of sample
XML.

World Wide Web (2008) 11:153–168 155

same RPS “/A[1]/B[3]”, which matches the related path “//B” in Q. Since “//B/D” is trunk,
we keep “/A[1]/B[3]/D[4]” only as a match to Q.

Finding all matches of a query pattern in an XML document is a core operation in XML
query processing. In this paper, we solve the problem in three steps: (1) we cluster pre-
ordered paths into CCP sets; (2) for each branch Bi in query pattern Q, we find all CCPs
which matches Bi; (3) if Bi and Bj have related path RP, we join CCPi and CCPj matching
Bi and Bj separately. Then we return results to Q.

3 Clustered chain path index (CCPI)

In this Section, we present the clustered chain path index. CCP labeling scheme and its
properties are introduced firstly in Section 3.1, and then the procedure of constructing CCPI
and the analyzing of the cardinality of CCPI in Section 3.2. Finally, we introduce the
physical storage of CCPI in Section 3.3.

3.1 Clustered chain path labeling scheme

Considering lots of elements sharing a same source path can match/deny a query altogether, we
try to cluster them into a clustered pre-ordered path. To avoid losing Parent-Child relationship,
we use registry table on each pre-ordered element to record its children’s pre-orders.

Definition 3.1 Clustered Chain Path is an array of Registered Elements. A Registered
Element in a CCP is a tuple <T, O, RT, f > where

& T is the tag of Registered Element.
& is the pre-order set of Registered Element, corresponding to some pre-ordered elements

with tag T.
& RT is the registry tables set of Registered Element. A registry table corresponding to

pre-order o in O contains children’s pre-orders of T[o].
& f:O → RT is a function mapping from pre-order of an element to its registry table.

For example, C[1], C[2] and C[3] share the same source path “/A/B/C”. The CCP of {C
[1], C[2], C[3]} is an array RE where RE[1]=<A, {1}, {(1, 3)}, f1(1)=(1, 3) > RE[2]= <B,
{1, 3}, {(1, 2), (3)}, f2(1)=(1, 2), f2(3)=(3) > RE[3]= <C, {1, 2, 3}, {(ɛ), (ɛ), (ɛ)}, f3(any)=
(ɛ) > (ɛ means null). A CCP can be simply expressed as a string “/A[1{1, 3}]/B[1{1, 2}, 3

Figure 2 Example of query pattern matching.

156 World Wide Web (2008) 11:153–168

{3}]/C[1{ɛ}, 2{ɛ}, 3{ɛ}]” which is considered to be the union of pre-ordered paths “/A[1]/
B[1]/C[1]”, “/A[1]/B[1]/C[2]” and “/A[1]/B[3]/C[3]” .

CCP labeling has special properties (some properties are proven in Section 3.2):

1. For each source path, there is one and only one corresponding CCP in CCPI.
2. Each pre-order set O in registered element is sorted by ascendant order.
3. Each registry table in registered element is sorted by ascendant order.
4. Registry table set RT is sorted by ascendant order. (We say registry table RT1<RT2, if

for any pre-order p1 in RT1 and for any pre-order p2 in RT2, we have p1<p2)
5. Map function f is indeed a map from index of O to index of RT.

Proof 1. If there are more than one CCP corresponding to a source path, then they can be
clustered using algorithm Cluster-Path which is present in Section 3.2.

2. and 3. will be proved in Section 3.2.
4. For two registry tables RT1 and RT2 in a registry table set RT, suppose RT1 is mapped

from pre-order O1 in O and O2 for RT2. Let pre-ordered element T[O1] is the parent of RT1
and T[O2] for RT2. If O1<O2, T[O1] is traveled before T[O2], since T[O1] and T[O2] are at
the same document depth (all clustered pre-ordered paths share the same source path), all
children of T[O1] are traversed before T[O2]. Hence pre-ordered elements in RT1 are
traversed before pre-ordered elements in RT2.

5. Since O and RT are ordered, if this property is violated, then property 4 is violated. □

3.2 Constructing CCPI

Each element gets its pre-ordered path when it’s parsed. Firstly the pre-ordered path is
transformed to a CCP. Then if two CCPs share a same source path, they are clustered with
algorithm Cluster-Path. For large XML file, we use buffer to hold CCPs in memory and write
them to disk when buffer is full. After that, we organize the CCPI to confirm there is exactly one
CCP corresponding to a source path. The algorithm Cluster-Path is present in algorithm 1.

In algorithm 1, CCP1 and CCP2 are input CCPs which share the same source path. CCP
is the output containing all pre-ordered paths in CCP1 and CCP2. RES1, RES2 and RES are
registered elements arrays of CCP1, CCP2 and CCP.

When clustering, we Sort-Merge-Union pre-order sets as well as registry tables if they
are associated with the same tag in two CCPs (Example in Figure 3b). After clustering, the
pre-order sets are sorted as well as registry tables. Then property 2 and 3 of CCP labeling
are proved here. These properties contribute to efficiently processing queries with branches.

Theorem 3.1 The cardinality of CCPI equals to the cardinality of 1-index against tree
structured XML document.

World Wide Web (2008) 11:153–168 157

First, we introduce bi-simulation defined in 1-index [13]. Let G be a data graph in which
the symmetric, binary relation ≈, the bi-simulation, is defined as: we say that two data
nodes u and v are bi-similar (u ≈ v), if

1. u and v have the same tag;
2. if u′ is a parent of u, then there is a parent v′ of v such that u′ ≈ v′, and vice versa;

Proof In tree structured XML document, if two nodes u ≈ v, then they have the same tag.
Let u′ is the parent of u and v′ is the parent of v (In tree structured XML document, a node
has unique parent), then u′ ≈ v′ which means u′ and v′ have the same tag. Hence the parent
of u′ and the parent of v′ have the same tag ..., obviously, u and v have the same source
path, so u and v can be clustered. □

Analysis of algorithm cluster-path The number of elements clustered in a CCP equals to
the size of leaf registered element in the CCP. Let CCP1 and CCP2 are input CCPs of
algorithm 1. Let the number of pre-ordered paths clustered in CCP1 is N1 and N2 for CCP2.
For each registered element in CCP1, it contains at most N1 pre-ordered elements (the worst
case), the sum of total pre-orders in its registry table is less than or equal to N1 (N1 elements
have N1 parents at most). The time complexity of Sort-Merge-Union of two registered
elements is O(N1+N2). Let the length of CCP1 is L, The time complexity of Cluster-Path in
the worst case is O(L×(N1+N2)).

3.3 Physical storage of CCPI

We separate CCPI data into two parts: info part and data part. A CCP is represented as
sequenced tuples {<Pre-Order, Registry Table>} as data part and <Source Path, Start
Pointer, Length> as info part where Start Pointer is the start position of data part, and
Length is the bytes of data part.

Definition 3.2 The source path of a CCP is constructed from the tags of Registered
Elements of the CCP.

Definition 3.3 The leaf tag of a CCP is the leaf tag of the source path of the CCP. We
cluster all CCPs with same leaf tag together and save them in two files, one for data part
and one for info part (Figure 4).

A

B

C

O: { 1 }

RT: {(1, 3)}

O: { 1, 3 }

RT: {(1, 2), 3}

O: { 1, 2, 3 }

RT: { e, e, e }

A

B

C

O: { 1 }

RT: { 3 }

O: { 3 }

RT: { 3 }

O: { 3 }

RT: { e }

A

B

C

O: { 1 }

RT: { 1 }

O: { 1 }

RT: { 1, 2 }

O: { 1, 2 }

RT: { e, e }

=Cluster

A

B

C

O: { 1 }

RT: {(1, 3)}
f(1)={1, 3}

O: { 1, 3 }

RT: {(1, 2), 3}
f(1)={1, 2}, f(3)=3

O: { 1, 2, 3 }

RT: { e, e, e }

Registered element

Registry table

f(any)=empty

 Description of CCP a Example of Algorithm 1 b

Figure 3 CCP labeling scheme. a Description of CCP. b Example of algorithm 1.

158 World Wide Web (2008) 11:153–168

4 Query processing based on CCPI

In this Section, we present query processing algorithms based on CCPI. We introduce
algorithm KMP-Match-Path to process queries without branch in Section 4.1. Algorithm
Related-Path-Segment-Join to process queries with branches is discussed in Section 4.2.
About how to process query with nested branches or multi branches is given in Section 4.2.3.

4.1 Processing query without branches

The basic idea of processing query Q without branches is to match source paths of CCPs in
CCPI to Q. The info part of CCPI is preloaded into memory as a hash table from tags to an
array of path info objects before queries arrived. The reasons of preloading info part are that
(1) path matching algorithm uses source path instead of CCP and (2) info part is usually
quite small although the document may be large.

When query Q arrived, we use string match algorithm to match source path to Q. Although
it’s a co-NP problem to judge the containment of two XPath expressions [12], the problem in our
paper is to judge the containment of a source path and a XPath expression without branches.

To make the problem simple, we need to know the concept of broken XPath expression
sequence first. A broken XPath expression sequence is a sequence of sub strings decomposed
from query XPath expression using delimiter “//”. For example, XPath expression “//A//B” is
decomposed into (Root, A, B), while “/A//B/C” is decomposed into (Root/A, B/C). After
decomposing, there is no A-D axis “//” in broken XPath expressions.

Figure 4 Data structure of CCPI.

World Wide Web (2008) 11:153–168 159

We use Knuth–Morris–Pratt string matching algorithm [4] to perform matching from a
source path to query XPath expression (Algorithm 2). Each time when function KMP-
Match-Broken is called, we check if brokenXPath is matched by SP. If matched, the sub
string from beginning to the matched point of SP is abandoned, the rest part of SP is
returned. If not matched, function KMP-Match-Broken returns null which means
matching failed.

Example 4.1 Suppose we match “//B//C/D” with source path “/A/B/B/C/C/D”. The broken
XPath sequence is {Root, B, C/D}. We add “Root” element to source path and perform
matching. The first time function KMP-Match-Broken is called, since root matches root, it
returns “/A/B/B/C/C/D”. The second time when it is called, since “/A/B” matches “B”, it
returns “/B/C/C/D” and the last time it returns “” while the broken XPath sequence are all
matched, and KMP-Match-Path returns true.

Since the algorithm is based on string matching, it’s easy to match query expression with
wildcard by add the rule that any element can match wildcard element “*” in query.

Notice that if there is no match in path info part for a query Q, then we can allege no
solutions for Q without any disk IO.

Analysis of KMP-Match-Path Time complexity of KMP-Match-Broken is O(L+QLi) where
L is length of source path SP and QLi is the ith length of broken XPath expression, let
QL is length of query XPath, then QL=ΣiQLi. The time complexity of KMP-Match-Path
is O(L+QL).

4.2 Processing query with branches

The basic idea of processing query with branches is to split the query into several root-
to-leaf branches and corresponding related paths. Then we evaluate each branch as a query
without branch, finally we join the intermediate results to final results by their related paths.

4.2.1 Algorithm related-path-segment-join

Algorithm Related-Path-Segment-Join joins two input CCPs with same SRPSs is present in
algorithm 3. In algorithm 3, RES1, RES2 and RES are arrays of registered elements in
CCP1’s RPS, CCP2’s RPS and output CCP’s RPS.

Algorithm Related-Path-Segment-Join operates in two phases. In the first phase (lines 1–2),
related path segment in both CCPs are joined. Since CCP1 is trunk, registered elements not
contained in RPS of CCP1 should also be returned to keep a complete CCP. In the second
phase (lines 3–5), each registered element is filtered referring to its parent registered element.

Example 4.2 Consider query “//B[.//C]/D” on sample xml. Trunk is “//B/D” and branch is
“//B//C” with related path is “//B”. First, we evaluate “//B/D” using KMP-Match-Path, we
get {CCP1=/A[1{3}]/B[3{4}]/D[4{ɛ}]}. Then we evaluate “//B//C”, we get {CCP2=/A[1
{1, 3}]/B[1{1, 2}, 3{3}]/C[1{ɛ}, 2(ɛ), 3{ɛ}]}. Next we join CCP1 and CCP2 on their RPS,
we get joined RPS “/A[1{3}]/B[3]”. Since CCP1 is trunk, D[4] does exist in B[3]’s registry
table {4}, CCP1 is solution.

Compared with TwigStack algorithm, algorithm 3 based on CCPI select “exact” D[4]
which matches branch “//B/D”, while D[1], D[2] and D[3] will not be considered at all. But

160 World Wide Web (2008) 11:153–168

in TwigStack algorithm, all D nodes will participate algorithm which may bring more disk
IO and more comparisons.

Analysis of related-path-segment-join Because pre-orders in pre-order set O are different
from each other, so does pre-orders in registry set RT, time complexities of Sort-Merge-Join
on these sets are linear to the size of input. Suppose there are N1 pre-ordered paths in CCP1

and N2 for CCP2, there are at most N=min(N1, N2) elements in each registered elements in
joined CCP. Each time when function filter is called, there are at most 2N pre-orders as the
input of Sort-Merge-Join. Let L is the length of trunk or the length of SRPS if both CCP1

and CCP2 are not trunk, the time complexity of algorithm 3 in the worst case is O(L×N).

Theorem 4.1 Algorithm 3 generates all correct join results.

Proof Suppose a pre-ordered path P1=RPS+P3 is a solution to Q. Then there must exist a pre-
ordered path P2=RPS+P4 which matches another branch in Q. P1 is clustered in CCP1 and P2 is
clustered in CCP2 in algorithm 3. When we perform join on the RPS, the RPS part in P1 is kept
because P2 in CCP2 has the same RPS with P1. Next, by filtering one by one, P1 is outputted. □

In some situations, the RPS may be not unique. For example, when the query is “//B[.//
C]//D”, one source path to trunk “//B//D” is “/A/B/B/D”, and the other to branch “//B//C” is
“/A/B/B/C”. In this situation, we can choose “/A/B” or “/A/B/B” as RPS. Actually, we
always choose the shortest RPS to perform Related-Path-Segment-Join if there are many
choices. The reason is that if we join with longer RPS, the results produced are sub set of
result produced by choosing shorter RPS.

4.2.2 Unite RPSs before join

When several CCPs match a branch with same SRPS, we extract the whole RPS part W
from them by uniting their RPSs, then we perform join on W only. Let’s first see an
example.

World Wide Web (2008) 11:153–168 161

Example 4.3 Consider query Q “//B[.//C]//D”, and the results to branch “//B//C” are {P1=/
A[1{1}]/B[1{1}]/C[1{ɛ}], P2=/A[1{1}]/B[1{1}]/E[1{2}]/C[2{ɛ}], P3=/A[1{3}]/B[3 {2}]/
F[2{3}]/C[3{ɛ}]}, and the results to trunk “//B//D” are {T1=/A[1{1}]/B[1{1}]/D[1{ɛ}],
T2=/A[1{1}]/B[1{2}]/G[2{2}]/D[2{ɛ}]}. Since P1, P2, P3 share the same SRPS “/A/B”
which matches related path “//B”, we unite RPSs of P1, P2 and P3 by algorithm Cluster-
Path, and we get RPS1=“/A[1{1, 3}]/B[1{1}, 3{2}]”. Similarly we can get RPS2=“/A[1
{1}]/B[1{1, 2}]” for T1 and T2. Then we join RPS1 and RPS2 by algorithm Related-
Path-Segment-Join and get RPS3=“/A[1{1}]/B[1{1, 2}]” (notice that registry tables of B
does not join). Next, we perform filtering with RPS3 and T1 and T2, and output results
(Figure 5).

If there are N1 CCPs with same SRPS matching trunk and N2 CCPs with same SRPS
matching branch in algorithm 3. Let the length of RPS is L, the ith (0<i<N1+1) RPS of CCP
matches trunk has ni pre-orders, the jth (0<j<N2+1) RPS of CCP matches branch has mj pre-
orders. Then cost of uniting N1 CCPs matching trunk is at most L(Σini), the cost of uniting
N2 CCPs matching branch is at most L(Σjmj). The cost of join operation on united RPS is at
most L(Σini+Σjmj). The cost of filtering is L(Σi(ni+Σini)=2L(Σini). The total cost is L
(3Σini+2Σjmj).

If we don’t unite the RPSs first and perform Related-Path-Segment-Join on CCPs
directly, the cost is L(ΣiΣj(ni+mj))=L(N2Σini+N1Σjmj). We can see that uniting RPSs first
is faster when N2>3 and N1>2.

Theorem 4.2 Algorithm 3 generates no repetitive results if we unite RPSs first.

Proof If we unite RPS first, a CCP which matches trunk is decided as a solution or not to
query only when it’s filtered by joined RPS just once. It’s impossible for it to output twice.

However, if we perform Related-Path-Segment-Join directly on CCPs, a CCP may be
outputted more than once like T1 in Example 4.3. □

4.2.3 Processing query with nested branches or multiple branches

If query Q has nested branches or multiple branches, we first split Q into multiple branches
and their related paths. Q is divided as several sub queries; each sub query contains one
related path and corresponding branches. A related path can only appear in one sub query

/A[1{1}]/B[1{1}] /C[1{ }

/A[1{1}]/B[1{1}]/E[1{2}]/C[2{ }]

/A[1{3}]/B[3{ 2}]/F[2{3}]/C[3{ }]

/A[1{1}]/B[1{ 1}]/D[1{ }]

/A[1{1}]/B[1{2}]/G[2{2}]/D[2{ }]

/A[1{1, 3}]/B[1{1}, 3{2}] /A[1{1}]/B[1{1, 2}]

/A[1{1}]/B[1{1, 2}]

Match branch //B//C Match trunk //B//D

Union RPS

Join RPS
Filter trunk

ε

ε

ε

ε

ε

Figure 5 Example of uniting RPSs.

162 World Wide Web (2008) 11:153–168

of Q, but a branch can appear in many sub queries of Q. Each branch is alleged solvable
using algorithm KMP-Match-path. After that, a query plan is created, and then we perform
Related-Path-Segment-Join for each sub query (Figure 6).

The problem of join order selection in query plan is an important issue, and we left it as
our future work. In this paper, we select the sub query with the longest related path inside as
the processing sub query.

Example 4.4 Consider query “//B[./C[./D]/B]/D” to sample xml (Figure 1). There are two
sub queries with three branches and two related paths. One sub query is subQ1 whose
branches are “//B/C/D” and “//B/C/B” with related path “//B/C” the other is subQ2 whose
branches are “//B/C/D”, “//B/C/B” and “//B/D” with related path “//B”. Since “//B/C” is the
longest related path, we process subQ1 first. Because the branches in subQ1 are not trunk,
we return only joined RPS of the branches since only RPS is useful to join with other sub
queries. The result RPS is directly the input data part of “//B/C/D” and “//B/C/B”, we just
need to join it with data part of “//B/D” using related path “//B” and return query results
(Figure 7).

If the sub query with longest related path is processed first, the fewest join operations
can be assured. Since the costs of join operations may not be optimal, we left it as our
future work.

RPS1
Branch1
Branch2

RPSn
Branchm
Branchm+1
Branchm+2

…

XML

CCPI

XQuery

Pre-loaded
in memory

Info
part

Data
part

results
Query

Path Matcher

Index
Builder

Query
Executor

Query
Plan

Query
Analyser

Figure 6 The architecture of query processing based on CCPI.

Root

B

C D

B D

Root

B

C

B D

Root

B

C D

Query Pattern Step 1 Step 2

Figure 7 Processing query with
nested branches.

World Wide Web (2008) 11:153–168 163

Likewise, query with multiple branches such as “//B[./D]/C[./B]/D” consist of two sub
queries with three branches and two related paths which are “//B/C/D” and “//B/C/B” with
related path “//B/C” “//B/C/D”, “//B/C/B” and “//B/D” with related path “//B”. The
processing procedure is just like Example 4.4.

Since query with branches is broken into many sub queries without branches and all
branches will be checked if it’s solvable before access data part in CCPI, we can allege that
a query has no solutions if any branch is not matched in info part of CCPI.

4.2.4 A fast method when trunk is related path

For query Q=“//B[./C]”, and a matched CCP is “/A[1{1, 3}]/B[1{1, 2}, 3{3}]/C[1{ɛ}, 2(ɛ),
3{ɛ}]”. The RPS of matched CCP which is “/A[1{1, 3}]/B[1{1, 2}, 3{3}]” is a solution to
Q. Because the RPS in CCP does mean that “all possible B nodes which have child C and
follow the source path /A/B”, we just output the RPS of matched CCP.

If the RPS of CCP does not unique, each RPS is a separate solution. For example if a
matched CCP is “/A[1{1}]/B[1{2}]/ B[2{1, 2}]/C[1{ɛ}, 2(ɛ)]”, then both “/A[1{1}]/B[1
{1}]” and “/A[1{1}]/B[1{2}]/ B[2{1, 2}]” are solutions to Q.

5 Experiments

In this Section, we give our experimental setup in Section 5.1. Then we study the
constructing time of CCPI in Section 5.2 and performance of algorithms based on CCPI in
Section 5.3. Finally we discuss the scalability of our algorithms in Section 5.4.

Figure 8 Constructing time of CCPI with different size of buffer.

Dataset Elements File size Max depth Tags CCPs

XMark 1666315 116M 12 74 514
DBLP 3795138 156M 6 35 127
TreeBank 2437666 84M 36 250 338,748

Table 1 Datasets of experiments.

164 World Wide Web (2008) 11:153–168

5.1 Experimental setup

All experiments are run on a PC with Pentium IV 3.0 G processor, 2 G DDR400 memory
and 20 G SCSI hard disk. The OS is Windows 2000 Server. We implement our system
using JDK1.5. We obtained the source code of Nok [21] and TJFast [10] from the original
authors.

We used three different datasets, including one synthetic and two real datasets. The first
synthetic dataset is the well-known XMark [18] benchmark data (with factor 1). The two
real datasets are DBLP and TreeBank [15] (Table 1).

Table 1 shows that CCPI is so highly clustered that only a small amount of CCP against
large amount of elements. Since the cardinality of CCPI is quite small, we can pre-load the
info part into memory and build a hash table mapping from tag to corresponding path info
set ended with that tag. When accessing data part of CCPI, we create a buffer whose size
equals to the length of CCP data, thus we can load a CCP with one disk IO.

5.2 Constructing time of CCPI

First, we study the constructing time of CCPI with different size of buffer. If we use bigger buffer
when constructing CCPI, the parsing time will be longer because more Cluster-Path is called and
the organize time will be shorter. We test different size of buffer on XMark and DBLP.

It can be seen that it’s not true that constructing CCPI with bigger buffer is faster than
that with smaller buffer (Figure 8). Also, it’s hard to know the exact buffer size with which
the constructing time is the shortest.

Figure 9 Query performance, K-R Is KMP-Match-Path or Related-Path-Segment-Join.

Figure 10 Scalability of algorithms.

World Wide Web (2008) 11:153–168 165

5.3 Queries and performance

We choose 4 queries on each dataset including: (1) a source path query; (2) a branch query
without “//” (3) a path query with “/” and “//” but no branch; (4) a query with “/”,”//” and
branches. The running times of the queries are shown in Figure 9.

We conclude that the algorithms based on CCPI outperform Nok and TJFast on all datasets
from the experimental results shown in Figure 9. Since CCPI has small cardinality compared
with other index, algorithms based on CCPI have less disk accesses than Nok and TJFast.

5.4 Scalability

To compare our algorithms with algorithms Nok and TJFast in team of scalability, all the
algorithms were run on the datasets of sizes 50 M, 100 M and 150 M in XMark. The
queries that were used in the experiments are QM1 and QM2 in Table 2. The results are
shown in Figure 10.

From Table 3, it can be seen that the cardinality of CCPI against different dataset does
not changes. Query processing based on CCPI against different dataset has the same IO
counts and a few more IO bytes, therefore the scalability of our algorithms based on CCPI
is much better than that of Nok and TJFast.

6 Related works

Bruno et al. [2] proposed a holistic twig join algorithm based on region encoding, namely
TwigStack, TwigStack is I/O optimal for queries with only A-D edge but it is sub optimal
for queries with P-C edge. Lu et al. [11] proposed a look-ahead method to reduce the

Query Query expressions

QM1 /site/regions/africa/item/description/parlist/listitem/text/
keyword

QM2 /site/people[./person/profile[./education]/age]/person/phone
QM3 /site/closed_auctions//emph
QM4 /site/people/person[.//age]//education
QD1 /dblp/mastersthesis/year
QD2 /dblp/article[./ee]/year
QD3 /dblp//author
QD4 /dblp/article[.//author]//year
QT1 /FILE/_QUOTES_/S/VP
QT2 /FILE/EMPTY/S[./VP]/SBAR
QT3 /FILE/EMPTY/S/NP//SBAR
QT4 /FILE/_QUOTES_/S[.//NP]//VP

Table 2 Query expressions.

Dataset Elements File size Max depth Tags CCPs

XMark50 832911 57M 12 74 514
XMark100 1666315 115M 12 74 514
XMark150 2502484 174M 12 74 514

Table 3 Dataset for scalability.

166 World Wide Web (2008) 11:153–168

number of redundant intermediate paths. Jiang et al. [6] used an algorithm based on indexes
built on containment labels. The method can “jump” elements and achieve sub-linear
performance for twig pattern queries. Lu et al. [10] proposed TJFast based on a new
labeling scheme called extended Dewey. TJFast only needs to access labels of leaf nodes to
answer queries and significantly reduce I/O cost. BLAS by Chen et al. [3] proposed a bi-
labeling scheme: D-Label and P-Label for accelerating P-C edge processing. Their method
decomposes a twig pattern into several P-C path queries and then merges the results. Zhang
et al. [21] proposed Nok pattern tree and algorithm for efficiently evaluating path
expressions by NoK pattern matching.

1-index [13] is based on the backward bi-simulation relationship. It can easily answer all
simple path queries. F&B Index [8] uses both backward and forward bi-simulation and has
been proved as the minimum index that supports all branching queries. These “exact”
indexes usually have large amount of nodes and hence size, therefore, a number of work
has been devoted to find their approximate but smaller counterparts. A(k)-index [7] is an
approximation of 1-index by using only k-bi-simulation instead of bi-simulation. D(k)-index
[14] generalizes A(k)-index by using different k according to the workload. M(k)-index and
M*(k)-index [5] further optimize the D(k)-index by taking care not to over-refining index
nodes under the given workload. Wong et al. [17] give a survey on many index techniques
for XML document. XQBE [1] provides a graphical environment to query XML. A short
version of CCPI is proposed in [16].

7 Conclusions and future work

In this paper, we have proposed a novel index structure CCPI. It can extremely reduce the
cardinality of index and support branch queries processing efficiently. Based on CCPI, we design
efficient algorithms to process queries with or without branches. We implemented the algorithms
and compared the performance with other algorithms’. We conclude that our algorithms
performed better than others by experimental results. The advantage comes from less disk access
due to high clustering of CCPI. Besides, our algorithms based on CCPI have good scalability.

Query optimization is important when there are many branches and related paths in
query. We need to build a cost model based on CCPI to create query plan. It’s one of our
future works.

Acknowledgement Special thanks to Ning Zhang of University of Waterloo, and Jiaheng Lu of National
University of Singapore for providing support for our experiments.

References

1. Braga, D., Campi, A.: XQBE: a graphical environment to query XML data. J. World Wide Web 8(3)
287–316

2. Bruno, N., Srivastava, D., Koudas, N.: Holistic twig joins: optimal XML pattern matching. In: SIGMOD
Conference, 310–321 (2002)

3. Chen, Y., Davidson, S.B., Zheng, Y.: BLAS: An efficient XPath processing system. In: Proc. of
SIGMOD, 47–58 (2004)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn., MIT(2001)
5. He, H., Yang, J.: Multi resolution indexing of XML for frequent queries. In: ICDE (2004)
6. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic twig joins on indexed XML documents. In: Proceeding of

VLDB 2003, 273–284 (2003)

World Wide Web (2008) 11:153–168 167

7. Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting local similarity for efficient indexing of
paths in graph structured data. In: ICDE (2002)

8. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for branching path queries. In:
SIGMOD (2002)

9. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions. In: Proc. of VLDB,
361–370 (2001)

10. Lu, J., Ling, T.W., Chan, C.Y., Chen, T.: From region encoding to extended dewey: on efficient
processing of XML twig pattern matching. 193–204. In: Proc. of VLDB (2003)

11. Lu, JH., Chen, T., Ling, TW.: Efficient processing of XML twig patterns with parent child edges: a look-
ahead approach. In Proceedings of CIKM Conference 2004, 533–542, (2004)

12. Miklau, G., Suciu, D.: Containment and equivalence for an XPath fragment. In: PODS, 65–76, (2002)
13. Milo, T., Dan Suciu, D.: Index structures for path expressions. In: ICDT, 277–295, Jerusalem, Israel

(1999)
14. Qun, C., Lim, A., Ong, K.W.: D(k)-index: an adaptive structural summary for graph-structured data. In:

ACM SIGMOD, 134–144 (2003)
15. U. of Washington XML Repository. http://www.cs.washington.edu/research/xmldatasets/
16. Wang, H., Li, J., Wang, H.: Clustered chain path index for XML document: efficiently processing branch

queries. In: Proc. of WISE, 474–486 (2006)
17. Wong, K.-F., Yu, J.X., Tang, N.: Answering XML queries using path-based indexes: a survey. J. World

Wide Web 9(3):277–299
18. XMark: The XML-benchmark project. http://monetdb.cwi.nl/xml
19. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/
20. XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/
21. Zhang, N., Kacholia, V., Özsu, M.T.: A succinct physical storage scheme for efficient evaluation of path

queries in XML. In: ICDE 2004, 54–65 (2004)

168 World Wide Web (2008) 11:153–168

http://www.cs.washington.edu/research/ xmldatasets/
http://monetdb.cwi.nl/xml
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/

	Clustered Chain Path Index for XML Document: Efficiently Processing Branch Queries
	Abstract
	Introduction
	Preliminaries
	Data model and pre-ordered path
	Query pattern matching

	Clustered chain path index (CCPI)
	Clustered chain path labeling scheme
	Constructing CCPI
	Physical storage of CCPI

	Query processing based on CCPI
	Processing query without branches
	Processing query with branches
	Algorithm related-path-segment-join
	Unite RPSs before join
	Processing query with nested branches or multiple branches
	A fast method when trunk is related path

	Experiments
	Experimental setup
	Constructing time of CCPI
	Queries and performance
	Scalability

	Related works
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

