
Three-Level Caching for Efficient Query
Processing in Large Web Search Engines

Xiaohui Long & Torsten Suel

Received: 7 November 2005 / Revised: 4 April 2006 / Accepted: 13 April 2006
Springer Science + Business Media, LLC 2006

Abstract Large web search engines have to answer thousands of queries per second
with interactive response times. Due to the sizes of the data sets involved, often in
the range of multiple terabytes, a single query may require the processing of
hundreds of megabytes or more of index data. To keep up with this immense
workload, large search engines employ clusters of hundreds or thousands of
machines, and a number of techniques such as caching, index compression, and
index and query pruning are used to improve scalability. In particular, two-level
caching techniques cache results of repeated identical queries at the frontend, while
index data for frequently used query terms are cached in each node at a lower level.
We propose and evaluate a three-level caching scheme that adds an intermediate
level of caching for additional performance gains. This intermediate level attempts
to exploit frequently occurring pairs of terms by caching intersections or projections
of the corresponding inverted lists. We propose and study several offline and online
algorithms for the resulting weighted caching problem, which turns out to be
surprisingly rich in structure. Our experimental evaluation based on a large web
crawl and real search engine query log shows significant performance gains for the
best schemes, both in isolation and in combination with the other caching levels. We
also observe that a careful selection of cache admission and eviction policies is
crucial for best overall performance.

Keywords web search . search engine architecture . search engine query processing .

inverted index . caching

World Wide Web (2006) 9: 369–395
DOI 10.1007/s11280-006-0221-0

Work supported by NSF CAREER Award CCR-0093400 and the New York State Center for
Advanced Technology in Telecommunications (CATT) at Polytechnic University.

X. Long : T. Suel (*)
Department of Computer and Information Science, Polytechnic University,
Brooklyn, NY 11201, USA
e-mail: suel@poly.edu

X. Long
e-mail: xlong@cis.poly.edu

1 Introduction

Due to the rapid growth of the Web from a few thousand pages in 1993 to its current
size of many billion pages, users increasingly depend on web search engines for
locating relevant information. One of the main challenges for search engines is to
provide a good ranking function that can identify the most useful results from
among the many relevant pages, and a lot of research has focused on how to
improve ranking, e.g., through clever term-based scoring, link analysis, or evaluation
of user traces.

Once a good ranking function has been engineered, query throughput often
becomes a critical issue. Large search engines need to answer thousands of queries
per second on collections of several billion pages. Even with the construction of
optimized index structures, each user query requires a significant amount of data
processing on average. To deal with this workload, search engines are typically
implemented on large clusters of hundreds or thousands of servers, and techniques
such as index compression, caching, and result presorting and query pruning are
used to increase throughput and decrease overall cost.

To better understand the performance issue, we need to look at the basic
structure of current search engines. These engines, like many other information
retrieval tools, are based on an inverted index, which is an index structure that allows
efficient retrieval of documents containing a particular word (or term). An inverted
index consists of many inverted lists, where each inverted list Iw contains the IDs of
all documents in the collection that contain a particular word w, sorted by document
ID or some other measure, plus additional information such as the number of
occurrences in each document, the exact positions of the occurrences, and their
context (e.g., in the title, in anchor text).

Given, e.g., a query containing the search terms Bapple^, Borange^, and Bpear^, a
typical search engine returns the 10 or 100 documents that score highest with respect
to these terms. To do so, the engine traverses the inverted list of each query term,
and uses the information embedded in the inverted lists, about the number of
occurrences of the terms in a document, their positions and context, to compute a
score for each document containing the search terms. In addition, scores based on
link analysis or user feedback are often added into the total score of a document; in
most cases this does not affect the overall structure of the computation if these
contributions can be precomputed offline (e.g., using Page Rank).

Clearly, each inverted list is much smaller than the overall document collection,
and thus scanning the inverted lists for the search terms is much preferable to
scanning the entire collection. However, the lengths of the inverted lists grow
linearly with the size of the collection, and for terabyte collections with billions of
pages, the lists for many commonly used search terms are in the range of tens to
hundreds of megabytes or even more. Thus, query evaluation is expensive, and large
numbers of machines are needed to support the query loads of hundreds or
thousands of queries per second typical of major engines. This motivates the search
for new techniques that can increase the number of queries per second that can be
sustained on a given set of machines, and in addition to index compression and
query pruning, caching techniques have been widely studied and deployed.

Caching in search engines has been studied on two levels [33]. The first level of
caching, result caching, takes place at the frontend, and deals with the case where
identical queries are issued repeatedly by the same or different users. Thus, by

370 World Wide Web (2006) 9: 369–395

keeping a cache of a few ten thousand to a few million results that have recently
been returned by the engine, we can filter repeated queries from the workload and
increase overall throughput. Result caching has been studied in [22, 23, 26, 33, 39]. It
gives a measurable benefit at a low cost (each result could simply be stored as a
complete HTML page in a few KB), though the benefit is limited by the degree of
repetition in the input stream. At a lower level, list caching is used to keep inverted
lists corresponding to frequently used search terms in main memory, resulting in
additional benefits for engines with disk-based index structures. The benefits of a
two-level caching approach in an actual search engine were studied in [33].

In this paper, we propose and evaluate a three-level caching architecture with an
additional intermediate level of caching. This level, called intersection caching or
projection caching (depending on the implementation), caches inverted list data for
pairs of terms that commonly occur together in queries with more than two search
terms. The basic idea is very simple and relies on the fact that all of the major search
engines by default only return documents that contain all of the search terms. This is
in contrast to a lot of work in the IR community where every document containing
at least one of the terms participates in the ranking; we will discuss this issue again
later. Thus, search engines need to score only those documents that occur in the
intersection of the inverted lists. Unfortunately, in most cases the most efficient way
to find the intersection still involves a complete scan over the lists, and this
dominates the cost of query processing. By caching pairwise intersections between
lists, which are typically much smaller than each of the two lists, we hope to
significantly reduce this cost in subsequent queries. We note that the basic idea of
caching intersections was also recently proposed in the context of P2P-based search
in [7], but the scenario and objectives are rather different as discussed later.

While the idea of caching intersections is very simple, the resulting weighted
caching problem turns out to be quite challenging. In the main technical part of the
paper, we discuss and evaluate several online and offline caching algorithms. Even
very restricted classes of the problem are NP-Complete, but we show that there are
practical approaches that perform much better than the basic Landlord algorithm
[11, 40] for weighted caching on typical query traces. We also perform an evaluation
of the performance of all three caching levels together. The conclusion is that
caching gives a significant overall boost in query throughput, and that each level
contributes measurably.

The next section gives some technical background, and Section 3 discusses
related work. The three-level caching approach is described and discussed in detail
in Section 4. Section 5 studies the resulting intersection caching problem and
presents two basic approaches. Section 6 refines these approaches and performs a
detailed experimental evaluation across all three caching levels. Finally, Section 7
provides some concluding remarks.

2 Search engine query processing

In this section, we provide some background on query execution in search engines.
We assume that we have a document collection D ¼ fd0; d1; . . . dn�1g of n web pages
that have already been crawled and are available on disk. Let W ¼
fw0;w1; . . . ;wm�1g be all the different words that occur anywhere in the collection.
Typically, almost any text string that appears between separating symbols such as

World Wide Web (2006) 9: 369–395 371

spaces, commas, etc., is treated as a valid word (or term) for indexing purposes in
current engines.

Indexes An inverted index I for the collection consists of a set of inverted lists
Iw0
; Iw1

; . . . ; Iwm�1
where list Iw contains a posting for each occurrence of word w.

Each posting contains the ID of the document where the word occurs, the (byte or
approximate) position within the document, and possibly information about the
context (in a title, in large or bold font, in an anchor text) in which the word occurs.
The postings in each inverted list are often sorted by document IDs, which enables
compression of the list. Thus, Boolean queries can be implemented as unions and
intersections of these lists, while phrase searches (e.g., BNew York^) can be
answered by looking at the positions of the two words. We refer to [38] for more
details.

Queries A query q ¼ ft0; t1; . . . ; td�1g is a set of terms (words). For simplicity, we
ignore search options such as phrase searches or queries restricted to certain
domains at this point. In our caching problems we are presented with a long
sequence of queries Q ¼ q0; q1; . . . ; ql�1, where qi ¼ fti

0; t
i
1; . . . ; ti

di�1g.

Term-based ranking The most common way to perform ranking in IR systems is
based on comparing the words (terms) contained in the document and in the query.
More precisely, documents are modeled as unordered bags of words, and a ranking
function assigns a score to each document with respect to the current query, based
on the frequency of each query word in the page and in the overall collection, the
length of the document, and maybe the context of the occurrence (e.g., higher score
if term in title or bold face). Formally, a ranking function is a function F that, given
a query q ¼ ft0; t1; . . . td�1g, assigns to each document D a score FðD; qÞ. The system
then returns the k documents with the highest score. One popular class of ranking
functions is the cosine measure [38], for example

FðD; qÞ ¼
Xd�1

i¼0

wðq; tiÞ�wðD; tiÞffiffiffiffiffiffiffi
jDj

p ;

where wðq; tÞ ¼ lnð1þ n=ftÞ, wðD; tÞ ¼ 1þ ln fD;t, and fD;t and ft are the frequency of
term t in document D and in the entire collection, respectively. Many other ranking
functions have been proposed, and the techniques in this paper are not limited to
any particular class.

AND vs. OR Many ranking function studied in the IR community, including the
above cosine measure, do not require a document to contain all query terms in order
to be returned in the results. (E.g., a document containing two out of three query
terms multiple times or in the title may score higher than a document containing all
three terms.) However, most search engines enforce AND semantics for queries and
only consider documents containing all query terms. This is done for various reasons
involving user expectations, collection size, and the preponderance of short queries
(thus, for most queries, there will be many documents containing all query terms).
Our approach fundamentally depends on AND semantics, which are the default in
essentially all major engines (e.g., Google, Yahoo, MSN).

372 World Wide Web (2006) 9: 369–395

Query execution Given an inverted index, a query is executed by computing the
scores of all documents in the intersection of the inverted lists for the query terms.
This is most efficiently done in a document-at-a-time approach where we
simultaneously scan the inverted lists, which are usually sorted by document ID,
and compute the scores of any document that is encountered in all lists. (It is shown
in [21] that this approach is more efficient than the term-at-a-time approach where
we process the inverted lists one after the other.) Thus, scores are computed en
passant while materializing the intersection of the lists, and top-k scores are
maintained in a heap structure. In the case of AND semantics, the cost of per-
forming the arithmetic operations for computing scores is dominated by the cost of
traversing the lists to find the documents in the intersection, since this intersection is
usually much smaller than the complete lists.

Search engines use a number of additional factors not present in standard cosine-
type ranking functions, such as context (e.g., term occurs in title, URL, or bold
face), term distance within documents (whether two terms occur close to each other
or far apart in the text), and link analysis and user feedback. The first two factors
can be easily included while computing scores as outlined above. The most
commonly used way to integrate the other factors is to precompute a global
importance score for each document, as done in PageRank [9], or a few importance
scores for different topic groups [19], and to simply add these scores to the term-
based scores during query execution [25, 30, 31]. Our approach does not depend on
the ranking function as long as the total cost is dominated by the inverted list
traversal.

Search engine architecture Major search engines are based on large clusters of
servers connected by high-speed LANs, and each query is typically executed in
parallel on a number of machines. In particular, current engines usually employ a
local index organization where each machine is assigned a subset of the documents
and builds its own inverted index on its subset. User queries are received at a
frontend machine called query integrator, which broadcasts the query to all
participating machines. Each machine then returns its local top-10 results to the
query integrator to determine the overall top-10 documents [22].

Each subset of the collection is also replicated and indexed on several nodes, and
multiple independent query integrators can be used. We note that there are
alternative partitioning approaches such as the global index organization and
various hybrids that are not commonly used in large engines though they may have
advantages in certain scenarios; see [4, 28, 36, 37] for discussion.

Query processing optimizations Given simple mechanisms for load balancing and
enough concurrency on each machine, the local index organization results in highly
efficient parallel processing. Thus, the problem of optimizing overall throughput
reduces again to the single-node case, i.e., how to maximize the number of queries
per second that can be processed locally on each machine with a reasonable
response time. One commonly used technique is to compress each inverted list using
various coding techniques [38], thus reducing overall I/O for disk-based index
structures but increasing CPU work. Because of this tradeoff, fairly simple and fast
techniques tend to outperform schemes geared towards optimal compression [34].
Our experiments use compression but do not depend on it.

World Wide Web (2006) 9: 369–395 373

A second optimization attempts to determine the top-k results without a
complete scan of the intersection or union of the inverted lists, by presorting the
lists according to their contributions to the score and terminating the traversal early
(or by removing low-scoring postings from the index altogether [15]). There has
been a significant amount of work in the IR and database communities on this issue
under various scenarios; see [1, 2, 12, 14, 16, 25, 29, 36] for recent work. Various
schemes are apparently in use in current engines but details are closely guarded.
Note that these techniques are designed for certain types of ranking functions and,
e.g., do not easily support use of term distance within documents. Our experiments
use a full traversal of the list intersections, but our approach could be adapted to
pruned schemes as well though this is beyond the scope of this paper. A third
common optimization is caching schemes, discussed in detail in the next section.

3 Discussion of related work

For more background on indexing and query execution in IR and search engines,
see [3, 5, 38]. For basics of search engine architecture we refer to [8, 9, 22, 32]. In the
following, we focus on previous work on caching and on other issues directly
relevant to our work.

Result caching As indicated, result caching filters out repetitions in the query stream
by caching the complete results of previous queries for a limited amount of time. It
was studied in [22, 23, 26, 33, 39] and is probably in use in most major engines.
Result caching can be easily implemented at the query integrator, and [39] also
proposes caching results in the internet closer to the user. Work in [22, 23] also
connects result caching to the problem of efficiently returning additional result
pages for a query, which is most efficiently done by computing and storing more
than just 10 results for each query. Result caching only works on completely
identical queries and is thus limited in its benefits by the query stream. Published
numbers on the percentage of queries that can be answered from the cache range
from 30 [26] to 80% [32]. Result caching is easy to implement and does give
significant benefits even under very simple caching policies. A side effect of result
caching is that the average number of search terms increases for those queries that
are actually executed, since single-term and two-term queries are more likely to be
already cached.

List caching At the lower level inside each machine, frequently accessed inverted
lists are cached in main memory to save on I/O. This is sometimes done
transparently by the file system or when using a database system such as Berkeley
DB to store the index [28], though for typical IR and web search workloads better
results may be achievable with specialized caching policies [20]. Of course, list
caching only applies to disk-resident index structures, and some engines attempt to
keep all or most of the index in main memory for optimum performance.

Two-level caching In [33], Saraiva et al. evaluate a two-level caching architecture
using result and list caching on the search engine TodoBR, and show that each level
contributes significantly to the overall benefit. For list caching, a simple LRU

374 World Wide Web (2006) 9: 369–395

approach is used. We note that it is possible that techniques similar to ours are
already in use in one of the major engines, but this type of information is usually
kept highly confidential and we are not aware of it.

Caching in P2P search The basic idea of caching results of intersections that we use
in our three-level caching approach was recently also proposed in the context of
peer-to-peer search in [7]. We note that the approach in [7] is quite different from
ours. Their main goal is to avoid repeated transmissions of inverted list data in a
peer-to-peer system with global index organization, while we are interested in
improving query throughput in each node by decreasing disk traffic and CPU load.
The main emphasis in [7] is on distributed data structures for keeping track of
intersections that are cached somewhere in the system, while in our case this
problem is easily solved by a standard local data structure. Our emphasis is on the
use of intersection caching in a three-level cluster-based architecture, with different
algorithms and cost trade-offs than in a peer-to-peer environment, and its
performance on a large query load from a real engine. As pointed out in [7], there
is also some similarity to views and join indexes in database systems.

Set intersections We note that in some scenarios, there are more efficient ways to
intersect two lists than a scan. In particular, when lists are of very different lengths
or the docIDs in the lists are clustered, approaches that use forward seeks to skip
parts of the lists are often preferable. However, for disk-resident inverted indexes,
we only save on disk access times if a forward seek can skip a fairly significant
amount of data. Examples of such approaches are the zig-zag joins in databases [17]
and the recent adaptive set intersection techniques in [13]. In addition to savings in
disk time, such techniques can also result in decreased CPU costs, and in bandwidth
savings in peer-to-peer environments [24].

Optimizations for phrases Caching of intersections is related to the problem of
building optimized index structures for phrase queries [6] (i.e., BNew York^). In
particular, intersections can be used to evaluate phrase queries, while on the other
hand some of the most profitable pairs of lists in intersection caching turn out to be
common phrases. Note that exhaustive index structures for two-word phrases have
only a small constant factor overhead over a standard index, since each occurrence
of a word is directly followed by only one other word. Caching all intersections
between terms, on the other hand, is impossible and thus appropriate caching
policies are needed.

Weighted caching In many caching problems, the benefit of caching an object is
proportional to its size (e.g., when caching to avoid disk or network traffic).
Weighted caching problems deal with the case where each object has a size and a
benefit that may be completely independent of its size. Weighted caching problems
are, e.g., studied in [11, 40], which propose and analyze a simple algorithm called
Landlord that basically assigns leases to objects based on their size and benefit and
evicts the object with the earliest expiring lease. Both [11, 40] perform a competitive
analysis of the Landlord algorithm, and some experimental results for a web caching
scenario unrelated to search are given in [11]. In our case, we are dealing with a
weighted caching problem where the size of the cached object is the size of an
intersection or projection, and the benefit is related to the difference between this

World Wide Web (2006) 9: 369–395 375

size and the sizes of the complete lists. Moreover, there is a cost in inserting an
object into the cache, which requires us to employ appropriate cache admission
policies. Additional complications arise in our scenario because costs and benefits
can be with respect to both disk accesses and CPU costs, and in fact there may be
trade-offs between the two as we will see.

4 A three-level caching approach

We now describe and discuss the proposed three-level caching architecture in detail.
The architecture is motivated by a few simple observations on available search
engine logs. In particular, result caching works very well on single-term and two-
term queries but does not perform as well on queries with more terms, which are
less likely to be exactly repeated. However, an analysis of large query logs indicates
that queries with three or more terms are likely to contain at least one pair of terms
that has previously appeared together. Thus, a three-term query fa; b; cg could be
processed by accessing the inverted list Ia for term a and a cached list for the
intersection of Ib and Ic. If the three lists Ia, Ib, Ic are of approximately the same
length, and the intersection of Ib and Ic is much smaller than either of the two lists,
then we would save almost a factor of 3 even with only one pair having occurred
previously. If two pairs have previously occurred, then by scanning the two
intersections we could save most of the cost of the query.

We will discuss the exact format and treatment of the cached intersections later.
By combining result, intersection, and list caching, we get a three-level caching
architecture shown in Figure 1 and summarized as follows:

– Result caching: The query integrator maintains a cache of the results of recent
queries, either in memory or on disk. Cache size and eviction policy are typically
not critical as large numbers of results can be cached cheaply. For our query log
of about a million queries, results can be cached essentially over the entire log.
Queries not covered by result caching are broadcast to query processing nodes.

– Intersection caching: At each node, a certain amount of extra space, say 20 or
40% of the disk space used by the index, is reserved for caching of intersections.
These intersections reside on disk and are basically treated as part of the
inverted index or as a separate inverted index. For each multi-term query, we
check if any pairwise intersections are already cached, and use these to process
the query. In addition, during processing we create en passant additional

result cache

list cache

inverted
index

intersection
cache

list cache

inverted
index

intersection
cache

list cache

inverted
index

intersection
cache

main
memory

disk

query
integrator

Figure 1 Three-level caching architecture with result caching at the query integrator, list caching in
the main memory of each node, and intersection caching on disk.

376 World Wide Web (2006) 9: 369–395

intersections for some or all of the pairs of terms in the query and add them to
the cache. We will show that this can be done very efficiently if we are careful
about which intersections are created and added to the cache.

– List caching: At the lowest level, a limited amount of main memory (typically at
least several hundred MB in nodes with at least one GB of memory) is used to
cache frequently accessed inverted lists as well as intersections.

Thus, intersection caching complements result caching as it focuses on queries
with three and more terms, and is orthogonal to list caching. Intersection caching is
relevant to both disk-based and memory-based index structures, though the
performance ramifications are somewhat different as we will see.

4.1 Intersection vs. projection caching

We now discuss the precise format of the cached intersections. Recall that an
inverted list is a sequence of postings sorted by document ID, with each posting
containing the document ID and additional information about each occurrence of
the term in the document. In order to use an intersection instead of the original list
during query execution, this data has to be preserved for postings whose document
IDs appear in both lists. Thus, a posting in the intersection list would consist of a
document ID and information about all occurrences of both words in the document.

However, in our implementation we decided to follow a slightly different approach
which we call projection caching. As shown in Figure 2, instead of creating the
intersection of lists Ia and Ib, we create two projections Ia!b and Ib!a, where Ia!b

contains all postings in Ia whose document ID also appears in Ib, and Ib!a vice
versa. There are several advantages of this approach: (1) Projected inverted lists
have exactly the same format as other inverted lists and thus no changes in the
query processor are required. Also, creation of projections from complete lists is
very simple. (2) Ia!b and Ib!a are treated independently by the list and intersection
caching mechanisms and can be evicted separately, which is desirable in some cases.
(3) Some additional minor optimizations are possible during query execution; e.g., a
query fa; b; cg could be executed by using Ia!b, Ib!c, and Ic!a instead of using pairs.
A disadvantage of using projections is that the two projections are larger than a
single intersection as the document ID is stored twice. In the case of an inverted
index storing only docIDs of postings, this is a significant overhead, but in our case
we store docIDs as well as position and context information for each term
occurrence, resulting in a smaller relative overhead. We decided to use projections

hello: {<2, 2, 4, 6>, <3, 1, 7>, <7, 2, 1, 6>}

world: {<2, 1, 7>, <5, 2, 1, 4>, <7, 1, 11>}

intersection of “hello” and “world”: {<2; 2, 4, 6; 1, 7>, <7; 2, 1, 6; 1, 11>}

projection”hello”->”world”: {<2, 2, 4, 6>, <7, 2, 1, 6>}

projection”world”->”hello”: {<2, 1, 7>, <7, 1, 11>}

Figure 2 Intersections vs. projections. Here, postings in inverted lists are in the format hdocID; freq;
pos0; :::;posfreq�1i.

World Wide Web (2006) 9: 369–395 377

in our query processor as the advantages outweigh the slight space penalty. We note
that our results can be stated either in terms of intersection or projection caching,
and the performance of both schemes is comparable.

4.2 Caching overheads

One common assumption is that caching an object does not result in any cost apart
from some limited administrative overhead (data structures) and the space used for
caching. In our context, creation of projections for caching is piggybacked onto
query execution, and thus (at least at first glance) only involves inverted lists that
are being retrieved from disk by the query processor anyway. However, in reality
there are some costs associated with creating projections and inserting them into the
cache that need to be minimized in order to get good performance. In addition to a
very small overhead in making caching and query execution decisions, we have the
following more significant costs:

(1) Write cost: Since our projection cache is disk-based, a newly inserted
projection has to be written out to disk.

(2) Encoding cost: Before writing out the projection, it is encoded using the same
index compression scheme that is used in the inverted index.

(3) Projection creation: Even though projections are created en passant during
execution of a query, there are certain overheads due to necessary changes in
query processing during projection creation.

We report the first cost in our experiments in terms of the number of blocks
written out, and show that it can be kept at a fairly low level compared to the
savings in read costs. The second cost is typically fairly small, provided that a fast
compression scheme is used for the index. In our case, we use a variable-byte
compression scheme evaluated in [34], which achieves good compression at a low
cost. A more subtle issue is the overhead in creating projections. In our query
processor, we use optimized schemes for list intersection, similar to the zig-zag joins
in [17], which skip parts of the inverted lists by doing forward seeks. To create a
projection during query processing, some of these optimizations have to be switched
off, resulting in extra costs, primarily in terms of CPU work. (We observed only
small savings in disk access times due to forward seeks, compared to scanning the
complete lists, as few of the skips were large enough to justify doing a forward seek
on current hard disks.) As we show later, all of these costs can be kept at a very low
level by adopting a suitable cache admission policy that prevents the creation of too
many projections that are likely to be evicted from cache before being used.

In the first part of our experimental evaluation, we report results in terms of
Blogical^ disk block accesses, including disk reads in query processing and disk
writes for adding projections to the cache, but ignoring the caching of lists in main
memory. This gives us a rough view of the relative performance of various schemes.
In Section 6.2, we then study in detail the CPU savings and overheads due to
projection creation, while Section 6.4 evaluates the effect of adding list caching. We
note here that the optimal choice of caching policies depends on the relative speeds
of disk and CPU, the choice of compression scheme, and whether the index is
primarily disk-based or memory-based, and we are unable to evaluate all cases in
the limited space. However, we will show that significant performance gains are

378 World Wide Web (2006) 9: 369–395

possible both for primarily disk-based and memory-based index structures, and that
the overhead of our schemes is very low.

5 Basic policies for intersection caching

In this section, we study cache maintenance policies for intersection caching. We
first define the problem and discuss complexity issues, then present a greedy
algorithm for the offline version of the problem, and then describe the Landlord
algorithm [11, 40] for weighted caching.

5.1 Problem definition and complexity

Recall that we are given a sequence of queries Q ¼ q0; q1; . . . ;ql�1, where
qi ¼ fti

0; t
i
1; . . . ; ti

di�1g. For any query q ¼ ft0; t1;. . . ; td�1g that is executed, we can
generate and cache any projections It!t0 with t; t0 2 q, subject to the maximum cache
size C. The size of It!t0 is jIt!t0 j. Query q can be executed by scanning, for each t 2 q,
either It or any It!t0 with t0 2 q that is currently in the cache. The cost of executing
the query is equal to the sum of the lengths of the lists that are scanned, and our goal
is to minimize total query execution cost.

We note that the results in this section can be stated either in terms of
intersections or projections. In the offline version of the problem, we assume that
the sequence of queries is known ahead of time and that the set of projections in the
cache is selected and created before the start of execution. In the online version,
queries are presented one at a time and projections can be created and cached
during execution of queries as described above and evicted at any point in time. For
simplicity, we do not charge for the cost of creating the projections in the above
definition, though our later experiments will also consider this issue.

For the offline version, it is not difficult to see that the problem is NP-Complete
through a reduction from Subset Sum [18], as are many other caching problems that
allow arbitrary object sizes. However, this observation does not really seem to
capture the full complexity of our problem. We can strengthen the result as follows.

Theorem 1 The offline problem is NP-Complete even in the case where all
projections are of the same size and queries are limited to at most 3 terms.

Proof sketch By reduction from Vertex Cover [18]. Given a graph G ¼ ðV;EÞ and
an integer k, we construct an instance of our caching problem as follows. We have
one term tu for each node in u 2 V, and in addition we have a special term t0. For
each edge ðu; vÞ 2 E, we create a query ftu; tv; t

0g. We assume that all projections
between two terms are of the same size (this can be achieved by making all lists
disjoint except for a small set of document IDs that appear in all lists), and select a
cache size that fits exactly k projections. We also assume that list It0 is significantly
larger than all of the Itu , say jIt0 j > 3�jEj�jItu j. Then there exists a vertex cover of G of
size k iff there exists a selection of cached projections that allows the query trace to
be executed with total cost less than jIt0 j. Í

We note that if all projections are of the same size and queries are limited to 2
terms, then the problem can be solved in polynomial time. On the other hand, the

World Wide Web (2006) 9: 369–395 379

offline problem with 3 terms remains NP-Complete if we allow creation and eviction
of projections during query execution, and if we charge a cost for the creation of
projections. We discuss the online problem further below.

5.2 A simple greedy algorithm

While in reality we do not have prior knowledge of the query sequence, the offline
problem is nonetheless of practical interest since it can be used to make cache space
assignments for the future based on analysis of recently issued queries. For this
reason, we now describe a simple greedy algorithm for the offline problem, which in
each step adds the projection to the cache that maximizes the ratio of additional
savings in query processing and projection size. It can be implemented as follows:

(1) For each query qi in the sequence Q and each projection It!t0 with t; t0 2 qi,
create an entry ðt; t0; i; jIt!t0 j; jItj � jIt!t0 jÞ. Note that the last two fields are the
size of the projection and the benefit when using it instead of the full list.

(2) Combine all entries with identical t, t0 into a single one, but with an additional
field at the end, called the total benefit, that contains the sum of the benefits in
the combined entries, and with the sequence S of all query numbers i in the
combined entries attached to the new entry.

(3) Load the entries into a heap that allows extraction of the element with
maximum ratio of total benefit to projection size.

(4) Repeatedly extract an element and add it to the cache. If it does not fit, discard
the element and choose another one until the heap is empty. After each
extraction of an entry ðt; t0; S0; *; *; *Þ, decrease the total benefit of all
projections ðt; t00; S00; *; *; *Þ that S0 \ S00 6¼ ;.

The size, and thus benefit, of a projection can be efficiently estimated using
simple sampling techniques [10] and hence a scan of the inverted lists is not really
required. Ignoring these estimation costs, the above algorithm runs in time
Oðk lgðkÞÞ in the worst case, where k ¼

Pl�1
i¼0 jqij2, i.e., the sum of the squares of

the query sizes. In practice, this is a moderate constant times the number of queries
since most queries are short.

5.3 The Landlord algorithm

We now consider the online problem. The projection caching problem is an instance
of a weighted caching problem, where objects have arbitrary sizes and caching of an
object results in savings that are independent of (or at least not linear in) their sizes.
Such problems have been studied, e.g., in [11, 40], where a class of algorithms called
Landlord is proposed and analyzed using competitive analysis. We note, however,
that our problem comes with an additional twist reminiscent of view selection
problems in databases, in that we could use either Ia!b or Ia!c in executing a query
fa; b; cg but there is little benefit in using both. Thus, a projection for a frequently
occurring pair may actually not have much benefit since there may be even better
projections available in the cache for most queries where it is applicable. Landlord
works as follows:

(1) Whenever an object is inserted into the cache, it is assigned a deadline given by
the ratio between its benefit and its size.

380 World Wide Web (2006) 9: 369–395

(2) If another object needs to be evicted to make room for a new one, we evict the
element with smallest deadline dmin, and deduct dmin from the deadlines of all
elements currently in the cache.

(3) Whenever an element in the cache is used, its deadline is reset to some
appropriate value discussed later.

A note about Step 2: Instead of deducting dmin from all entries, we can implement
this step much more efficiently by summing up all values of dmin that should have
been deducted thus far, and taking this sum properly into account during the other
steps. This makes the algorithm highly efficient. Also, observe that if in Step 3
deadlines are reset to their original value (ratio between benefit and size), then the
algorithm can be seen as a generalization of LRU for weighted caching problems. In
[11, 40], the algorithm is shown to be competitive with an optimum solution, but the
analysis does not carry over to our problem due to the above Btwist^. In the
following, we will also experiment with several variations of the Landlord approach
that perform much better on our workload.

6 Experimental evaluation

We now present our experimental setup and give some baseline results for the basic
versions of the greedy and Landlord algorithms. In Section 6.1 we present and
evaluate modified policies with improved performance, and Section 6.2 discusses the
CPU overhead of projection creation. Section 6.3 provides additional statistics on
the generated projections. Finally, Section 6.4 presents an evaluation over all three
levels of caching.

Data sets and experimental setup For our experiments we used a subset of 7:5
million pages selected at random from a crawl of about 120 million web pages
crawled by the PolyBot web crawler [35] in October of 2002. This subset size
corresponds to a scenario where the pages are evenly distributed over a 16-node
search engine, which is a typical setup in our lab. In this case, since projection
caching occurs at each individual node, only one machine in the cluster was used.
The uncompressed size of the pages was over 100 GB, and after duplicate
elimination and indexing we obtained an inverted index structure of size about
10:8 GB. While current commercial engines index several billion pages, these are
partitioned and replicated over hundreds or thousands of machines. Moreover, the
effects that we measure are all expected to be linear in the size of the document
collection, i.e., we would observed the same relative behavior if we scale up both
collection size and cache size by the same factor. Thus, we believe that our setup of
7:5 million pages per node provides a realistic evaluation setup.

Queries were taken from a large log of queries issued to the Excite search engine
from 9:00 to 16:59 PST on December 20, 1999. For the experiments, we removed
82; 506 queries with words that do not appear in our inverted index of 7:5 million
pages. We also removed stopwords from queries. The number of remaining queries
is 1; 836; 248 with a total of 207; 788 different words, and the average number of
words per query is 2:88. We assume a result cache with infinite size on this query
log; in general, we expect that result cache size and eviction policy are unlikely to be
critical in terms of overall system design and resources.

World Wide Web (2006) 9: 369–395 381

We created three different experimental setups to evaluate query processing
costs. Using one setup, we measured the disk access costs of the various policies in
terms of the total number of 4 KB disk block accesses. We have found that this
provides a reasonable estimate of the cost of our actual query processor [25] when
using one or two disks and a fast CPU. We used another setup where we preloaded
inverted lists into main memory to measure the CPU costs of the methods, which is
important on systems with faster I/O or more main memory for caching. Finally, for
the best policies we also integrated projection caching into a real query processor
developed in our lab, to measure total system performance including CPU and disk.
All experiments were run on a Dell Optiplex 240GX machine with a 1:6 GHz P4, 1
GB of memory, and two 80 GB disks running Linux.

Query characteristics We first look at the distribution of the ratios and total costs for
queries with various numbers of terms, by issuing these queries to our query
processor with caching completely turned off. In Figure 3, we see that even without
result caching, nearly half of the total block access cost was spent on queries with
five or more terms, although these queries represent only about 15% of all queries.

Next, we look at how this distribution changes as we filter out repeated queries
using result caching. Figure 4 shows the number of queries before and after result
caching for different numbers of terms in the query. We see that the number of
queries with up to three terms is reduced significantly, while fewer queries with four
or more terms are filtered out. Thus, as shown in Figure 5, after result caching an
even higher percentage of the total block accesses is spent on queries with four or
more terms. In fact, the average cost per remaining query increases from about
2; 000 to almost 2; 700 blocks due to this effect.

To estimate the maximum potential benefit from adding projection caching, we
first measured the performance of an ideal projection caching scheme where for
every query, all possible projections between terms are created at no cost and
inserted into a cache of infinite size. Some results are shown in Figure 6. For
example, for queries with 4 words, more than 90% had at least two projections that
could be used instead of the complete lists, and more than 35% could be completely

1 2 3 4 5 6 > 6

5

0

10

15

20

25

30

35

of words per query

pe
rc

en
ta

ge

% of total queries
% of total cost

Figure 3 Distribution of fre-
quencies and total costs for
queries with different numbers
of terms.

382 World Wide Web (2006) 9: 369–395

covered by projections (i.e., for each term there was a projection that could be used
instead of the complete list). This effect becomes more pronounced for longer
queries, and thus we would expect projection caching to work particularly well in
combination with result caching. With such an ideal infinite projection cache, the
average cost per query was decreased from 2; 700 blocks to about 950 blocks. The
question to be examined next is of course how close we can come to these numbers
with realistic projection caching policies that take the cache size and the cost of
projection creation into account.

We also considered the potential benefits of using projections with more than two
words, i.e., of the type Ib!a!c. Using an ideal infinite projection cache, we observed
that the benefit of allowing projections with more than two words appears to be very
small. The reason is that while there are many queries for which a three-word

1 2 3 4 5 6 > 6
0

5

10

15

20

25

pe
rc

en
ta

ge

of words per query

% of total queries
% of total cost

Figure 5 Costs of k-term
queries before and after
result caching (as percentage
of total cost).

1 2 3 4 5 6 > 6
0

1

2

3

4

5

6

7
x 10

5

of words per query

of

 q
ue

rie
s

of queries before result caching
of queries after result caching

Figure 4 Absolute numbers of
k-term queries before and af-
ter result caching (in hundreds
of thousands).

World Wide Web (2006) 9: 369–395 383

projection is potentially applicable (i.e., the words have already occurred together in
another query), in these cases there are also several two-word projections that
apply. Since two-word projections are already much shorter than the original lists,
there is not much of an improvement in absolute terms to be had by using a three-
word projection instead. We expect that under a realistic caching policy with finite
cache size, the benefit would be even less.

Results for the greedy algorithm We now present results for the basic versions of the
greedy and Landlord algorithms. In all our experiments, we make sure to Bwarm
up^ all levels of caches by running over most of the query log and only measuring
the performance of the last 200; 000 queries (or some other number in some cases).
The costs are stated as the average number of blocks scanned for each query that is
not filtered out by result caching, without list caching which will further improve
performance. The baseline without projection caching is about 2; 700 block accesses
per query. The overall performance across all three caching levels is evaluated in
Section 6.4.

In our first experiment, we used the greedy algorithm from the previous section
on a window of 250; 000 queries (the training window) directly preceding 250; 000
queries that were measured (the evaluation window). Thus, recent queries are
analyzed by the greedy algorithm to allocate space in the cache for projections likely
to be encountered in the future, and only these projections are allowed into the
cache. There are two different ways in which this approach could be used: (1) After
analyzing the queries in the training window, we could preload the projection cache
with the projection selected by the greedy algorithm. This could be done say once a
day during the night in a large bulk operation in order to improve performance
during peak hours. (2) The second approach is to create the selected projections in
an online fashion only when we encounter the corresponding pair in the evaluation
window.

From Figure 7, we see that the performance of these two approaches is very
similar across a range of cache sizes. The online method only benefits from

2 3 4 5 6 > 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

of words per query

0
2
3
4
5
6
>6

Figure 6 Potential benefits
with an ideal infinite projec-
tion cache. For queries with k
words, we plot the percentage
of such queries for which
0; 2; . . . ; k projections could be
used instead of the complete
lists. (Note that for such an
ideal cache, if Ia!b is in the
cache, then so is Ib!a; this
means that if we can use at
least one projection, than we
can in fact use at least two.
Also, for each word in a query,
only one projection will be
used. Therefore, the maximum
number of projections used in
a k-word query is k.)

384 World Wide Web (2006) 9: 369–395

projection caching the second time a pair is encountered in the evaluation window,
since the projection is created during the first time. The other method benefits even
on the first occurrence, but uses almost half the cache space for precomputed
projections that are never used in the evaluation window. Note that the cache size
plotted in Figure 7 for the online variant is not the maximum cache size assumed by
the greedy algorithm, but the amount of cache that is actually filled with projections
(which is much lower than the size assumed by the greedy algorithm).

We observe that even with only 1 GB cache size (less than 10% of the index size),
we already get a significant improvement to about 1; 800 blocks per query. In the
online case, we did not include the overhead due to creation of intersections in
Figure 7, but as shown in Table 1 the number of blocks written out per query is
fairly small. For the other case, we ignore the cost of preloading the projections. The
results indicate that there is probably not too much gained from precomputing
projections, and that an online approach is preferable.

To avoid starting out with an empty cache at the start of each new window, we
further optimized the online greedy algorithm by using a sliding window approach
where periodically (e.g., every 100; 000 queries) we use the greedy algorithm to
analyze a certain window of recent queries (say, 250; 000 queries). Any projection
chosen by the greedy algorithm is marked as protected: once it is cached it cannot be
evicted until it is unprotected in another run of the greedy algorithm. We also
simultaneously keep cached projections from previous runs in cache as long as there
is enough space in the cache. We experimented with various cache sizes and window
sizes. The result in Figure 8 shows that this sliding window approach performs
slightly worse than the simple greedy algorithm with online creation when the cache
size is small, while it outperforms for larger caches. This is because in the sliding

0 0.125 0.25 0.5 1 2 4 8
1400

1600

1800

2000

2200

2400

2600

2800

cache size (GB)

of

 b
lo

ck
s

pe
r

qu
er

y

online creation
precomputed

Figure 7 Block accesses per
query for greedy projection
caching with various cache
sizes. Zero cache size means
no projection caching. Shown
are two curves, one for the
case of precomputed projec-
tions and one where they are
created online.

Table 1 Cost of online projection creation in 4 KB block writes per query, for various amounts of
cache space in GB.

Cache size 0:12 0:22 0:44 0:85 1:62 2:91 4:71

Blocks/query 0:13 0:24 0:47 0:89 1:70 3:05 4:94

World Wide Web (2006) 9: 369–395 385

window algorithm, cached projections are inherited from the previous window,
while online starts with an empty cache.

Performance of basic Landlord In Figure 9, we show results for the basic Landlord
algorithm where we reset deadlines to their original values whenever a cached
projection is used again. We observe similar performance in terms of the number of
blocks scanned per query compared to the greedy algorithm. However, the amount
of block writes in Landlord, shown in the second graph on top of the read costs, is
quite high since a large number of projections are created and then quickly evicted
from the cache without ever being used. Once we take this overhead into account,
the basic Landlord approach does not provide any benefit for most cache sizes
compared to not using projection caching at all.

0.25 0.5 1 2 4 8
1300

1400

1500

1600

1700

1800

1900

2000

2100

cache size (GB)

of

 b
lo

ck
s

pe
r

qu
er

y

simple greedy
100K window
250K window
400K window

Figure 8 Block accesses per
query for online greedy and
for sliding-window greedy pro-
jection caching with various
cache sizes and window sizes.

0 0.25 0.5 1 2 4
1000

1500

2000

2500

3000

3500

4000

cache size (GB)

of

 b
lo

ck
s

pe
r

qu
er

y

of blocks scanned
of blocks scanned and written

Figure 9 Block reads (lower
graph) and block reads plus
writes (upper graph) per exe-
cuted query, without projec-
tion caching and with different
amounts of cache space under
the basic Landlord approach.

386 World Wide Web (2006) 9: 369–395

In the next subsection, we present several refinements of the basic Landlord
approach that dramatically reduce the overheads of the approach while also further
improving block read costs. The main idea is that we need an appropriate cache
admission policy, in addition to a good cache eviction policy, to prevent unprofitable
projections from being generated in the first place. We note that this is different
from many other caching scenarios (e.g., web caching), where it may be preferable
to just add all encountered objects to the cache and rely on the eviction policy to
weed out useless entries.

6.1 Optimized Landlord policies

We now consider how to engineer the basic Landlord policy to improve performance.
We present and evaluate two main ideas: (1) setting a more generous deadline for
projections already in the cache that are being renewed, and (2) limiting the number
of projections that are generated by not inserting every possible projection on the
first encounter.

Landlord with a parameters In the basic Landlord approach a projection has its
deadline reset to the original value whenever it is used again. In order to give a
boost to projections that have already proved useful, versus newly encountered pairs
of terms, we decide to give a longer deadline to projections that are being reset.
(Thus, a tenant that renews gets a longer lease than a tenant that just moves in.) In
particular, a renewed projection gets its original deadline plus a fraction a of its
remaining deadline. In addition, we experimented with keeping a different fraction
a0 of the remaining deadline on the second and subsequent renewals. We
experimented with a number of values for a and a0 and found very good
performance for a ¼ 0:3 and a0 ¼ 0:2, though many other values between 0 and 1
achieve similar results.

Cache admission policies We experimented with several techniques for limiting the
number of projections that are created and inserted into the cache. A simple
approach is to never insert a projection for a pair of terms that has not been
previously encountered (say, in the last few hours). A more refined rule would also
take into account the cost of projection creation and the amount of benefit that
results if the projection is used instead of the full lists.

After some experimentation we arrived at the following policy. We choose a
window of the previous t queries, t to be determined later, for which we maintain
statistics about the encountered queries. A projection Ia!b is only inserted into the
cache if the corresponding pair of terms has previously occurred at least

b� jIa!bj
jIaj � jIa!bj

� �

times within the last t queries, for some parameter b. (We looked at various values
of b and found that values around 30 or higher seem to work best.) In particular, this
means we never insert if the pair of terms has not previously occurred during these t
queries. Moreover, decreasing t will result in fewer insertions into the cache, and a

World Wide Web (2006) 9: 369–395 387

projection Ia!b that is not much smaller than the list Ia is only inserted if it has
occurred repeatedly.

To apply this approach, we select an insertion overhead that we are willing to
tolerate, say b ¼ 10 blocks of projections that are written out per query on average.
We start out with an initial value of t, say t ¼ 100; 000, periodically evaluate the
average number of blocks written out per query, and then increase or decrease t to
adjust for any discrepancy. We found that this converges quickly and results in a
number of block writes per query very close to the target b. For example, for b ¼ 5
and b ¼ 32, we end up with a window of size around 300; 000 for a 4 GB cache.

The results of these optimizations are shown in Figure 10, which indicate that
fine-tuning of the policies is extremely important in our scenario. The best approach
based on the above rule performs fewer block reads than all other methods, and
significantly less than any of the greedy methods discussed earlier, but is also quite
conservative about inserting projections and thus minimizes write costs into the
cache. (The precise cost of the best method was 1; 603 blocks for 1 GB and 1; 253
blocks for 4 GB.) In the next subsection, we show that this also results in small CPU
overhead for piggybacked projection creation during query processing.

no cache (a) (b) (c) (d) (a) (b) (c) (d)
0

500

1000

1500

2000

2500

3000

3500

of

 b
lo

ck
s

pe
r

qu
er

y

of blocks scanned
of blocks written

Figure 10 Comparison of no projection caching (leftmost bar), 1 GB cache size (next 4 bars), and
4 GB cache size (rightmost 4 bars), for various refinements of Landlord. For each cache size, we show
the read cost (solid portion of bar) and write cost (outlined) for four policies from left to right: (a) basic
Landlord, (b) with a ¼ 0:3 and a0 ¼ 0:2, (c) same with insertion only on second encounter of a pair,
and (d) with alphas and the cache admission policy described above. For the last case, we choose b ¼ 5
and b ¼ 32, resulting in negligible (in fact, invisible in this chart) write cost.

388 World Wide Web (2006) 9: 369–395

6.2 CPU overhead of creating projections

We now address the CPU overhead of creating projections in our query processor.
To do so, we need to understand how the query processor generates intersections of
inverted lists during normal query execution. This is done in a document-at-a-time
manner by simultaneously scanning all lists. More precisely, we first scan an element
from the shortest list, and then search forward for a matching element in the second-
shortest list. If such an element is found, we search forward in the next list, otherwise
we return to the shortest list. For queries with more than two or three keywords, it is
quite common that many of the forward searches into the longest list can skip several
blocks at a time, given an appropriate indexing scheme. Note that it is rare for skips
to be long enough to improve disk performance on modern hard disks, since each
inverted list is laid out sequentially on disk for optimized scanning. However,
skipping blocks does result in significant savings in list decoding and processing time
since we can avoid accessing the entire list (assuming a blocked coding scheme).

However, when generating a projection, say between the longest and the shortest
list, we often have to decode almost all the blocks, resulting in higher CPU cost than
normal query processing. The additional CPU cost is related to the size of the
created projection, and thus policies that decrease the number of block writes for
created projections also tend to do well in terms of CPU performance.

In Figure 11, we show the cost of query processing with optimized projection
caching versus a query processor without projection caching, measured by executing
queries on memory-resident inverted lists. We see that policies with low b, i.e.,
policies that are very conservative about generating projections, perform well in
terms of CPU cost, and that CPU cost closely correlates with the total number of
tuples encoded and decoded. Projection caching performs additional decoding and
encoding of tuples during creation of projections, but saves on decoding later when
the projections are used in other queries. Overall, we observe a 25% decrease in CPU
cost, implying a 33% increase in query throughput in a CPU-limited system, while
the benefit for disk-bound systems is even higher. We experimented with several
block sizes for the blocked compression scheme, and observed similar relative

1 5 10 20 40 80 160
0

50

100

150

target overhead b per query

pe
rc

en
ta

ge

CPU time without projection creation
tuples encoded and decoded
CPU time
disk access

Figure 11 Cost per query for
optimized Landlord, relative
to a query processor without
projection caching (100%). We
show the number of tuples
encoded and decoded, CPU
time, and the number of disk
blocks accessed. We also plot
the CPU cost under the as-
sumption that projection gen-
eration is free; for small values
of the target overhead b this is
very close to the total CPU
cost. For larger values of b, this
overhead is significant and to-
tal CPU cost is higher than in a
system without projection
caching.

World Wide Web (2006) 9: 369–395 389

behavior from a few hundred bytes to several KB. (In absolute terms, the smaller
block sizes result in lower CPU cost for query processing as they decode fewer
postings overall, but the relative benefit of projection caching is about the same.)

In summary, the results show that projection generation can be done at fairly low
total CPU and disk overhead during query execution. However, this does not mean
that any projection can be created at almost no cost; instead the low total cost is
achieved by carefully selecting a fairly small number of profitable projections that
are then created.

6.3 Statistics of cached projections

We now look at some statistics on the generated projections in order to better under-
stand the benefits of projection caching. In Figure 12, we first look at how savings

10
 -8

10
 -7

10
 -6

10
 -5

10
 -4

10
 -3

10
 -2

10
 -1

10 -5

10 -4

10 -3

10 -2

10 -1

percentage of total savings

fr
eq

ue
nc

y
of

 p
ro

je
ct

io
ns

 u
se

d

Figure 12 Scatter plot of total
benefit versus frequency of use
of the projections. Each circle
represents a projection that
was used at least once. The x-
axis shows the total savings
due to the projection, as a
fraction of the total savings
from all projections. The y-axis
shows the frequency of that
projection, as a fraction of the
total frequency of all projec-
tions that have been used.
(The distinctive bands of
circles at the bottom contain
projections that were used
once, twice, etc.)

10
 −7

10
−6

10
 −5

10
 −4

10
 −3

10
 −2

10
 −1

10
 −1

10
0

10
1

10
2

10
3

10
4

10
5

percentage of total savings

on
e-

tim
e

sa
vi

ng
s

pe
r

ca
ch

e
bl

oc
k

Figure 13 Total benefit due to
a projection versus its benefit
per cache block and per use.

390 World Wide Web (2006) 9: 369–395

from projections are related to their frequencies. Not surprisingly, a small number of
very frequently used projections are responsible for a disproportionate share of the
benefit. In particular, the top 100 most frequently used projections (corresponding
to roughly the top half of Figure 12) account for almost 30% of total savings.

Next, we look at the total savings from a projection versus its benefit per cache
block and per use, which is proportional to jIaj�jIa!bj

jIa!bj . From Figure 13, we see that the
projections from which most of the savings come actually have only relatively
moderate per-use per-block benefit. We observed that these projections were also
the ones taking up most of the cache space, and they had fairly long original lists.
Thus, most of the benefit comes from projections involving reasonably common
words, with long original lists, that are used a number of times, resulting in
significant absolute savings rather than large relative savings.

As mentioned before, projection caching can be seen as related to the problem of
building optimized index structures for phrase queries [6]. Thus, there is a question
to what degree the utilized projections correspond to common phrases that could
also be handled using a standard phrase index. By manually examining the
generated projects, we found that this was generally not the case. While there were
some projections that clearly corresponded to common phrases, such as Inew!york or
Ihigh!school, most of the projections and benefit were not of this type. Among these
other projections, we noticed a fairly large number of projections such as Ican!find,
Ifind!pictures, or Iabout!learn, that seemed to originate from Bquestion-type^ queries.
(The words in the projections were often not adjacent in the queries themselves.) Of
course, it could be argued that some of these queries would be better handled
through appropriate question answering techniques or at least some smart
preprocessing.

6.4 Evaluation of multi-level caching

We now evaluate query processing performance over all three levels of caching. As
suggested in [33] we use LRU for list caching. Inverted lists corresponding to
projections are treated by the list caching mechanism just as any other inverted list
(this turns out to perform best). For projection caching we use the optimized version

no cache rc rc+pc rc+lc rc+pc+lc rc+lc rc+pc+lc
0

200

400

600

800

1000

1200

1400

1600

1800

2000

of

 b
lo

ck
s

pe
r

qu
er

y

 no list cache 256MB list cache 4GB list cache

of blocks per queryFigure 14 Number of block
reads per query, for the fol-
lowing seven schemes (from
left to right): no caching, result
caching, result plus projection
caching, result plus list caching
and all three levels of caching
with a 256 MB list cache, and
result plus list caching and all
three levels of caching with a
4 GB list cache.

World Wide Web (2006) 9: 369–395 391

of Landlord from the previous subsection, with negligible overhead for generating
projections online. Note that in the following, we report the average number of
block reads over all queries, including those filtered out by result caching. This
allows a comparison over all three levels of caching.

The results are shown in Figure 14. Without any caching, about 2; 000 blocks are
read for each query; this is reduced to less than 1; 400 blocks using just result
caching (with each surviving query actually having a cost of 2; 700 blocks as shown in
Figure 7). This is brought down to about 620 blocks per query by adding projection
caching. Using result caching and list caching with a 256 MB list cache, we get a
performance of about 730 blocks, which is reduced to about 505 blocks by adding
projection caching. Note that a cache of 256 MB is about 2:5% of the total index size
of over 10 GB, and thus an example of a mainly disk-bound setup. On the other
hand, when we have a list cache that can hold almost 40% of the total index (shown
in the two rightmost bars), then disk access decreases to a very low level, which
means that CPU becomes the primary bottleneck. In this case, projection caching
increases disk accesses but reduces CPU work significantly as shown in the previous
subsection, which is a desirable outcome for this case. (Essentially, if disk is not the
bottleneck, it is better to fetch a small projection from disk than to use a much
larger inverted list that is already in memory.)

Finally, we evaluate the actual improvement on query throughput and latency by
using projection caching. We use a query processor developed in our lab with result
caching and a 256MB list cache. We issued 2; 000 queries from our query log and
measured the results with projection caching set off and on. As shown in Figure 15,
query throughput is increased more than by 30%, while latency is decreased by
around 25% when adding a 4 GB projection cache.

7 Concluding remarks

In this paper, we have proposed a new three-level caching architecture for web search
engines that can improve query throughput. The architecture introduces a new

1 2 4 8
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

degree of concurrancy

Thoughput
Latency

w
ith

 p
ro

je
ct

io
n

 c
ac

hi
ng

 /
w

ith
ou

t p
ro

je
ct

io
n

ca
ch

in
g

Figure 15 Query throughput
and latency in a query proces-
sor with projection caching,
relative to a query processor
without projection caching.

392 World Wide Web (2006) 9: 369–395

intermediate caching level for search engines with AND query semantics (including
essentially all current major engines) that can exploit redundancies in the query
stream that are not captured by result and list caching in two-level architectures.
Our experimental evaluation on a large query log from the Excite search engine
showed significant improvements in performance due to the extra level of caching.
However, actual performance is highly dependent on a good selection of caching
policies and the system bottlenecks in the particular architecture.

There are several open questions that arise from this work. In particular, it would
be interesting to perform a more formal study of the offline and online intersection
caching problems defined in this paper. For example, one could study approxima-
tion results for the greedy heuristic, or competitive ratios for the Landlord approach
in our scenario, or look at the case where we include the cost of generating
projections into the corresponding weighted caching problem. Another interesting
theoretical question concerns the performance of caching schemes on certain classes
of input sequences, e.g., sequences that follow Zipf distributions on term
frequencies.

It appears that the simple LRU scheme previously also used in [33] is actually not
the best possible policy for list caching. In fact, we have recently seen interesting
improvements based on adaptations of the Landlord algorithm with a and a0

parameters to list caching. We note that this approach is also related to recent work
by Megiddo and Modha [27] and others on caching policies that outperform LRU in
a variety of applications. We are currently studying list caching policies in more
detail.

On the more practical side, we expect that additional tuning of the caching
policies and the availability of larger traces would show some additional gains, and
we also plan to fully integrate intersection caching into our existing high-
performance query processor. Another open question concerns the relationship
between intersection caching and specialized index structures for common phrases.

Finally, it would be very interesting to evaluate combinations of caching and
pruning techniques in future work. We believe that integrating projection caching
into pruning techniques such as [25] should not be difficult for two reasons: First, as
discussed a projection can be treated just as any other inverted list in the index.
Second, we observed that under a good choice of policies and parameters, the
overhead of generating projections is tiny, and would still be small even when
aggressive pruning brings down the baseline cost. We note that many search engines
appear to use the distance between the query terms in a page as an important factor
in ranking. To our knowledge there is no published work on how to apply pruning to
such types of ranking functions, which are not based on a simple combination of the
scores for different terms.

References

1. Anh, V., Kretser, O., Moffat, A.: Vector-space ranking with effective early termination. In:
Proceedings of the 24th Annual SIGIR Conference on Research and Development in
Information Retrieval, pp. 35–42, September 2001

2. Anh, V., Moffat, A.: Compressed inverted files with reduced decoding overheads. In:
Proceedings of the 21st Annual SIGIR Conference on Research and Development in
Information Retrieval, pp. 290–297, 1998

World Wide Web (2006) 9: 369–395 393

3. Arasu, A., Cho, J., Garcia-Molina, H., Raghavan, S.: Searching the web. ACM Trans. Internet
Technol. 1(1), June (2001)

4. Badue, C., Baeza-Yates, R., Ribeiro-Neto, B., Ziviani, N.: Distributed query processing using
partitioned inverted files. In: Proceedings of the 9th String Processing and Information Retrieval
Symposium (SPIRE), September 2002

5. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addision Wesley (1999)
6. Bahle, D., Williams, H., Zobel, J.: Efficient phrase querying with an auxiliary index. In:

Proceedings of the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 215–221, 2002

7. Bhattacharjee, B., Chawathe, S., Gopalakrishnan, V., Keleher, P., Silaghi, B.: Efficient peer-to-peer
searches using result-caching. In: Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems, 2003

8. Brewer, E.: Lessons from giant scale services. IEEE Internet Comput., pp. 46–55, August (2001)
9. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Proceedings

of the Seventh World Wide Web Conference, 1998
10. Broder, A.: On the resemblance and containment of documents. In: Compression and

Complexity of Sequences, pp. 21–29, IEEE Comput. Soc. (1997)
11. Cao, P., Irani, S.: Cost-aware WWW proxy caching algorithms. In: USENIX Symposium on

Internet Technologies and Systems (USITS), 1997
12. Chaudhuri, S., Gravano, L.: Optimizing queries over multimedia repositories. Data Eng. Bull.

19(4), 45–52 (1996)
13. Demaine, E., Lopez-Ortiz, A., Munro, J.: Adaptive set intersections, unions, and differences. In:

Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 743–752,
2000

14. Fagin, R.: Combining fuzzy information from multiple systems. In: Proceedings of ACM
Symposium on Principles of Database Systems, 1996

15. Fagin, R., Carmel, D., Cohen, D., Farchi, E., Herscovici, M., Maarek, Y., Soffer, A.: Static index
pruning for information retrieval systems. In: Proceedings of the 24th Annual SIGIR
Conference on Research and Development in Information Retrieval, pp. 43–50, September 2001

16. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proceedings
of ACM Symposium on Principles of Database Systems, 2001

17. Garcia-Molina, H., Ullman, J., Widom, J.: Database System Implementation. Prentice Hall
(2000)

18. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP Com-
pleteness. WH Freeman and Company (1979)

19. Haveliwala, T.: Topic-sensitive pagerank. In: Proceedings of the 11th International World Wide
Web Conference, May 2002

20. Jonsson, B.T., Franklin, M.J., Srivastava, D.: Interaction of query evaluation and buffer
management for information retrieval. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 118–129, June 1998

21. Kaszkiel, M., Zobel, J., Sacks-Davis, R.: Efficient passage ranking for document databases.
ACM Trans. Inf. Sys. (TOIS) 17(4), 406–439, October (1999)

22. Lempel , R., Moran, S.: Optimizing result prefetching in web search engines with segmented
indices. In: Proceedings of the 28th International Conference on Very Large Data Bases, August
2002

23. Lempel, R., Moran, S.: Predictive caching and prefetching of query results in search engines. In:
Proceedings of the 12th International World-Wide Web Conference, 2003

24. Li, J., Loo, B., Hellerstein, J., Kaashoek, F., Karger, D., Morris, R.: On the feasibility of
peer-to-peer web indexing. In: Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems, 2003

25. Long, X., Suel, T.: Optimized query execution in large search engines with global page ordering.
In: Proceedings of the 29th International Conference on Very Large Data Bases, September
2003

26. Markatos, E.: On caching search engine query results. In: 5th International Web Caching and
Content Delivery Workshop, May 2000

27. Megiddo, N., Modha, D.: Outperforming LRU with an adaptive replacement cache. IEEE
Comput., pp. 58–65, April (2004)

28. Melnik, S., Raghavan, S., Yang, B., Garcia-Molina, H.: Building a distributed full-text index for
the web. In: Proceedings of the 10th International World Wide Web Conference, May 2000

394 World Wide Web (2006) 9: 369–395

29. Persin, M., Zobel, J., Sacks-Davis, R.: Filtered document retrieval with frequency-sorted
indexes. J. Am. Soc. Inf. Sci., 47(10), 749–764, May (1996)

30. Richardson, M., Domingos, P.: The intelligent surfer: Probabilistic combination of link and
content information in pagerank. In: Advances in Neural Information Processing Systems, 2002

31. Risvik, K., Aasheim, Y., Lidal, M.: Multi-tier architecture for web search engines. In: First Latin
American Web Congress, pp. 132–143, 2003

32. Risvik, K., Michelsen, R.: Search engines and web dynamics. Comput. Netw. 39, 289–302 (2002)
33. Saraiva, P., de Moura, E., Ziviani, N., Meira, W., Fonseca, R., Ribeiro-Neto, B.: Rank-

preserving two-level caching for scalable search engines. In: Proceedings of the 24th Annual
SIGIR Conference on Research and Development in Information Retrieval, pp. 51–58,
September 2001

34. Scholer, F., Williams, H., Yiannis, J., Zobel, J.: Compression of inverted indexes for fast query
evaluation. In: Proceedings of the 25th Annual SIGIR Conference on Research and
Development in Information Retrieval, pp. 222–229, 2002

35. Shkapenyuk, V., Suel, T.: Design and implementation of a high-performance distributed web
crawler. In: Proceedings of the International Conference on Data Engineering, 2002

36. Suel, T., Mathur, C., Wu, J., Zhang, J., Delis, A., Kharrazi, M., Long, X., Shanmugasundaram,
K.: ODISSEA: A peer-to-peer architecture for scalable web search and information retrieval.
In: International Workshop on the Web and Databases (WebDB), June 2003

37. Tomasic, A., Garcia-Molina, H.: Performance of inverted indices in distributed text document
retrieval systems. In: Proceedings of the 2nd International Conference on Parallel and
Distributed Information Systems (PDIS), 1993

38. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Documents
and Images. Morgan Kaufmann, second edition (1999)

39. Xie, Y., O_Hallaron, D.: Locality in search engine queries and its implications for caching. In:
IEEE Infocom 2002, pp. 1238–1247, 2002

40. Young, N.: On-line file caching. In: Proceedings of the 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 82–86, 1998

World Wide Web (2006) 9: 369–395 395

	Three-Level Caching for Efficient Query Processingin Large Web Search Engines
	Abstract
	Introduction
	Search engine query processing
	Discussion of related work
	A three-level caching approach
	Intersection vs. projection caching
	Caching overheads

	Basic policies for intersection caching
	Problem definition and complexity
	A simple greedy algorithm
	The Landlord algorithm

	Experimental evaluation
	Optimized Landlord policies
	CPU overhead of creating projections
	Statistics of cached projections
	Evaluation of multi-level caching

	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

