
World Wide Web: Internet and Web Information Systems, 9, 93–110, 2006
c© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s11280-005-4263-5

Constraint Preserving Transformation
from Relational Schema to XML Schema

CHENGFEI LIU cliu@swin.edu.au
Centre for Internet Computing and E-Commerce, Faculty of Information and Communication Technologies,
Swinburne University of Technology, Melbourne, VIC 3122, Australia

MILLIST W. VINCENT millist.vincent@unisa.edu.au
JIXUE LIU jixue.liu@unisa.edu.au
Advanced Computing Research Centre, School of Computer and Information Science, University of South
Australia, Adelaide, SA 5095, Australia

Published online: 10 October 2005

Abstract

XML has become the standard for publishing and exchanging data on the Web. However, most business data
is managed and will remain to be managed by relational database management systems. As such, there is an
increasing need to efficiently and accurately publish relational data as XML documents for Internet-based
applications. One way to publish relational data is to provide virtual XML documents for relational data via an
XML schema which is transformed from the underlying relational database schema such that users can access
the relational database through the XML schema. In this paper, we discuss issues in transforming a relational
database schema into the corresponding XML schema. We aim to preserve all integrity constraints defined in
a relational database schema, to achieve high level of nesting and to avoid introducing data redundancy in the
transformed XML schema. In the paper, we first propose a basic transformation algorithm which introduces
no data redundancy, then we improve the algorithm by exploring further nesting of the transformed XML
schema.

Keywords: schema transformation, XML, XML schema, relational databases

1. Introduction

XML [1, 4] has become the standard format for publishing and exchanging data on the
Web. However, most business data is still stored and maintained in relational database
management systems (RDBMSs). In fact, RDBMSs will remain dominant in managing
business data in the foreseeable future because of their powerful data management
services. Given that relational databases are proprietary and only accessible within
enterprises while XML documents are designed for accessing and interchanging over
the Internet, there is an increasing need to efficiently and accurately publish relational
data as XML documents for Internet-based applications.

One approach to publish relational data is to create XML views of the underlying
relational data. Through the XML views, users may access the relational databases
as though they were accessing XML documents. Once XML views are created
over a relational database, queries in an XML query language like XML-QL [6] or
XQuery [3] can be issued against these XML views for the purpose of accessing
relational databases. SilkRoute [8] is one of the systems taking this approach. In

94 LIU, VINCENT AND LIU

SilkRoute, XML views of a relational database are defined using a relational to XML
transformation language called RXL, and then XML queries are issued against these
views. The XML queries and views are combined together by a query composer and
the combined RXL queries are then translated into the corresponding SQL queries.
XPERANTO [5, 13, 14] takes a similar approach. One problem in the SilkRoute and
XPERANTO approaches is that users cannot see the integrity constraints buried in
the relational schema from the XML views defined. It is important for users to be
aware of the constraints in the XML schema against which they are going to issue
queries.

Another approach [12] to publish relational data is to provide virtual XML documents
for relational data via an XML schema which is transformed from the underlying
relational database schema such that users can access the relational database through
the XML schema. In this approach, there is a need to generate an integrated XML schema
from the underlying relational database schema, which is the topic of this paper. It is also
highly desirable that the generated XML schema preserves all integrity constraints that
are defined in the underlying relational database schema. We aim to achieve this, which
makes a significant distinction compared with the view approach taken by SilkRoute
and XPERANTO.

Currently, there are two options recommended by the W3C for defining an XML
schema. One is the Document Type Definition (DTD) [1, 4] and the other is the XML
Schema [7]. We choose XML Schema because DTD has a number of limitations.

XML Schema offers great flexibility in modeling documents. Therefore, there exist
many ways to map a relational database schema into a schema in XML Schema. For
examples, In DB2XML [15], an algorithm is used to map relations to XML elements
in almost one-to-one manner. Based on a flat translation similar to DB2XML, NeT [11]
derives nested structures from flat relations by repeatedly applying the nest operator on
tuples of each relation. XViews [2] constructs a graph based on primary key/foreign key
relationship and generates candidate views by choosing the node with either maximum
in-degree or zero in-degree as the root element.

In this paper, we discuss issues in transforming a relational database schema into the
corresponding schema in XML Schema. We aim to achieve the level of nesting of the
transformed XML schema as high as XViews and NeT. In addition, we aim to guarantee
that the transformed XML schema preserves all the integrity constraints defined in the
relational database schema and is highly normalized with no redundancy introduced.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction
to XML Schema, especially the features which will be used in the schema transformation.
In Section 3, we present the mapping rules of a basic transformation algorithm which
converts a relational schema together with integrity constraints to the corresponding
schema in XML Schema without introducing redundancy. The improvement of the
basic algorithm is discussed in Section 4 with more nested structure explored. Section
5 discusses the related work and Section 6 concludes the paper.

2. XML Schema

XML Schema [7] is the W3C XML language for describing and constraining the content
of XML documents. Compared with DTD, it offers many appealing features.

RELATIONAL SCHEMA TO XML SCHEMA 95

– XML Schema provides very powerful data typing. A rich set of built-in data
types are provided. Based on that, users are allowed to derive their own sim-
ple types by restriction and complex types by both restriction and extension. In
DTD, only a very limited number of built-in types are provided, most for defin-
ing attributes only. User cannot define their own types, not to mention complex
types.

– XML Schema provides comprehensive support for representing integrity constraints
such as id/idref, key/keyref, unique, fine grained cardinalities, etc. while DTD only
provides limited support such as id/idref. The cardinality constraints provided by
DTD is mainly based on Kleine closure.

– Apart from the sequence and selection compositors for grouping elements, XML
Schema also supports other compositors such as set.

– XML Schema has the same syntax as XML. This allows the schema itself be processed
by the same tools that read the XML documents it describes. In contrast, DTD is in a
non-XML syntax.

– Namespaces are well supported in XML Schema but not in DTD.

While DTD is still used for very simple applications, XML Schema is becoming a
dominant XML schema language.

The following example illustrates the main features of XML Schema. The
URI “http://www.w3.org/2001/XMLSchema” identifies the namespace xsd where
the XML Schema vocabulary recommended by W3C is defined. The URI
“http://www.swin.edu.au/CompanyML” identifies the target namespace for the schema
to be defined. For each schema, only one root element is allowed to be declared. In the
example, the root element called Company XML is declared under which there are four
subelements: Employee, Dept, Project and WorksOn.

96 LIU, VINCENT AND LIU

RELATIONAL SCHEMA TO XML SCHEMA 97

Each of the four elements under Company XML allows 0 or multiple occurrences,
which are specified by the minOccurs and the maxOccurs cardinality constraints of
the element. Specific number can be indicated here for minOccurs and maxOccurs if
required. The default values for both minOccurs and maxOccurs is 1. The cardinality
constraint for attributes is specified using the use attribute of the xsd:attribute element.
As each attribute can take at most one value at a time, the required and optional values
are used for compulsory and optional attributes, respectively.

The Employee element has three compulsory attributes eno, dno and name, and
three optional attributes supEno, city and salary. eno serves as the identity of the
instances of Employee, dno is intended to reference an instance of element Dept, and
supEno is intended to reference an instance of element Employee. The Dept element
has two compulsory attributes dno and and dname, one optional attribute mgrEno,
and one element DeptLoc. dno serves as the identity of the instances of Dept while
mgrEno is intended to reference an instance of Employee. mgrEno is unique for Dept
elements. The DeptLoc element has one compulsory attribute city, this attribute together
with the attribute dno of its parent element serve as the identity of the instances of
DeptLoc by using a key element definition. XML Schema supports two mechanisms
to represent identity and reference: one is id/idref which is also supported in DTD, the
other is key/keyref which is not supported by DTD. id and idref only apply to a single
element/attribute while key and keyref can apply to multiple elements/attributes. The
Project element has three compulsory attributes pno, dno and pname, and one optional
attribute city. pno serves as the identity of the instances of Project while dno is intended
to reference an instance of Dept. The WorksOn element has two compulsory attributes
eno and pno, and one optional attribute hours. eno and pno together serve as the identity
of the instances of WorksOn using key element definition. Individually, eno and pno is
intended to reference an instance of Employee and Project, respectively.

3. Schema transformation

In a relational database schema, different types of integrity constraints may be defined.
In SQL, the system supported integrity constraints include primary keys (PKs), foreign
keys (FKs), null/not-null, and unique. It is important to map all these constraints to
the target XML schema. Also we aim to achieve a high level of nesting and to avoid
introducing redundancy in the target schema.

As previously discussed, XML Schema supports two mechanisms to represent iden-
tity and reference: id/idref and key/keyref. There are differences in using these two
mechanisms. The former supports the dereference function in path expressions in most
XML query languages including XQuery. This is important for navigational represen-
tation of queries. However, it only applies to a single element/attributes. It also has
a problem in precisely representing a reference. No restriction is given to protect an
idref element/attribute from referencing an unexpected element. The latter may apply
to multiple elements/attributes but cannot support the dereference function. For schema
translation, we leave the choice of these two mechanisms to users. For multi-attribute
primary/foreign keys, however, only key/keyref can be used. For this purpose, we will dif-
ferentiate the single attribute primary/foreign keys from multi-attribute primary/foreign
keys while transforming the relational database schema to XML schema. We also clas-
sify a relation into four categories based on different types of primary keys.

98 LIU, VINCENT AND LIU

Definition 3.1 (regular relation). A regular relation is a relation where the primary key
contains no foreign keys.

Definition 3.2 (component relation). A component relation is a relation where the
primary key contains one foreign key. This foreign key references another relation which
we call the parent relation of the component relation. The other part of the primary key
serves as a local identifier under the parent relation. The component relation is used to
represent a component or a multivalued attribute of its parent relation.

Definition 3.3 (supplementary relation). A supplementary relation is a relation where
the whole primary key is also a foreign key which references another relation. The
supplementary relation is used to supplement another relation or to represent a subclass
for transforming a generalization hierarchy from a conceptual schema.

Definition 3.4 (association relation). An association relation is a relation where the
primary key contains more than one foreign key, each of which references a participant
relation of the association.

3.1. Basic mapping rules and algorithm

Based on the above discussion and definitions, we first give a set of mapping rules, then
an algorithm based on this set of rules.

Rule 1. For a relational database schema Sch, a root element named Sch XML is
created in the corresponding XML schema as follows.

Rule 2. For each regular or association relation R, the following element with the
same name as the relation schema is created and then put under the root element.

RELATIONAL SCHEMA TO XML SCHEMA 99

Rule 3. For each component relation R1, let its parent relation be R2. Then an element
similar to Rule 2 and with the same name as the component relation is created and then
placed as a child element of R2.

Rule 4. For each supplementary relation R1, let the relation which R1 references
be R2. Then the following element with the same name as the supplementary relation
schema is created and then placed as a child element of R2. Notice, there is a difference
between the transformed element of a component relation and the transformed element
of a supplementary relation on maxOccurs.

Rule 5. For each multiple attribute primary key PK of a regular or an association
relation R, suppose the key attributes are PKA1, . . . , PKAn, an attribute of the element
for R is created for each PKAi (1 ≤ i ≤ n) with the corresponding data type. After that
a key element is defined with a selector to select the element for R and several fields
to identify PKA1, . . . , PKAn. The name of the element PK should be unique within the
namespace.

Rule 6. For each single attribute primary key with the name PKA of regular relation
R, two options can be taken. The first option is to use the xsd:key element as in Rule 5.
The second option is to use the xsd:id type for creating an attribute of the element for R
as follows.

100 LIU, VINCENT AND LIU

Rule 7. For each multiple attribute primary key PK of a component relation
R1, let its parent relation be R2, and the key attributes are GKA1, . . . , GKAm,

LKA1, . . . , LKAn where GKA1, . . . , GKAm is a foreign key referencing the parent rela-
tion R2. Then an attribute of the element for R1 is created for each LKAi (1 ≤ i ≤ n) with
the corresponding data type. After that a key element is defined with a selector to select
the element for R1 under the element R2, several fields to identify GKA1, . . . , GKAm

belonging to its parent element and several fields to identify LKA1, . . . , LKAn. The name
of the element PK should be unique within the namespace.

Rule 8. Ignore the mapping for the primary key of each supplementary relation.

Rule 9. For each multiple attribute foreign key FK of a relation R, except one
which is contained in the primary key of a component or supplementary relation,
suppose FK references PK of the referenced relation, and the foreign key attributes are
FKA1, . . . , FKAn, an attribute of the element for R is created for each FKAi (1 ≤ i ≤ n)
with the corresponding data type if FKAi is not part of any primary key. Then a keyref
element is defined with a selector to select the element for R and several fields to
identify FKA1, . . . , FKAn. The name of the element FK should be unique within the
namespace and refer of the element is the name of the key element of the primary key
which it references.

RELATIONAL SCHEMA TO XML SCHEMA 101

Rule 10. For each single attribute foreign key FKA of a relation R, except one which is
contained in the primary key of a component or supplementary relation, two options can
be taken. The first option is to use the xsd:keyref element as in Rule 9. The second option
is to use the xsd:idref type for creating an attribute of the element for R as follows.

Rule 11. For each non-key attribute of a relation R, an attribute with corresponding
name and data type is created for the element of R.

Rule 12. For each attribute with a not-null constraint, add use = “required” to the at-
tribute declaration. For all other attributes without a use attribute, add use = “required”
to the attribute declaration.

Rule 13. For each unique constraint defined on attributes UA1, . . . , U An of a relation
R, a unique element is defined with a selector to select the element for R and several
fields to identify UA1, . . . , UAn. The name of the unique element should be unique
within the namespace.

Based on the above mapping rules, it is easy to have the following transformation
algorithm.

Algorithm 1. Basic Schema Transformation
Input: A relational database schema Sch with constraints and an option to use id/idref

or key/keyref.
Output: A corresponding XML schema Sch XML which preserves the constraints and

is redundancy free.
Step 1: create root element Sch XML for the relational database schema Sch by applying

Rule 1.
Step 2: Get next relation schema R, return Sch XML until there is no relation schema

left.
Step 3: If R is for a regular or an association relation create an element by applying

Rule 2.
Step 4: If R is for a component relation create an element by applying Rule 3.
Step 5: If R is for a supplementary relation create an element by applying Rule 4.

102 LIU, VINCENT AND LIU

Step 6: If R is for a regular relation and the primary key of the relation contains a single
attribute, map the primary key by applying Rule 5 for key/keyref option or by applying
Rule 6 for id/idref option.

Step 7: If R is for a regular/association relation and the primary key of the relation
contains multiple attributes, map the primary key by applying Rule 5.

Step 8: If R is for a component relation, map the primary key by applying Rule 7.
Step 9: If R is for a supplementary relation, map the primary key by applying Rule 8.
Step 10: For each foreign key in R, if it contains a single attribute, map the foreign

key by applying Rule 9 for key/keyref option or applying Rule 10 for id/idref option;
otherwise map the foreign key by applying Rule 9.

Step 11: For each non-key attribute, use Rule 11 to map it.
Step 12: For each not-null constraint, use Rule 12 to map it.
Step 13: For each unique constraint, use Rule 13 to map it.
Step 14: Goto Step 2.

3.2. An example

We use the following relational database schema Company to illustrate the above al-
gorithm. In the schema, primary keys are underlined while foreign keys are in italic
font. The /U after an attribute or a set of attributes stands for a unique constraint on
the attribute or the set of attributes while the /N after an attribute stands for a not-null
constraint on the attribute.

Employee(eno, name/N, city, salary, dno/N, supEno)
Dept(dno, dname/N, mgrEno/U)
DeptLoc(dno, city)
Project(pno, pname/N, city, dno/N)
WorksOn(eno, pno, hours)

If the above schema is given as an input to the basic schema transformation algorithm,
the schema in XML Schema Company XML shown in Section 2 will be generated. All
the constraints defined on the relational schema Company are preserved in the XML
schema Company XML. The id/idref option is used in the transformation.

3.3. Discussion

As XML allows nested structure, redundancy may be brought in when transforming
a flat relation structure to a nested XML structure. For example, if we put element
Dept under element Project, the same department will be repeated in all projects in the
department. However, if we put elements Dept and Project at the same level or put the
element Project under the element Dept, there is no data redundancy introduced.

Rule 1 to Rule 13 used in the basic algorithm are relatively straightforward for
mapping a relational database schema to the corresponding XML schema. One property
of the basic algorithm is redundancy free preservation, i.e., Rule 1 to Rule 13 do not
introduce any data redundancy provided the relational schema is redundancy free.

RELATIONAL SCHEMA TO XML SCHEMA 103

Theorem 3.1. If the relational database schema Sch is redundancy free, the XML
schema Sch XML generated by the basic transformation algorithm is also redundancy
free.

This theorem is easy to prove. For a regular or an association relation R, an element
with the same name R is created under the root element, so the relation R in Sch is
isomorphically transformed to an element in Sch-XML. For a component relation R, a
sub-element with the same name R is created under its parent Rp. Because of the foreign
key constraint, we have the functional dependency P K → P K Rp , i.e., there is a many
to one relationship from R to Rp, therefore it is impossible that a tuple of R is placed
more than one time under different element of Rp. Similar to a component relation,
there is no redundancy introduced for a supplementary relation.

4. Exploring nested structures

As we can see, the basic transformation algorithm introduced above fails to explore all
possible nested structures. For example, the Project element can be moved to be under
the Dept element if every project belongs to a department. Nesting is important in XML
schema because it allows navigation of path expressions to be processed efficiently;
otherwise, we have to use either idref or keyref. If we use idref, we may use system
supported dereference function to get the referenced elements. In XML, the dereference
function is expensive because id and idref types are value based. If we use keyref, we
have to put an explicit join condition in an XML query to get the referenced elements.
Therefore, we need to explore all possible nested structure by further investigating the
referential integrity constraints in the relational schema. For this purpose, we introduce
a reference graph. In the reference graph, we also include the unique and not-null
constraints defined together with a foreign key constraint.

Definition 4.1 Given a relational database schema Sch = {R1, . . . , Rn}, a reference
graph of the schema Sch is defined as a labeled directed graph RG = (V, E, L) where
V is a finite set of nodes v1, . . . , vn representing relation schema R1, . . . , Rn in Sch,
respectively; E is a finite set of arcs, if there is a foreign key defined in Ri which
references R j , an arc e =< vi , v j >∈ E ; L is a set of labels for edges by applying a
labeling function from E to the set of foreign keys denoted by the foreign key attributes
together with unique/not-null constraints.

The reference graph of the relational schema Company is shown as in Figure 1. In the
graph, the element of node DeptLoc has been put under the element of node Dept by
Rule 3. From the graph, we may have the following improvements if certain conditions
are satisfied.

(1) The element of node Project could be put under the element of node Dept if the
foreign key dno is defined as not-null. This is because that node Project only
references node Dept and a many to one relationship from Project to Dept can be
derived from the foreign key constraint. In addition, the not-null foreign key means
every project has to belong one department. As a result, one project can be put

104 LIU, VINCENT AND LIU

Figre 1 A reference graph.

under one department and cannot be put twice under different departments in the
XML document.

(2) A loop exists between Employee and Dept. In general, what we can get from this
is a many to many relationship between Employee and Dept. However, the foreign
key mgrEno of Dept reflects a one to one relationship from Dept to Employee. This
semantics can be captured by checking the unique constraint defined for the foreign
key mgrno. If there is such a unique constraint defined, the foreign key mgrEno
of Dept really suggests a one to one relationship from Dept to Employee. For the
purpose of nesting, we delete the arc from Dept to Employee labelled mgrno from
the reference graph. The real relationship from Employee to Dept is many to one.
As such, the element of the node Employee can also be put under the element of
the node Dept if the foreign key dno is defined to not-null. The foreign key supEno
represents a many to one reflexive relationship. It has been best represented as a
foreign key in the element for Employee, so we can delete this kind of arc as well.
The resulting reference graph is shown in Figure 2.

Figure 2 The modified reference graph.

RELATIONAL SCHEMA TO XML SCHEMA 105

(3) The node WorksOn references two nodes Employee and Project. The element of
WorksOn can be put under either Employee and Project if the corresponding foreign
key is not-null. However, which node to choose to put under all depends on which
path will be used often in queries.

Obviously the basic algorithm can be improved to allow more nested structures. To
achieve this, we generate a reference graph for a relational database schema and simplify
it by checking whether some loops can be removed. Then we explore maximum nesting
by the following theorems.

Theorem 4.1 In a reference graph RG(V, E, L), let v1, v2 ∈ V denote relations R1

and R2, respectively. If the out-degree of v1 is 1 and < v1, v2 >∈ E and not-null is
associated with the label of < v1, v2 > and there is no loop between v1 and v2, then we
can move the element for R1 to be under the element for R2 without introducing data
redundancy.

The proof of this theorem has already explained by the relationships between Project
and Dept, and between Dept and Employee in Figure 1. The fact that the only arc from
v1 to v2 and no loop between the two nodes represents a many to one relationship from
R1 to R2, while the not-null foreign key gives a many to exact one relationship from R1

to R2. Therefore, for each instance of R1, it is put only once under exactly one instance
of R2, no redundancy will be introduced.

Similarly, we have the following.

Theorem 4.2 In a reference graph RG(V, E, L), let v0, v1, . . . , vk ∈ V denote rela-
tions R0, R1, . . . Rk, respectively. If < v0, v1 >, . . . , < v0, vk >∈ E and not-null is
associated with the label of at least one of these arcs, say, < v0, vl > and there is no
loop between v0 and any of v1, . . . , vk , then we can move the element for R0 to be under
the element for Rl without introducing data redundancy.

From Theorems 4.1 and 4.2, we have the following rules.

Rule 14. If there is only one many to one relationship from relation R1 to another
relation R2 and the foreign key of R1 to R2 is defined as not-null, then we can move the
element for R1 to be under the element for R2 as a child element.

Rule 15. If there are more than one many to one relationship from relation R0 to other
relations R1, . . . , Rk, then we can move the element for R0 to be under the element for
Ri (1 ≤ i ≤ k) as a child element provided the foreign key of R0 to Rk is defined as
not-null.

By many to one relationship from relation R1 to R2, we mean that there exists at least
one arc from node v1 for R1 to node v2 for R2, and there is no loop between v1 and v2

in the reference graph.
If we apply Rule 14 to the transformed XML schema Company XML, the elements for

Project and Employee will be moved to be under Dept, consequently, the attribute dno
with idref type will be removed from both Project and Employee elements. Furthermore,

106 LIU, VINCENT AND LIU

if we apply Rule 15 and choose to put WorksOn be under Employee, the element for
WorksOn will be moved to be under the element for Employee, consequently, the attribute
eno with idref type will be removed from the WorksOn element. The primary key for
WorksOn will also be changed with eno refers to the eno of its parent element Employee.
The improved XML schema is given below.

RELATIONAL SCHEMA TO XML SCHEMA 107

From the above improved XML schema Company XML, we can see that all nested
structures have been explored.

Theorem 4.2 also allows that Ri is the same as R j for 1 ≤ i ≤ j ≤ k. For ex-
ample, the relation Supervision (supervisorEno, superviseeEno) stands for a many to
many reflexive relationship between employees, i.e., an employee may supervise many
supervisees and an employee may be supervised by many supervisors. Its reference
graph is shown in Figure 3. Obviously, the element for Supervision can be moved to
be under the element for Employee. Either supervisorEno or supervisorEno may be
chosen as idref attribute under the element for Supervision. The XML schema for the

Figure 3 A Reference graph for m:n reflexive relationship.

108 LIU, VINCENT AND LIU

relation schema Supervision is given below. Here we choose to use the arc with the label
supervisorEno.

5. Related work

SilkRoute [8] and XPERANTO [5, 13, 14] choose to publish relational data by creating
XML views of the underlying relational data. The advantage of this approach is the
data independence achieved through the created views. However, users cannot see the
integrity constraints buried in the underlying relational schema from those XML views.
This may cause difficulty to write XML queries precisely. The approach taken in this
paper can solve this problem by preserving integrity constraints defined in the relational
schema in the transformed XML schema.

An early work in transforming relational schema to XML schema is DB2XML [15].
DB2XML uses a simple algorithm to map flat relational model to flat XML model in
almost one-to-one manner. DTD is used for the target XML schema.

Based on a flat translation similar to DB2XML, NeT [11] derives nested structures
from flat relations by repeatedly applying the nest operator on tuples of each relation. A
problem in this approach is that the derivation process is solely based on values with no
consideration of the semantics of the schema. As such, the resulting nested structures
may not be useful at all. NeT also choose DTD for target schema, therefore, does not
consider the transformation of integrity constraints.

XViews [2] constructs a graph based on primary key/foreign key relationship and
generates candidate views by choosing the node with either maximum in-degree or
zero in-degree as the root element. The candidate XML views generated maybe highly
nested. DTD is also chosen for target XML schema. Similarly, this approach does not

RELATIONAL SCHEMA TO XML SCHEMA 109

consider the preservation of integrity constraints. It also suffers considerable level of
data redundancy.

Compared with DB2XML, NeT and XViews, we use XML Schema as the schema
language for target schema. This allows us to take integrity constraints into account
and preserves them in the transformed XML schema. Similar to NeT and XViews,
we explore high level of nested structures as well. However, our derivation approach
captures semantics that are buried in the relational schema and maps them accurately to
the target XML schema. In NeT and XViews, semantical information such as integrity
constraints are not used to guide the derivation of nested structures. As such, redundancy
is introduced in XViews and unexpected nested structures may be obtained in NeT.

For integrating XML and relational databases, Kappel et al. [10] give a comprehensive
comparison of the concepts and corresponding mapping patterns between XML and
relational databases. In [10] and their X-Ray approach [9], three basic kinds of mappings
ET Rdirect/indirect (an XML element to a relation), ET Adirect/indirect (an XML element
to an attribute of a relation) and A Adirect/indirect (an XML attribute to an attribute of
a relation) have been proposed and reasonable mappings of these three basic mapping
patterns from DTD to relational schema have been discussed.

6. Conclusion

This paper addressed the issues in mapping relational database schema to XML schema.
To generate a high quality XML schema from a relational schema, we believe that a
schema transformation algorithm should provide the following features:

– preserving integrity constraints of the underlying relational database schema.
– avoiding introducing data redundancy.
– exploring all possible nested structures.

The schema transformation algorithm presented in this paper provides all three features.
We believe that the proposed algorithm is effective and practical. In the future, we will
investigate how an XML schema can be generated from a view of a relational database.

Acknowledgments

We would like to thank the Australian Research Council (ARC) for supporting this
work under the grant DP0559202. We are also grateful to the anonymous referees for
the detailed comments that helped to improve this paper.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann Publishers, 2000.

[2] C. Baru, “XViews: XML Views of Relational Schemas.” In Proceedings of DEXA Workshop, 1999,
pp. 700–705.

[3] S. Boag, D. C. M. Fernandez, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu, “XQuery 1.0:
An XML Query Language.” W3C Working Draft, http://www.w3.org/TR/2002/WD-xquery-20020430/,
2002.

110 LIU, VINCENT AND LIU

[4] T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler, “Extensible Markup Language (XML) 1.0
(Second Edition).” W3C Recommendation, http://www.w3.org/TR/REC-xml. 2000.

[5] M. Carey, J. Kiernan, J. Shanmugasundaram, E. Shekita, and S. Subramanian, “XPERANTO: Middle-
ware for Publishing Object-Relational Data as XML Documents.” In Proceedings of VLDB, 2000, pp.
646–648.

[6] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, “XML-QL: A Query Language for
XML.” Submission to W3C, http://www.w3.org/TR/NOTE-xml-ql/. 1998.

[7] D. Fallside, “XML Schema Part 0: Primer.” W3C Recommendation, http://www.w3.org/TR/xmlschema-
0/. 2001.

[8] M. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and W. Tan, “SilkRoute: A Framework for
Publishing Relational Data in XML.” ACM Trans. Database Syst., 27(4), 2002, 438–493.

[9] Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzegger, “X-Ray - Towards Integrating XML
and Relational Database Systems.” In Proceedings of the 19th ER Int. Conf. 2000.

[10] G. Kappel, E. Kapsammer, and W. Retschitzegger, “Integrating XML and Relational Database Systems.”
World Wide Web, 7(4), 2004, 343–384.

[11] D. Lee, M. Mani, F. Chiu, and W. Chu, “Nesting-Based Relational-to-XML Schema Translation.” In
Proceedings of the WebDB, 2001, pp. 61–66.

[12] C. Liu, M. Vincent, J. Liu, and M. Guo, “A Virtual XML Database Engine for Relational Databases.” In
Proceedings of XSYM, 2003, pp. 37–51.

[13] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, and J. Funderburk, “Querying XML Views of
Relational Data.” In Proceedings of VLDB, 2001, pp. 261–270.

[14] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pira-hesh, and B. Reinwald,
“Efficiently Publishing Relational Data as XML Documents.” In Proceedings of VLDB, 2000, pp.
65–76.

[15] V. Turau, “Making Legacy Data Accessible for XML Applications.” http://www.informatik.fh-
wiesbaden.de/turau/DB2XML/2001/.

