
World Wide Web: Internet and Web Information Systems, 8, 495–517, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s11280-005-0905-x

Searching for Flash Movies on the Web: A Content
and Context Based Framework∗

JUN YANG yangjun@acm.org
Department of Computer Engineering and Information Technology, City University of Hong Kong, HKSAR,
China; Department of Computer Science and Engineering, Zhejiang University, Hangzhou, China, 310027

QING LI itqli@cityu.edu.hk
Department of Computer Engineering and Information Technology, City University of Hong Kong, HKSAR,
China

LIU WENYIN csliuwy@cityu.edu.hk
Department of Computer Science, City University of Hong Kong, HKSAR, China

YUETING ZHUANG yzhuang@cs.zju.edu.cn
Department of Computer Science and Engineering, Zhejiang University, Hangzhou, China, 310027

Published online: 1 August 2005

Abstract

The phenomenal growth of online Flash movies in recent years has made Flash one of the most prevalent media
formats on the Web. The retrieval and management issues of Flash, vital to the utilization of the enormous Flash
resource, are unfortunately overlooked by the research community. This paper presents the first piece of work (to
the best of our knowledge) in this domain by suggesting an integrated framework for the retrieval of Flash movies
based on their content characteristics as well as contextual information. The proposed approach consists of two
major components: (1) a content-based retrieval component, which explores the characteristics of Flash movie
content at compositional and semantic levels; and (2) a context-based retrieval component, which explores the
contextual information including the texts and hyperlinks surrounding the movies. An experimental Flash search
engine system has been implemented to demonstrate the feasibility of the suggested framework.

Keywords: Flash movies, content and context based retrieval, content characteristics, contextual information,
Flash search engine

1. Introduction

Flash, a new format of vector-based interactive movie set forth by Macromedia Inc. [16],
is gaining popularity at a tremendous rate and has become one of the most prevalent media
formats on the Web. Its popularity is manifested by the fact that Macromedia Flash Player,
the presentation tool for Flash movies, is distributed among over 98% web browsers, a

∗The work described in this paper was supported substantially by a grant (Project No. 7001457), and partially
by another grant (Project No. 7001564), both from CityU of Hong Kong.

496 YANG ET AL.

percentage largely exceeding that for Windows Media Player (69%), Real Player (51%),
and QuickTime Player (35%) [17]. Moreover, statistics [17] also show that over 50%
of the top 50 websites in the world has adopted Flash in their content. Flash movies1

are primarily embedded into and delivered with web pages to enhance their interactive
and multimedia features, and are also created as cartoons, commercial advertisements,
electronic postcards, MTV movies, computer games, or even e-commerce, each of which
has large market potentials. The success of Flash can be contributed to its compactness
(for fast delivery), rich semantics (due to its vector-based format), ease of composition,
and powerful interactivity, which collectively form a great advantage over its competing
technologies such as GIF animations and streaming videos.

The attention Flash has aroused in the industrial sector constitutes a sharp contrast with
the lack of study in the research community. Little research effort, to the best of our
knowledge, has been devoted to the study of Flash movies, whereas extensive research has
been conducted on other media formats such as image, video, or audio. On the other hand,
the number of on-line Flash movies has grown to a point that makes manual access of user
desired movies extremely expensive (if not impossible). Therefore, to utilize the enormous
Flash resource, it is imperative to develop effective and efficient tools for searching Flash
movies on the Web to satisfy user requirements. It can be expected that such tools will be
welcomed by a variety of user groups, ranging from teenagers looking for Flash games,
music fans seeking for MTV movies, to Flash developers reviewing the designs of existing
movies, and customers searching for Flash advertisements. The call for Flash retrieval
tools forms the motivation of this paper, in which we present the first framework (to
our knowledge) for searching Flash movies from the Web based on content and context
information. Meanwhile, please note that some online Flash galleries (e.g., Flash Kit [10])
have provided keyword-based search functions for manually annotated Flash movies, but
their approaches are neither efficient nor adequate in supporting queries specifying the
content of Flash movies.

The problem of Flash retrieval in the Web environment can be approached from two
perspectives: internally from the content characteristics of Flash movies, as well as exter-
nally from their contextual information. Internally, a typical Flash movie usually contains
heterogeneous media ingredients (graphics, images, sounds, etc), dynamic effects, and
user interactions, which collectively synthesize and express the semantics of the movie.
The characteristics of these expressive movie elements, when properly represented and
indexed, are indispensable clues based on which Flash movies can be retrieved to meet
user requests. Externally, most Flash movies are embedded in web pages (which are in-
terweaved by hyperlinks into a large network) and thus surrounded by many other media
objects (including text). As proved by the success of many commercial image search en-
gines such as Google and Ditto [7], we can expect the performance of Flash retrieval to
be largely improved by mining the contextual information (e.g., hyperlinks, surrounding
text) of Flash movies as a complement of their content characteristics. In this paper, we
investigate a synergy of both approaches by proposing an integrated framework for Flash
retrieval that is based on both the content characteristics of Flash movies and their con-
textual information. Due to the intrinsic complexity of Flash and the heterogeneity of its
context, this framework requires techniques from a wide range of fields spanning natural

SEARCHING FOR FLASH MOVIES ON THE WEB 497

language processing, content-based retrieval, link analysis, spatio-temporal database, and
data mining. While some of the required techniques are available in the existing work, many
need to be developed and/or improved by us and inevitably in a series of follow-up research.
Actually, rather than providing a detailed solution, the purpose of this paper is more on
defining a generic “skeleton” that allows follow-up works to fill into its components, even
though we have actually built a prototype system for Flash retrieval based on the proposed
framework.

Our integrated framework for web-based Flash retrieval consists of a content-based
retrieval component and a context-based retrieval component. The former deals with the
indexing and query processing of Flash movies based on their content characteristics,
which include the low-level, primitive features of their media ingredients, dynamic effects,
and user interactions, as well as some high-level semantic features summarized from the
primitive ones. The latter applies a network model derived from hyperlinks to describe the
correlations among Flash movies, based on which relevant movies (of a user query) can
be discovered through a proposed link mining algorithm. A combination of both retrieval
methods allows a user query, expressed in the form of simple keywords or sophisticated
search conditions, to be first processed by the content-based component to generate some
initial results, which are then expanded and refined by the context-based component to
obtain more and better-quality results.

The rest of the paper is organized as follows. Section 2 presents an overview of web-
based Flash retrieval from both content-based and contextual perspectives. In Section 3,
we introduce the integrated framework for content and context based Flash retrieval. Two
major components of it, one for content-based Flash search and the other for context-based
Flash mining, are detailed in Sections 4 and 5, respectively. Section 6 discusses a prototype
Flash retrieval system implemented based on the proposed framework. The concluding
remark and the future work are given in Section 7.

2. Web-based Flash retrieval: An overview of the research issues

In this section, we present a general discussion of the research issues regarding web-based
Flash retrieval through the content characteristics of movies as well as their contextual
information. The previous research efforts related to Flash retrieval are reviewed as well.

2.1. A content perspective

Most of the existing works on (multimedia) information retrieval rely on the content
characteristics of the data to be retrieved: traditional text-based information retrieval (IR)
utilizes keywords extracted from textual documents; content-based retrieval (CBR) explores
the low-level features calculated from multimedia objects (image, video, sound, etc.).
A close examination of Flash movies reveals that Flash has more heterogeneous and
complicated intrinsic characteristics than other media formats. Hence, an effective Flash
retrieval tool should investigate the rich movie content, which can be characterized from
the following three aspects:

498 YANG ET AL.

• Heterogeneous media ingredients. A typical Flash movie consists of ingredient media
objects of various types. Texts and graphics of arbitrary complexity can be easily created
and inserted as movie ingredients using the Flash authoring tools. Bitmap or JPEG
images and QuickTime video clips can be imported into a Flash movie as well. Sounds
compressed using ADPCM or MP3 standard are embedded in a movie in one of the two
forms: event sound, which is played in response to certain event such as mouse-click,
and streaming sound, which is played in synchronization with the advance of the movie.
According to the format of Flash [18], all these ingredients are encoded separately in
the data file of a Flash movie (SWF file) such that they can be easily recognized and
extracted. This differs fundamentally from pixel-level media formats such as image and
video. Moreover, a Flash movie can recursively consist of embedded Flash movies,
which are defined as a special type of ingredients. An embedded movie can have its own
ingredients and support their dynamic effects.

• Dynamic effect. A Flash movie is composed of a sequence of frames that are played
in a certain order subjected to user interactions. With the progression of frames, movie
ingredients can be placed on the current frame, removed from it, or changed with respect
to their positions, sizes, shapes, and angles of rotation. The spatio-temporal features of
the movie ingredients, as well as the spatio-temporal relationships among them, make
up of some high-level dynamic effects, such as morphing, motion, resizing, which also
suggest/contribute to the meaning of a movie.

• User interactivity. In contrast to a passive media such as streaming video, a Flash movie
can be an interactive one in the sense that a user can interfere with the presentation of
the movie. As an example, by clicking a button on a movie frame the user can let the
movie “jump” to a frame prior to the current frame, while clicking another button may
cause the movie jump to a frame behind the current one. Consequently, an interactive
Flash movie may have multiple presentations, with each of them being the result of a
certain series of user behaviors. That also explains why Flash movies can be made into
computer games which involve extensive user interactions.

From a user’s point of view, the content characteristics on the three aspects mentioned
above are important clues through which users may likely compose queries for Flash
movies. For example, a user may search for the movies “accompanied by the song ‘Yes-
terday’, movies “containing the text ‘Lord of rings”, or movies “describing the scene of
a descending sun”. To support such queries, features need to be defined to represent the
movie content characteristics, and retrieval models and query specification methods are
required for searching movies based on these features. Unfortunately, since the intrinsic
complexity of Flash movies surpasses that of any traditional media format (e.g., images are
neither dynamic nor interactive; videos do not support interactivity), Flash retrieval cannot
be fully addressed by the existing retrieval methods. Rather, it calls for a variety of new
techniques to be devised for the indexing and query processing of the content characteristics
mentioned above. For example, the modeling of user interaction in multimedia data, which
is required for Flash retrieval, remains almost an unexplored area except for the work of
Adali et al. [1].

SEARCHING FOR FLASH MOVIES ON THE WEB 499

From another perspective, however, since a Flash movie can be viewed as a diverse
collection of traditional media objects, many existing retrieval methods can serve as the
“component technologies” for Flash retrieval. Specifically, text ingredients in movies can
be processed by traditional IR techniques [21], and the indexing of image, video, and
audio ingredients can largely benefit from the various content-based retrieval techniques
for images [20], videos [24], and audios [11]. Moreover, database queries using declarative
query language such as SQL [8] can be designed and applied to the retrieval by structured
features, such as the shape and color of graphic ingredients. Finally, the dynamic movie
effects can be partially addressed by techniques on modeling spatial/temporal data (e.g.,
video), although the complexity of the dynamic effects supported by Flash exceeds the
capability of these techniques. Examples of such techniques include the 2-D strings [3] and
quad-trees [22] representation for spatial data, temporal database techniques surveyed in
[19], and the video retrieval model using spatio-temporal attributes in the VideoQ system
[4].

As a general rule, human users are inclined to conduct queries using high-level concepts,
that is, to search desired data by their semantic meanings rather than their compositional
features. The content characteristics described above do not directly reflect movie semantics
and are therefore insufficient and inconvenient for users, especially non-professional users,
to conduct effective queries. However, deriving the semantic meaning of a movie from its
bits and pieces is probably a problem as hard as image understanding, despite the fact that
as a vector-based media Flash conveys semantics at a higher level than that of pixel-based
medias such as image or video. For example, it is easier to recognize a moving circle with
orange color from a Flash movie than from a MPEG video, but it is extremely difficult to
decide whether this circle represents a rising sun or a moving basketball. Nevertheless, it
is still feasible to calculate a limited set of semantic features from the primitive features,
such as category (MTV, game, cartoon, etc.), pace (fast, slow, static, etc.), and so on.

2.2. A contextual perspective

Besides their internal content, the external context of Flash movies provides important
clues that can be utilized to facilitate the retrieval of Flash. We investigate the contextual
information on two aspects: (1) the contextual text in the web pages where Flash movies
are embedded, and (2) the hyperlinks among the web pages, as discussed below.

Most Flash movies are contained in and delivered with web pages. A Flash movie is
embedded into a web page through a reference (in the HTML file) to the Flash Player
as an external object, with the full path of the Flash data file (i.e., SWF file) given as
the parameter. Visually, the movie occupies a rectangular area in the web page and is
surrounded by the text, images, or other media objects in the web page, among which the
text is of particular interest. The contextual text of a movie refers to the textual parts of a web
page that are most descriptive to the meaning of the embedded movies. Typical contextual
text includes the name of a movie file, the title of the web page, and most importantly,
the text spatially adjacent to the movie according to the layout of the web page. A Flash
retrieval tool can utilize these contextual texts to support keyword-based search of Flash

500 YANG ET AL.

movies. The effectiveness of this approach has been demonstrated by its extensive usage in
both experimental retrieval systems, such as WebSEEK [23], and commercial image search
engines, such as Google [12] and Ditto [7], which perform well by using contextual text
only.

From a more global perspective, Flash movies are not only associated with web pages,
but also interconnected with each other via the hyperlinks among web pages. As a general
belief, a hyperlink suggests a certain degree of correlation between the two associated web
pages. In the context of Flash retrieval, this observation can be generalized to indicate
the relevance between Flash movies that are connected via hyperlinks and containment
relationships between movies and web pages. Consequently, link analysis techniques [1,15]
can be applied to explore the hyperlink structures to compute the (degree of) relevance
between movies, which offers a complementary source of knowledge for Flash retrieval.
In fact, link analysis technique has been extensively used in search engines recently. For
example, Google [1] has applied this technique to find the most “authoritative” web pages
out of the enormous number of relevant web pages returned from a single user query.
PicASHOW [15], a prototype image search engine, relies purely on hyperlink analysis
to deduce relevant images for user queries with the help of a traditional (textual) search
engine. Both the contextual text and hyperlink structure are employed in our integrated
Flash retrieval framework to be introduced in the next section.

3. An integrated framework for content- and context-based Flash retrieval

The content and context of Flash movies constitute two complementary sources of knowl-
edge based on which web-based Flash retrieval can be conducted. The content character-
istics are automatically extracted from movie files and can be directly matched against
user queries. However, these characteristics suffer from the lack of direct associations with
movie semantics, and the semantic features derived from them are also limited in descrip-
tive power. As a consequence, it is reasonable to expect that the results obtained from
content-based search are insufficient and inaccurate. This explains why all the commercial
image search engines are not content-based, and all content-based image retrieval systems
are still in laboratory stage. The drawback of content-based search can be partially reme-
died by the contextual text of movies, from which keywords are extracted to serve as the
semantic descriptions of the movies. On the other hand, the hyperlink structure tells how
Flash movies are related to each other, though it does not directly tell what each movie
is about. This leads to the use of hyperlink structure in a post-processing step to discover
more results (i.e., relevant movies) from a small set of known results.

In this section, we sketch an integrated framework for web-based Flash retrieval, which
explores the combination of both types of knowledge and allows them to benefit each other
for sufficient and accurate retrieval results. As illustrated in Figure 1, a set of primitive,
compositional features is extracted from each movie to describe its media ingredients,
dynamic effects, and the forms of user interactions in that movie. Moreover, semantic
features, which include a keyword description and descriptors such as thematic category and
pace, are derived from the low-level compositional features. Therefore, the compositional

SEARCHING FOR FLASH MOVIES ON THE WEB 501

Figure 1: The integrated framework for web-based Flash retrieval.

features tell “what a movie has in it”, while the semantic features answer “what a movie
is about”. The former is about “stuff”, while the latter is about “meaning”. Note that
the keyword description of a movie is extracted not only internally from the text objects
embedded in the movie, but also externally from the contextual text in the web page(s)
containing that movie. Section 4.2 provides a detailed description on how these semantic
features are extracted. The primitive features and the semantic features together form the
content characteristics of a movie. At the global level, all the movies are interconnected by
hyperlinks and containment relationships (between web pages and embedded movies) into
a large network graph.

In this framework, a user query is constituted by one or more search conditions, each of
them specifying a certain type of content characteristics (both primitive and semantic ones)
of the desired movies. For example, a typical query may specify that the desired movies
belong to the category of “Cartoon” and contain the keyword “Mother’s Day”. Internally,
a user query is processed in two steps. In the first step, the search conditions of the query
are matched against the content characteristics of each candidate movie in the database.
The movies matched with a high confidence are regarded as “seed results” in the second
step, where the hyperlinks among movies are explored to discover more and better results
from the seed results. We elaborate on the technical details of each step in the following
two sections.

4. Searching Flash by content

The content-based retrieval component of our approach is illustrated in Figure 2, which has
a 3-tier architecture responsible for the representation, indexing, and query processing of
Flash movies based on their content characteristics. The details of each layer are presented
below and some sample queries are given to demonstrate the usefulness of the whole
retrieval component. Interested readers can refer to our previous paper [26] for a more
detailed description of the content-based retrieval component for Flash movies.

502 YANG ET AL.

Figure 2: The content-based Flash retrieval component

4.1. XML-based representation (Representation layer)

Flash movies are delivered over the Internet in the form of Macromedia Flash (SWF) file.
Each Flash file is composed of a series of tagged data blocks, which belong to different
types with each type having its own structure. In essence, a Flash file can be regarded
as an encoded XML [9] file (a Flash file is binary while an XML file is ASCII), and
it can be converted into an XML file using tools like JavaSWF [14]. Each tagged data
block in a Flash file is mapped to an XML tag, which usually has attributes and embedded
tags representing the structured data inside the block. Data blocks of the same type are

SEARCHING FOR FLASH MOVIES ON THE WEB 503

Figure 3: Structure of Macromedia Flash (SWF) file.

mapped to XML tags with the same name. In the representation layer, we convert Flash
files into XML formats using Flash-To-XML Converter for two reasons: (a) XML files
are readable and thus convenient for us to understand the internal structure of Flash;
(b) XML format is a global standard facilitating interoperability with other Web-based
applications.

There are two categories of tags in Flash files: definition tags, which are used to define
various ingredients in a movie, and control tags, which are used to manipulate these
movie ingredients to create the dynamic and interactive effect of the movie. For example,
DefineShape and DefineText are typical definition tags, while PlaceObject (placing a movie
ingredient on the frame) and ShowFrame (showing the current frame) are typical control
tags. All the movie ingredients defined by definition tags are maintained in a repository
called dictionary, from which control tags can access these ingredients for manipulation.
The diagram shown in Figure 3 illustrates the interaction between definition tags, control
tags, and the dictionary.

4.2. Content characteristics (Indexing layer)

4.2.1. Compositional features As discussed in Section 2.1, the content of a Flash movie
can be characterized from three perspectives, namely, its heterogeneous media ingredi-
ents, dynamic effects, and the forms of user interactions. In the indexing layer of the
content-based retrieval component, the characteristics of Flash on the three facets are
modeled using the concepts of object, event, and interaction, respectively. Specifically,
object represents movie ingredients as texts, videos, images, graphics, and sounds; event
describes the dynamic effect of an object or multiple objects with certain spatio-temporal

504 YANG ET AL.

features; interaction models the relationships between user behaviors and events resulted
from the behaviors. Naturally, these three concepts are at different levels: an event in-
volves object(s) as the “role(s)” playing the event, and an interaction includes event(s)
as the consequence of user behaviors. The features describing the objects, events, and
interactions in a Flash movie, collectively regarded as the primitive part of the content
characteristics, are extracted by the Flash Parser from the XML representation of the movie
(cf. Figure 1). Despite the importance of temporal properties to a movie, we have not
explicitly defined temporal features in our framework, though the definitions of events,
interactions, and “pace” feature to be discussed later do involve temporal information.
This is due to two reasons: (1) there are no very effective representations and retrieval
methods for temporal features, and (2) because of (1), the chance that users issue queries
based on sophisticated temporal features (instead of rough ones like “pace”) is small.
The formal descriptions of each object, event, and interaction are presented immediately
below:

• Object. An object as a movie ingredient is represented by a tuple, given as:

object =< oid, o-type, o-feature >

where oid is a unique identifier of the object, o-type ∈{Text, Graphic, Image, Video,
Sound} denotes the type of the object, and o-feature represents its features. Obviously,
the particular types of features used to describe an object depend on the type of the
object.

Table 1 summarizes the most commonly used features for each type of object, which
are extracted from the corresponding definition tags in Flash files either directly or through
some calculations. For instance, keywords and font sizes (indicative of the importance of
text) can be directly obtained from a text object, whereas the shape of a graphic object
has to be deduced from the coordinates of the lines and curves constituting the con-
tour of the graphic object, provided that it is a simple shape such as rectangle or circle.

Table 1: Example features for various types of objects.

Object Features

Text Keywords, font size

Graphic Shape, color, number of edges

Image Size, color (histogram, coherence, etc.),
texture (Tamura texture, wavelet, etc.)

Sound MFCCs (mel-frequency cepstral coefficients)

Video Features of a set of key-frames, motion
vectors

SEARCHING FOR FLASH MOVIES ON THE WEB 505

Table 2: Example features and applicable objects of actions.

Action Applicable objects Features

Show All but sound Position, start/end frame

Motion All but sound Trail, start/end frame

Rotate All but sound Angle of rotation, location, start/end
frame

Resize All but sound Start/end size, location, start/end
frame

Morph Graphic Start/end shape, number of frame

Play Sound, video Current frame

Trace All but sound Closeness to mouse

Navigate N/A Target URL

The feature extraction techniques for each media type are widely available (see, e.g.,
[11,20]).

• Event. An event is a high-level summarization of the spatio-temporal features of object(s),
denoted as:

event = < eid, {action}n > (n = 1, . . . , N)

action = < object, a-type, a-feature >

where eid is a unique identifier of the event, followed by a series of actions. Each action
is a tuple consisting of an object involved as the “role” of the action, a-type as the type of
the action, and a-feature as the attributes of the action. Each type of action is described
by a particular set of features and can be applied to certain type(s) of objects (e.g., only
graphic objects can be morphed). The relationships among an action type, its applicable
objects, and its features (which are derived from control tags) are summarized in Table 2.
Two action types require more explanation: (1) “trace” is the action of an object following
the movement of the mouse cursor in the movie frame; (2) “navigation” is an action of
a web browser being launched and directed to a specified URL, and therefore it does not
involve any object.

Compared with the existing models [4,13,26], the concept of event provides a compact,
semantics-flavored representation of spatio-temporal features, since the predefined action
types directly address the human perception on the dynamic effects of a movie. On the
other hand, it is also powerful in terms of expressiveness, mostly because an event can have
multiple actions. For example, a graphic object that is moving and resizing simultaneously
over frames can be modeled by an event consisting of two actions describing the motion and
resizing of the object respectively. Such a multi-action event can be also used to model the
recursively embedded movies in a main Flash movie (cf. Section 2). Although an embedded
movie is defined by a definition tag DefineSprite, we model it as an event whose actions

506 YANG ET AL.

Table 3: Example features for different interactions

Interaction Features

Button Event (press, release, mouse-over, mouse-click,
mouse-up), position

Keyboard Key code

Mouse Action (drag, move, click, up), position

describe the dynamic features of its ingredients (which are modeled as objects). Another
definition tag that is modeled as event is the DefineMorph tag, which is decomposed into a
graphic object and an event describing the morph of this object.

• Interaction. The concept of interaction describes the relationship between user behavior
and the event caused by the behavior. Its formal definition is given as follows:

interaction =< iid, i-type, {event}n, i-feature > (n = 1, . . . , N)

where iid, i-type, and i-feature represent the identifier, type, and features of the interaction
respectively, and {event}n is a set of events triggered by the interaction. The type of
interaction indicates the device through which a user action is conducted, including button,
mouse, and keyboard. Button is a special movie ingredient for the purpose of interaction, and
it responses to mouse and keyword operation as a normal button control does. Interactions
involving buttons are classified as “button” interactions, even though they may also involve
keyboard and mouse operations.

The features for each type of interaction are summarized in Table 3. For a button
interaction, for example, an important attribute is the button event, such as mouse-over,
mouse-click. Similar to even features, the features of interactions and the triggered events
are extracted from the control tags of Flash files.

4.2.2. Semantic features The objects, events, and interactions describe the low-level
characteristics of a Flash movie’s content, i.e., “what the movie has”. In comparison,
semantic features describe or imply the meaning of a movie, i.e., “what the movie is about”.
Instead of having people to manually annotate the movies’ semantic features, we derive
them from the low-level compositional features. Given the difficulty of understanding movie
semantics, however, the semantic features that are computable from the compositional
features cannot reach the level at which human users would describe movie semantics. For
example, it is very hard, if not impossible, to determine a scene of a person walking in the
street merely from the numerous objects constituting the scene. However, these semantic
features are still more amenable to users to compose effective queries than their low-level
counterparts. For example, a query like “find movies containing a red circle and a green
triangle” is of limited practical use, while a query like “find a MTV Flash movie with

SEARCHING FOR FLASH MOVIES ON THE WEB 507

keywords ‘Heal the World’ ” can be much more meaningful and useful. Particularly, we
consider the derivation of the following semantic features:

• Keyword description. Keyword is the most desirable mean through which average users
can express their queries, as indicated by the extensive use of the keyword-based search
method in nearly all commercial search engines. The keywords describing a Flash movie
are collected from two sources. First, many movies contain text objects, from which
keywords can be extracted after filtering out stop words and stemming. Here, the stop
words include the common stop words in the area of information retrieval as well as those
unique to Flash movies, such as “repeat”, “click”, and “play”. This source is not adequate
since many movies do not have text objects, and even for those having text objects,
keywords are not always extractable because of their graphics-based representation. As
discussed in Section 2.2, a complementary source of keywords is from the contextual
text in the web pages containing a movie. Specifically, within the web page containing
a movie, we draw keywords from the title, anchor text, and the text within a certain
distance from the movie. Keywords from the contextual text are added into the keyword
description of the movie after having the HTML tags and stop words stripped. The
keyword description is represented as a term vector where the keywords are weighted
using TF ∗ IDF scheme.

• Pace. This feature refers to rate of the performance of a movie. It is a reflection of both
the speed and the time span of the events being portrayed in a movie and has a direct
influence on the user perception about the atmosphere, or mood, of the movie. The pace
of a movie can be calculated as a function of the number and sizes of moving objects,
the speed of their motion, the length (in terms of frame count) of the motion, etc., as
detailed in [5]. For example, a Flash movie as a shooting game is likely to be full of
objects moving violently throughout all the frames, which create a tense and excited
feeling among users, while a MTV movie containing slow actions and nearly static
scenes results in a calm and peaceful atmosphere. The pace feature calculated from these
primitive features is converted into discrete values such as “violent”, “action”, “slow”,
“static”, etc.

• Category. Flash movies can be classified into different categories according to their pur-
poses, such as game, cartoon, MTV, commercial advertisements, etc. Since the movie
category is a very useful clue for users to compose effective queries, automatic classi-
fication of Flash movies is highly desired. A close examination reveals that the typical
movies of each category possess some distinct primitive features, through which the
movies can be classified with reasonable accuracy. We conclude the features representa-
tive of each movie category through a statistical study of a large number of typical movies
belonging to each category. For example, an MTV movie must contain a streaming sound
throughout the movie but normally no event sound, and it usually has little interaction
and a relatively large file size (over 500 KB). In contrast, an advertisement movie often
contains the hyperlink to a company’s website, and its size is normally small. Due to the
variety of the features, a rule-based classification method is insufficient. Therefore, we
train a Naive Bayes classifier from pre-classified training movies and use it to classify
new movies. The details of this work can be found at [6].

508 YANG ET AL.

In conclusion, content characteristics of a Flash movie can be represented as the primi-
tive compositional features of objects, events, and interactions, plus the semantic features
including keyword description, pace, and category, i.e.,

movie =< objectm, {event}n, {interaction}t , description, pace, category >

Other semantic features can be defined as long as we know how to derive them from the
primitive movie features. The retrieval of Flash movies based on these content characteris-
tics is described in the next subsection.

4.3. Query processing (Retrieval layer)

As shown in Figure 2, the retrieval layer consists of three individual retrieval modules, which
are used for matching objects, events, and interactions based on their respective features.
Since user queries may involve movie features on multiple aspects, a movie retrieval engine
is designed to decompose a user query into a series of sub-queries for objects, events, and
interactions that can be processed by underlying retrieval modules, and then integrate and
translate the results returned from these modules into a list of relevant movies. In addition,
the movie retrieval engine also deals with user queries involving the semantic features
of movies. In the following, we describe each retrieval module and the movie retrieval
engine in detail. In particular, we define some high-level functions to summarize their
functionalities.

• Object retrieval module. This module accepts an object type and object features as input,
and returns a list of objects of the specified type that are ranked by their similarity to the
given features. The retrieval process is summarized by the following function:

object-list : SearchObject(o-type, o-feature)

where object-list is a list of <oid, score> pairs with the score indicating the similarity of
each object to the feature specified by parameter o-feature. If o-feature is not specified, all
objects of the given type o-type are returned. Note that the “search space” of this operator
covers all objects of every movie in the database. Thus, the returned objects may belong to
different movies.

The type of features specified as search condition varies from one type of object to another.
Even for the same type of object, diverse types of features can be used. For example, we
can query for image objects either by submitting a sample image or by designating the
dominant color as “red”. Therefore, various retrieval techniques are needed to cope with
different object features: cosine-similarity is used as the similarity metric for matching
textual objects represented as term vectors; color histogram based similarity metric is used
for image and video objects; DB-style retrieval is used for structured discrete features such

SEARCHING FOR FLASH MOVIES ON THE WEB 509

as the shape of graphic objects. Due to the similarity-based matching for some objects, the
returned objects are ranked in descending order of their similarities. If the matching is not
similarity based, the results are ordered randomly.

• Event retrieval module. To search events, we need to specify search conditions for not
only actions but also objects as the “roles” of the actions:

event-list : SearchEvent(a-t ype, a-feature, object-list)

This function returns a list of events having at least one action that satisfies all the
following three conditions: (1) the type of the action is equal to a-type, (2) the feature
of the action is similar to a-feature, and (3) the object involved in the action is within
object-list. If either a-feature or object-list or both of them are not given, the returned
events are those with at least one action satisfying conditions (1) and (3), (1) and (2), or
only condition (1). The event-list is of the same structure with object-list, except that the
elements in it are events. One point worth particular attention is that the ranking of events
in event-list is fully determined by the similarity of their action features with a-feature, and
is not subject to the ranking of objects in object-list. Moreover, since only one action can be
specified in SearchEvent, the query for multi-action events is handled by firstly performing
SearchEvent based on each desired action, and then finding the events containing all the
desired actions by intersecting multiple event-list returned from SearchEvent.

• Interaction retrieval module. The retrieval of interactions is conducted by the following
function:

interaction-list : SearchInteraction(i-t ype, i-feature, event-list)

The semantics of this function, its parameters, and its return value are similar to those
of SearchEvent. The event-list specifies the scope of events at least one of which must be
triggered in every interaction returned by this function. Similarly, to search for an interaction
that causes multiple events, we need to perform this function for each desired event and
integrating the results to find the interactions causing all the desired events.

• Movie retrieval engine. The results returned by individual retrieval modules are objects,
events, and interactions, while the real target of the user queries is typically Flash movies.
A primary function of the movie retrieval engine is to translate the retrieved objects
(and events, interactions) into a list of relevant movies, as defined by the following
function:

movie-list : Rank(object-list | event-list | interaction-list)

510 YANG ET AL.

The movies in movie-list are those containing the objects in object-list, and their similarity
scores (and therefore ranks) are identical to their corresponding objects in object-list. As
an exception, if more than one object in object-list belongs to the same movie, the rank and
similarity score of the movie are decided by the object with the highest rank. The Rank
function taking event-list or interaction-list as parameters has similar syntax and semantics
as the one taking object-list as the parameter.

Besides searching movies by their objects, events, and interactions, ordinary users are
more likely to conduct their queries by specifying the semantic features of the desired
movies. The movie retrieval engine also deals with such semantic queries using the function
given below:

movie-list : SearchMovie(keyword-set, category, pace, interactivity)

where keyword-set is a set of keywords describing the desired movies, and category, pace,
and interactivity are semantic descriptors specifying the desired movies. Not all parameters
are required to be specified. A list of movies is returned with each one associated with a
similarity score indicating the degree at which the movie satisfies the specified semantic
features.

Moreover, it is common that a user query may specify multiple search conditions. To
deal with such multi-condition queries, we need to merge multiple lists of movies retrieved
based on each search condition into a single list giving the final ranking of similar movies.
The Merge function is proposed for this purpose:

movie-list : Merge({movie-list}n, {weight}n)

where {movie-list}n denotes n movie lists that are obtained based on different search
conditions, and {weight}n contains the weight indicating the relative importance of each
condition, which is preferably specified by users. If not specified, all the weights are
assumed to be 1. Each movie in the returned movie list must appear in at least one input
list, and similarity score of the movie (and thus its rank) is determined by the weighted sum
of its similarity score in each input list (if it is not in a particular list, its similarity there is
assumed to be zero).2 It does not enforce any temporal or other constraints. As an example,
consider the movies from two input lists. Let the first list contain movies with event A,
while the second list contain movies with event B, and the output of the merge function be
movies with both A and B. Currently there is no mechanism in our framework to specify
and enforce the temporal relations between A and B, such as “A proceeds A” or “A and B
happens at the same time”.

SEARCHING FOR FLASH MOVIES ON THE WEB 511

4.4. Sample query processing

The functions defined above, when used in combination, can support rather sophisticated
queries of Flash movies. In this subsection, we describe the processing of some sample
queries to demonstrate the usage and expressive power of these functions. Note that all
these queries target at realistic sample Flash movies we have collected from the Web.

Example 1 (Search by object). A user trying to find Flash movies about the film “Lion
King” through a poster (as an image file ‘lion-king.jpg’) can issue his query as: Find all
Flash movies that contain images similar to a poster of the film “Lion King”. This query
can be processed as:

Rank(SearchObject(image, ‘lion-king.jpg’))

Example 2 (Search by semantic features) A user who wants to search for MTV movies
of a specific song, say, Joan Lennon’s “Imagine”, may express his query as: Find all
Flash movies that have keyword “John Lennon” and “Imagine” and belong to the “MTV”
category. This query can be handled by combining the results of a search based on the
keyword and another search based on the song:

SearchMoive({"John Lennon", "Imagine"}, ‘MTV’)

Example 3 (Search by event) A query for movies containing the scene of “sunset” can
be expressed as: Find all Flash movies that contain a red circle descending from the top of
the frame to the bottom. The processing of this query requires specifying both the desired
object and its dynamic effect, as formulated below

Rank(SearchEvent(motion, ‘descending’, SearchObject(graphic, ‘red circle’)))

Example 4 (Search by interaction, event, and keywords) Since Flash movies used as
commercial advertisements sometimes contain the links to the companies, a query for
Flash advertisements of, say, BMW cars, can be expressed as: Find all movies that have
keyword ‘BMW’ and a button by clicking which the BMW website will be opened in a web
browser. This query can be formulated and processed by a combination of several functions
as follows:

Merge ({SearchMovie(‘BMW’),

Rank(SearchInteraction(button,‘mouse-click’,

SearchEvent(navigate, ‘www.bmw.com’)))})

512 YANG ET AL.

Figure 4: The illustration of the link mining algorithm.

5. Mining Flash by context

For a given user query, the results obtained from the content-based Flash search described
in Section 4 can be insufficient and inaccurate, partially due to the fact that the content
characteristics of movies are not adequately descriptive of movie semantics. As discussed
in Section 2.2, a remedy to this problem is to explore the hyperlinks among web pages
containing embedded Flash movies, which indicate semantic relevance among the movies.
For this purpose, a link mining algorithm is devised to expand an initial set of results
(which are returned by content-based search) to a more complete and accurate set of final
results.

To illustrate the link mining algorithm, Figure 1 is converted and redrawn in the form
of a network model as shown in Figure 4, where each node represents either a web page
or a Flash movie, and each link denotes either a hyperlink between two web pages or
the containment relation between a movie and a web page. The link mining algorithm is
based on the intuitive notion of similarity propagation: the similarity (to the query) can be
propagated from one node to another through the links between them. To expand and refine
the results of a content-based search, we set the similarity of the node denoting each initial
result to its similarity score obtained in the content-based search, and set the similarity of
all other nodes to zero. Then, we let the similarity score to flow among the nodes through
the links in the network. When the propagation finishes, the similarity flowed to each node
defines its final similarity to the query.

Specifically, suppose the network can be represented by its adjacency matrix M,
where each off-diagonal element mij is set to one if there is a link between node Ni

and Nj, or to zero if there is no link between them. All the diagonal elements are
set to zero. The propagation process is modeled over discrete steps t = 0, 1, . . . , T .

We define S(t) as the similarity vector at step t, whose element si(t) denotes the sim-
ilarity of node Ni (a web page or a Flash movie) to the query in this step. In the
initial vector S(0), the elements corresponding to the movies as initial results are set
to their similarity scores calculated in the content-based retrieval process, while other

SEARCHING FOR FLASH MOVIES ON THE WEB 513

elements are set to zero. A single step of similarity propagation can be formulated
as:

S (t + 1) = [αM + (1 − α) I] S (t) t = 0, 1, . . . , T

where I is an identity matrix, and α is a parameter in the range of [0,1], which determines
the amount of similarity that flows through the links, with larger α corresponding to a larger
flow of similarity. In our implementation, α is set to 0.4, and T is set to 10 in order to gather
sufficient results. A single round of similarity propagation is illustrated in Figure 4, where
the flows of similarity are denoted by dashed arrows. The number of propagation iterations
strikes the balance between the computational complexity of the algorithm and the scope
and quality of the retrieval result. More iterations of propagation usually generate a larger
number of results highly relevant to the query, but also entail greater computational cost.
The similarity vector S(N) after the propagation process gives the final similarity of all the
nodes (including the nodes denoting Flash movies) to the user query.

The link mining algorithm expands a set of “seed results” matched from content-based
search to discover additional results, which are not matched based on their content char-
acteristics but potentially relevant to user queries. Although it undoubtedly improves the
coverage of the retrieval results, the quality of the additional results depends on two factors,
namely, the accuracy of the seed results as well as the quality of the links being explored.
Naturally, seed results of high relevance to a query and hyperlinks between relevant web
pages usually lead to high-quality results. In practice, we only use the results matched with
high confidence in the content-based retrieval phase as the input of the link mining algo-
rithm, so as to improve the quality of the results. However, so far there is no mechanism to
evaluate the quality of hyperlinks in terms of the degree of the semantic relevance between
the associated web pages.

6. An experimental Flash search engine

To demonstrate the feasibility of our proposed framework, an experimental Flash search
engine named FLAME has been implemented, which is introduced in this section.

According to Section 4.3, our approach supports retrieval of Flash movies based on their
semantic features including keyword description, category, and pace, or their primitive
features of media ingredients, dynamic effects, or user interactions, or a combination of
them. This great variety poses a challenge on user interface design. A good user interface
should allow users to compose various types of queries conveniently, as well as to display
the retrieved Flash movies in an appropriate layout. The interface of our experimental
system is displayed in standard web browsers and accessed remotely over the Internet.
In order to achieve good visual experience, we allocate various query functions into two
separate interfaces. As shown in Figure 5, the main interface supports Flash retrieval
based on semantic features only, where a user can input query keywords and specify the
category, and pace of the desired movies. The specified search conditions are matched with
the corresponding semantic features of each movie, and the matched movies are used as

514 YANG ET AL.

Figure 5: The main interface of FLAME.

“seeds” to discover more results using the link mining algorithm presented in Section 5.
The “thumbnails” of the retrieved movies (i.e., movies with condensed sizes) ranked in
descending order of their similarity to the query are displayed in the lower pane of the
interface. Below each “thumbnail” is a hyperlink labeled with “Details”, by clicking which
the corresponding movie is shown with its original size in a separate window.

The main interface contains a hyperlink labeled as “Advanced Search” pointing to the
second interface (see Figure 6), which allows users to compose more sophisticated queries
by specifying both the semantic features and the primitive features of the objects, events,
and interactions in the desired movies. Since primitive features are more visual oriented than
their semantic counterpart, the visualization of query specification methods is essential to the
convenience and productivity of users. In the “Advanced Search” interface, users can specify
various movie ingredients (including text, images, graphics, videos, sounds) appearing in
desired movies with respect to their features, dynamic effects, and user behaviors triggering
the effects. Different features are specified in different manners. For example, graphic
objects are specified by their shape (chosen from a list of shape icons), size (chosen from
a drag-down box), and dominant color (chosen from a color palette), while the features of
images are specified by submitting a sample image. The desired dynamic effects of each
ingredient in the movie can be designated using the drag-down box in the column labeled
as “Effect”, and the user behavior triggering the event can be specified using the drag-down
box in the column labeled as “Behavior”.

This interface arrangement is based on the belief that keyword and other semantic
descriptors are the most natural and preferred ways for users to express their requests,

SEARCHING FOR FLASH MOVIES ON THE WEB 515

Figure 6: The advanced search interface of FLAME.

a “rule of thumb” proved by many commercial search engines. Meanwhile, providing
sophisticated query possibilities in a separate interface allows professional users to conduct
complicated and powerful queries without confusing non-professional users.

In our current work, we have not conducted a quantitative evaluation of the retrieval
performance (e.g., in terms of precision and recall) of the experimental system for two
reasons: (1) there is no Flash collection yet serving as standard dataset for testing retrieval
systems (indeed to the best of our knowledge, FLAME is the first retrieval system developed
specifically for Flash); (2) due to the intrinsic complexity of Flash, there are likely a
variety of subjective criteria regarding the relevance of Flash movies to a given user query.
Therefore, it is very difficult to define an objective “ground truth” for the test dataset.
Nevertheless, we have conducted some preliminary experiments to evaluate certain aspects
of the system, such as the effectiveness of semantic features, the processing time, the details
of these experiments can be found in [5,27].

7. Conclusions and future work

This paper has investigated the problem of web-based Flash retrieval, which is critical to
the better utilization of the proliferating online Flash resource but has been unfortunately
overlooked by the research community. In this paper, we have presented an integrated
framework for Flash retrieval based on both the content and the context of Flash movies.
The presented framework consists of two components: a content-based retrieval component,

516 YANG ET AL.

which relies on the content characteristics of movies at compositional and semantic levels,
as well as a context-based retrieval component, which explores the contextual information
such as the texts and hyperlinks surrounding the movies. An experimental Flash search
engine system has been implemented based on the suggested framework.

Although this paper covers a broad range of research issues, there remains much room
for future research regarding Flash retrieval and management. In particular, the feature sets
used to describe Flash movies can be expanded to include more sophisticated ones such
as temporal and spatial features. We also plan to investigate the role of human-computer
interaction for better management and retrieval of Flash. A foreseeable work is to adopt
relevance feedback technique on Flash retrieval to enhance the retrieval performance based
on user evaluations. On the other hand, the research on Flash retrieval can also be generalized
to the retrieval of other types of multimedia representations largely existing on the Web,
such as PowerPoint, SMIL [25], etc.

Notes

1. If not indicated explicitly, we use “movie” to refer to “Flash movie” in this paper.

2. Note that this function implements only the simplest method of merging multiple similarities, further discussion

of which is itself a separate research topic and is beyond the scope of this paper.

References

[1] S. Adali, M. L. Sapino, and V. S. Subrahmanian, “An algebra for creating and querying multimedia
presentations,” ACM Multimedia Systems 8(3), 2000, 212–230.

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine.” in Proc. of the 7th Int.
World Wide Web Conf., 1998, pp. 107–117.

[3] S. K. Chang, Q. Y. Shi, and C. Y. Yan, “Iconic indexing by 2-D strings,” IEEE Tran. Pattern Anal. Machine
Intell. 9(3), 1987, 413–428.

[4] S. F. Chang, W. Chen, H. J. Meng, H. Sundaram, and D. Zhong, “VideoQ: An automated content based
video search system using visual cues,” in Proc. ACM Int. Multimedia Conf., 1997, pp. 313–324.

[5] D. W. Ding, J. Yang, Q. Li, L. P. Wang, and W. Y. Liu, “Towards a flash search engine based on expressive
semantics,” in Proc. of 13th Int’l Conf. on World Wide Web, 2004, pp. 472–473.

[6] D. W. Ding, J. Yang, Q. Li, L. P. Wang, and W. Y. Liu, “Automatic detection of flash movie genre using
bayesian approach” in Proc. of IEEE Int’l Conference on Multimedia and Expo (ICME), Taipei, Tawan,
2004 (CDROM).

[7] Ditto image search engine http://www.ditto.com
[8] R. Elmasri and B. Navathe, Fundamentals of Database Systems, 2nd Edition. The Benjamin/Cummings

Publishing Company, Inc., Redwood City, CA, 1994.
[9] Extensible Markup Language (XML) http://www.w3.org/XML/

[10] Flash Kit http://www.flashkit.com/index.shtml
[11] J. Foote, “An overview of audio information retrieval,” ACM Multimedia Systems 7, 1999, 2–10.
[12] Google http://www.google.com
[13] V. N. Gudivada and Raghavan, “Design and evaluation of algorithms for image retrieval by spatial similarity,”

ACM Trans. Information Systems 13(2), 1995.
[14] JavaSWF. http://www.anotherbigidea.com/javaswf/
[15] R. Lempel and A. Soffer, “PicASHOW: Pictorial authority search by hyperlinks on the web,” in Proc. 10th

Int. World Wide Web Conf., 2001, pp. 438–448.

SEARCHING FOR FLASH MOVIES ON THE WEB 517

[16] Macromedia, Inc., www.macromedia.com
[17] Macromedia Flash Player adoption statistics www.macromedia.com/software/player census/flashplayer
[18] Macromedia Flash File Format (SDK). http://www.macromedia.com/software/flash/open/licensing/fileformat/
[19] G. Ozsoyoglu and R. Snodgrass, “Temporal and real-time databases: A survey,” IEEE Trans. on Knowledge

and Data Engineering 7(4), 1995, 513–532.
[20] Y. Rui, T. Huang and S. Chang, “Image retrieval: current techniques, promising directions and open issues,”

Journal of Visual Communication and Image Representation 10, 1999, 1–23
[21] G. Salton, and M. J. McGill, Introduction to Modern Information Retrieval. McGraw-Hill Book Company,

1983.
[22] H. Samet, “The quadtree and related hierarchical data structures,” ACM Computing Surveys 16(2), 1984,

187–260.
[23] J. R. Smith, and S. F. Chang, “Visually searching the web for content,” IEEE Multimedia Magazine 4(3),

1997, 12–20.
[24] S. W. Smoliar and H. J. Zhang, “Content based video indexing and retrieval,” IEEE Multimedia 1, 1994,

62–72.
[25] Synchronized Multimedia Integration Language (SMIL) http://www.w3.org/AudioVideo/
[26] J. Yang, Q. Li, W. Y. Liu, and Y. T. Zhuang, “Search for flash movies on the web,” Prof. of the 3rd Int’l

Conf. on Web Information Systems Engineering, Workshop on Mining for Enhanced Web Search, Singapore,
2002.

[27] J. Zhai, J. Yang, Q. Li, Liu W. Y., and B. Feng. “Rich media retrieval on the web—A multi-level indexing
approach,” in Proc. of 12th Int’l World Wide Web Conf., 20–24 May 2003, Budapest, Hungary.

