
World Wide Web: Internet and Web Information Systems, 8, 287–316, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s11280-005-0646-x

XQBE: A Graphical Environment to Query XML
Data

DANIELE BRAGA braga@elet.polimi.it
ALESSANDRO CAMPI campi@elet.polimi.it
Politecnico di Milano - Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, 20133,
Milano, Italy

Published online: 1 August 2005

Abstract

XQuery, the standard query language for XML, is increasingly popular among computer scientists with SQL
background, since XQuery and SQL require comparable skills. However, these experts are limited in number,
and the availability of easier XQuery “dialects” could be extremely valuable. With this motivation in mind, we
designed XQBE, a visual dialect of XQuery inspired by the QBE language (Query by Example). Coherent with
the hierarchical nature of XML, XQBE uses one or more hierarchical structures to denote the input documents
and one structure to denote the document produced in output. These structures are annotated to express selection
predicates; explicit binding edges connecting the nodes of these structures visualize the input/output mappings.
This paper presents XQBE through several examples and describes the main features of our implementation of the
language, a visual editor coupled with an XQBE-to-XQuery translator. Indeed, the XQBE front-end is a general
purpose user-friendly visual query interface, capable of providing access to any data storage system that exposes
XQuery APIs. Available schema information can be exploited to guide users in querying data sets they are not
familiar with. Also, switching between the visual and textual versions of the same query could be helpful for
XQuery learners.

Keywords: XML, query languages, visual interfaces

1. Introduction

The diffusion of XML in many applicative fields sets a pressing need for provid-
ing the capability to query XML data to a wide spectrum of users, including those
with minimal or no computer programming skills at all. This paper describes a user
friendly interface, based on an intuitive visual query language, that we developed for this
purpose.

The success of the QBE paradigm [29] demonstrated that a visual interface to a query
language is effective in supporting the intuitive formulation of queries when the basic
graphical constructs of the language are close to the visual abstraction of the underlying data
model. Accordingly, while QBE is a relational query language, based on the representation
of tables, XQBE (XQuery By Example) is based on the use of annotated trees, so as to
adhere to the hierarchical nature of the XML data model. The syntax and semantics of
XQBE are formally defined in [5].

288 BRAGA AND CAMPI

1.1. Motivation and design principles

XQuery [28], promoted by the W3C (World Wide Web Consortium), is the official textual
language for querying XML data. This language, however, is far too complicated for
occasional or unskilled users, only aware of the basics of the XML data model or simply
conscious of the schema of the documents they have to query. Nevertheless, this basic
knowledge should be enough to allow any user to formulate queries with a suitably simple
(maybe ad hoc) query language. In this paper we assume the reader is familiar with XQuery;
if that was not the case, a good example driven introduction is the W3C Use Case [27].
In any case, we trust that our visual queries are readable and comprehensible also to those
without a specific XML background.

XQBE was designed with the twofold objective of being intuitive, according to the
aforementioned principles, and easy to map directly to XQuery, so as to be a GUI capable of
running on top of any existing XQuery engine. XQBE includes most of the expressive power
of XPath, allows for arbitrarily deep nesting of XQuery FLWOR expressions (the basic For-
Let-Where-Orderby-Return building blocks of the language), supports the construction of
new XML elements and permits to restructure existing documents. However, the expressive
power of XQBE is limited in comparison with that of XQuery. As an example, XQBE does
not support user defined functions, as we believe that a user confident with this abstraction
can directly use XQuery; another limitation of XQBE concerns the support for disjunction.
These limitations are precise design issues, as we believe that a complete but too complex
visual language would fail both in replacing the textual one and in addressing most users’
needs.

The particular purpose of XQBE makes usability one of its critical success fac-
tors, and we therefore kept an eye on this aspect during the whole design and im-
plementation process. In this perspective, the set of visual constructs evolved to the
current XQBE syntax, with which we believe we reached a good trade off between
the need for a neat graphical characterization (with different constructs for different
concepts) and the fact that an unreasonably large set of symbols would be rather
confusing.

1.2. Paper organization

Section 2 presents XQBE by means of several examples taken from or inspired by the W3C
“XML Query Use Cases” [27], then Section 3 presents our implementation of XQBE,
discussing the architecture, how XQBE is translated into XQuery, and how the availability
of schema information can benefit the query composition process. The paper concludes
with Section 4, where previous related research work is discussed.

2. XQuery by example

In order to introduce the look and feel and the basic features of XQBE we first show
the XQBE version of some simple queries, taken from one of the W3C XML Query

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 289

Figure 1. A sample document (www.bn.com/bib.xml).

Use Cases [27], the one named “XMP”, which is based on the XML fragment of
Figure 1.

2.1. Simple queries

The first query, q1 (named Q1 in [27]), reads “List books published by Addison-Wesley after
1991, including their year and title”. In XQuery:

290 BRAGA AND CAMPI

Figure 2. A query with selection conditions (q1).

<bib>

{ for $b in doc("www.bn.com/bib.xml")/bib/book
where $b/publisher="Addison-Wesley" and $b/@year>1991
return <book year={$b/@year}>

{ $b/title}
</book>

}
</bib>

The XQBE version of q1 is shown in Figure 2. A query always has a vertical line in
the middle, that separates the source part (on the left) from the construct part (on the
right); so the query has a “natural” reading order from left to right. Both parts contain
labeled graphs that represent XML fragments and express properties of such fragments
(like conditions upon values, ordering properties, etc.): the source part describes the XML
data to be matched in order to construct the query result, while the construct part spec-
ifies which parts are to be retained in the result and (optionally) which newly generated
XML items are to be inserted. The correspondence between the components of the two
parts is expressed by explicit binding edges across the vertical line; these edges con-

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 291

nect the nodes of the source part to the nodes that will take their place in the output
document.

All the XML elements in the source part of the target documents are represented as
labeled rectangles; attributes are represented as black circles, with the attribute name on
the arc between the rectangle and the circle; PCDATA content is represented as an empty
circle. Black and empty circles together are named value nodes. Value nodes may be labeled,
so as to express conditions on the values they represent.

The query in Figure 2. extracts data from the document of the running example: the source
part matches all the book elements with a year attribute whose value is greater than 1991
and a publisher subelement whose PCDATA content equals “Addison-Wesley”. As
shown by the grey node above the bib node in the source part, documents are referenced
in XQBE by means of square grey root nodes, labeled with a URL to locate the XML
documents that are the target of the query.

In the construct part, the paths that branch out of a bound node indicate which of
its sub-items are to be retained, thus “projecting” the bound node. In q1 only the title
and publication year of the selected books are retained. The grey triangular node below
the title node expresses the inclusion into the result of the entire title fragments,
obtained by means of projection from each book element. This notation is always used to
synthetically include entire fragments in the result.

The binding edge between the book nodes states that the query result shall contain as
many book elements as those matched in the source part. Rectangular nodes in the con-
struct part represent XML elements that are included in the result in direct correspondence
with the extraction of some XML data from the source documents (either by includ-
ing in the result the extracted elements themselves or by projecting and renaming such
elements).

The trapezoidal bib node above the book node means that all the generated books are
to be contained into one bib element. This node represents a newly generated element,
and new elements are always represented as trapezia in XQBE. Trapezia can have their
short edge on the upper side or on the bottom side. These two node types impose different
cardinality constraints on the newly generated elements:

– If the short edge is above, one new element is generated to contain all the items cor-
responding to the nodes reached by the outgoing arcs—i.e. all the subelements will be
wrapped by the same tag.

– If the short edge is below, each item corresponding to the sub-nodes is contained into
a different instance of the newly generated element—i.e. each instance is wrapped by a
different tag.

2.2. Element projection and renaming

Query Q3 in [27] reads “For each book in the bibliography, list the title and authors,
grouped inside a result element”. In XQuery:

292 BRAGA AND CAMPI

Figure 3. Projection and renaming (q2).

<results>

{ for $b in doc("www.bn.com/bib.xml")/bib/book
return <result>

{ $b/title }
{ $b/author }

</result>

}
</results>

In this query there are no selection conditions, but only a “projection” with “renaming”
of all the book elements. In the XQBE version (q2 in Figure 3) the binding edge between
the book element and the result element causes the construction of a result element
for each book in the source document. The author and title elements below result
extract the corresponding subelements of book, thus projecting thebook element bound to
result.

The previous queries project the book elements “in breadth”, but dealing with trees
also requires the ability to project them “in depth”, i.e. to take far descendants of a given
element and place them as direct subelements of that element, pruning the elements in the
middle.

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 293

Figure 4. Breadth/depth projection (q3).

As an example consider a query that reads “For each book list only the title and the
surnames of the authors”. In XQuery:

for $b in doc("www.bn.com/bib.xml")/bib/book
return <book>

{ $b/title }
{ $b/author/last }

</book>

In this case the author elements are pruned from the generated result, and are repre-
sented in XQBE drawing the author node in the construct part with dashed lines (see q3
in Figure 4); last elements are directly inserted into the book elements. Dashed nodes
in the construct part are named “ghost” nodes.

2.3. Join between two documents

Query q4 (Q5 in [27]) constructs a joint book catalogue, collecting information from
different documents. It reads “For each book found at both bn.com and amazon.com, list
the title of the book and its price from each source”. In XQuery:

294 BRAGA AND CAMPI

Figure 5. Join between two documents (q4).

<books-with-prices>

{ for $b in doc("www.bn.com/bib.xml")//book,
$a in doc("www.amazon.com/review.xml")//entry

where $b/title = $a/title
return

<book-with-prices>

{ $b/title }
<price-amazon> { $a/price/text() } </price-amazon>

<price-bn> { $b/price/text() } </price-bn>

</book-with-prices>

}
</books-with-prices>

This query performs the “inner join” of the books of two documents based on their title.
In the XQBE query of Figure 5 the equality between the values is expressed by means
of the confluence into a join node (a rhombus) of the arcs outgoing from the PCDATA
nodes of both title elements. More generally, the language allows to specify conditions
by labeling join nodes with binary predicates (<, <=, !=, . . .); equality is the default
if unspecified. The price-amazon and price-bn elements are explicitly bound to
include them in the result.

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 295

Figure 6. Shortcut for joins.

Also note that book and entry1 are not root elements in the documents referenced in
the query. The crosses on the arcs outgoing from the root nodes extend the inclusion to all
levels of depth; cross on arcs express the transitive closure of the containment relationship,
reminding of the Kleene cross, and corresponds to the use of the ‘//’ XPath step in XQuery.

The join in q4 is based on a single value, but XQBE provides a useful and intuitive
shorthand for all the cases in which equality is expressed for complex fragments. If we
consider a join based on the authors’ full name, an exhaustive representation would be that
of Figure 6(a), while the compact notation supported by XQBE is that of Figure 6(b) (where
one node does the job of the twelve nodes of Figure 6(a)). Figure 6(c) shows that the join of
q4 could have exploited the same shorthand, even if the title fragment only consists of
an element with PCDATA content. The general principle states that whenever a confluence
occurs on a rectangular node this requires that the entire fragments that originate from that
node are equal. The semantics of this deep equality is the same as that of the deep-equal()
function in XQuery, when applied to elements with complex content.

2.4. Document restructuring

XQBE allows to express many kinds of document transformations with the constructs
illustrated so far. We now show an example of flattening of hierarchical data structures.
Query q5 (Q2 in [27]) reads “Create a flat list of all the title-author pairs, with each pair
enclosed in a result element”. In XQuery:

<results>

{ for $b in doc("www.bn.com/bib.xml")/bib/book,
$t in $b/title, $a in $b/author

return <result>

{ $t }
{ $a }

</result>

}
</results>

296 BRAGA AND CAMPI

Figure 7. Document restructuring (q5).

Its XQBE version is shown in Figure 7. The result element in the construct part
has no direct relationship with the book element in the source part. It is a trapezoidal
node with the short node below, so its cardinality is determined by the nodes reached by
its outgoing arcs. These nodes are bound to nodes with a common ancestor; a result
element is to be generated for each title-author couple, but not all the couples are to be
considered: the “shared” book in the source part imposes that only the titles and
authors that are contained into the same book are considered. Also note that the
correspondence between the titles and the authors in the match and construct part
has to be explicitly declared by means of binding edges, because it cannot be automatically
determined.

2.5. Filtering nodes in the construct part

Consider the following XQuery statement, that translates the query “Make a list of all the
books with their title, including the editors only if they are affiliated to CITI”:

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 297

Figure 8. Conditions in the construct part (q6).

for doc("www.bn.com/bib.xml")/bib/book
return <book>

{ $b/title }
{ $b/editor[affiliation="CITI"] }

</book>

This query enforces a constraint (affiliation to CITI) that does not intervene in the
selection of the matching source data, but only prunes the extracted XML items during
the construction of the result. This is typically done in XQuery by placing filters into the
path expressions of the return clause. In the graphical version the affiliation constraint
cannot be specified in the match part (this would prune all the books without an editor
from CITI), but has to be put in the construct part. For this purpose we introduce the notion
of filtering nodes, represented in double lines (see q6 in Figure 8.). In general, a double
lined subtree expresses a restriction that applies to the element in which the subtree is
rooted.

298 BRAGA AND CAMPI

Figure 9. Sorting (q7).

2.6. Sorting

Consider query q7 (actually an extension of q1), that reads “List books published by
Addison-Wesley after 1991, including their year and title, sorting the retrieved books in
lexicographic order” (Q7 in [27]):

<bib>

{ for $b in doc("www.bn.com/bib.xml")/bib/book
where $b/publisher="Addison-Wesley" and $b/@year>1991
order by $b/title
return <book>

{ $b/@year }
{ $b/title }

</book>

}
</bib>

The only difference with the XQuery version of q1 is the addition of theorder by clause.
Accordingly, in the graphical representation we only need to add aSORT node (see Figure 9).

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 299

Figure 10. Nesting and negation (q8).

2.7. Nesting and negation

As a last example consider the following XQuery statement (the XQBE version is in
Figure 10):

<list>

{ for $b in doc("www.bn.com/bib.xml")/bib/book
where some $a in $b/author satisfies

some $f in $a/first/text() satisfies
($f = "Jack" and
not(some $p in $b/publisher/text() satisfies

($p = "Addison-Wesley")))
return <Jack-s-book>

{for $a in $b/author
where some $f in $a/first/text() satisfies

($f = "Jack")
return <FullName> { $a/* } <FullName> }

300 BRAGA AND CAMPI

{$b/title}
</Jack-s-book>

}
</list>

It translates q8, that reads “List all books not published by Addison-Wesley and with an
author whose first name is Jack. Rename each of these books in <Jack-s-book>, and only
retain the title and the full name of the authors whose first name is Jack”. The query in
Figure 10 contains negated nodes, represented in the source part by means of dashed lines,
which impose a negative condition to the node they are attached to, and namely the non-
existence of an XML fragment that matches the negated configuration. In this example we
ask for book elements inside which no publisher elements exist with a PCDATA content
equal to “Addison-Wesley”.

Note that the notation for dashed nodes is overloaded: they represent negated conditions
when used in the source part and represent elements that are not to be retained in the
result when used in the construct part. The meaning is clearly different, but in both cases
they match XML items that must not be contained in the data. This overlap of notation is
intuitive in the opinion of the majority of those people who evaluated our interface.

2.8. XQBE vs. QBE

Due to the major complexity of the XML data model w.r.t. flat relational tables and to the
major complexity of XQuery w.r.t. SQL, XQBE is more limited in comparison with XQuery
than QBE is in comparison with SQL; however, XQuery is Turing-complete. The major
legacy of QBE is its underlying philosophy: the idea of showing an example of a fragment
of interest to be matched against the source data set and an example of the structure of the
result to be constructed with the matching fragments.

When relational data is canonically converted to XML:

– Selection predicates are put directly on the leaves of the XQBE structures, which represent
values.

– Joins in XQBE have the same interpretation and effect than in QBE/SQL (as shown by
q4).

All the constraints expressed by the predicates in the source part must hold in conjunction,
as we decided that combining the structural complexity with the complexity of predicates
would exceed the expectations of the average XQBE users. Also, XQBE has nothing
comparable with the QBE “condition box”, which is meant to express complex predicates
- at least too complex to fit in the visual representation of a table; instead, we decided as
a design issue to disallow any constraint that cannot be expressed directly on the query
graphs.

Aggregate functions are available as well, but with limited grouping capabilities. In
particular, XQBE allows to synthetically and explicitly apply aggregate functions to groups

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 301

only if the native nesting structure within the data source reflects the desired grouping
criterium.

3. Our implementation of XQBE

XQBE is fully implemented in a tool environment based on a client-server architecture;
the implementation consists of about 120 Java classes. Along with the core capabilities
of drawing XQBE queries and generating their translation into XQuery, we have also
included a considerable infrastructure both for supporting the user in the editing process
and for program tracing and debugging. A prototype version is published on the Web; the
tool can be tried by downloading the client from [3].

3.1. Architecture

In our client-server implementation of XQBE, the client provides a visual editor for the
user, the server operates the XQBE-to-XQuery translation and then, if requested, executes
the query by invoking one or more XQuery engines. Clients installed on machines provided
with XQuery engines can also execute the queries locally.

The client and the server communicate by exchanging an internal representation of
queries in an intermediate XML format, named XQBEML, that is basically an XML de-
scription of the XQBE graphs. The XQBEML representation is extended with visualization
details of the query, so as to enable the graphic reconstruction of a query on the screen
in the format originally defined by the user. Of course the communication protocol also
supports the exchange of the result of the queries. An overall picture of the XQBE system
architecture is in Figure 11.

There are many reasons why we decided to base the implementation of XQBE on a
client-server architecture; the main one is that we could distribute the client as soon as it
was ready with basic editing capabilities, keeping under strict control the server with the
translation algorithm, which is not as stable as the client and has been evolving together
with the XQuery language specification (XQuery has been in a working draft state since
February 2001 and, at the time we are writing, it hasn’t become a recommendation yet). We
plan to distribute the server too, as soon as both the language and the translation algorithm
become stable.

Another reason for decoupling the editing features and the querying capabilities is the
chance that the XQBE editor is used as a thin client, possibly in a mobile scenario, on a
Java-enabled PDA. In such a scenario the only required features for the client are those of
drawing the query graphs and displaying the query result, without any requirement about
XQuery execution capabilities or persistent XML data storage.

3.1.1. The XQBE client. The client has the main objective of supporting and facilitating
the visual editing of the queries. The user is assisted with a strong syntactic feedback, that
prevents the composition of incorrect queries. A schema-driven editing mode is available,

302 BRAGA AND CAMPI

Local

Schema
Specification

Local
XML data

XQBE user

Driver to XQuery engines

Result displayer

Translation

Internet

SOAP response

SOAP request

Driver to XQuery engines

into XQuery
from XQBEML

XQBE Server

Syntax checker

Visual editor

XQBE Client

XML data
on the Web XML data

Serverside

Serverside
XQuery
engineengine

XQuery

Figure 11. Overall architecture of the XQBE system.

which allows to compose the XQBE graphs with few mouse clicks to confirm and include in
the query some nodes among the possible choices, incrementally and interactively offered
to the user, depending on available XML Schema or DTD specifications of the target
documents. These features are discussed in more detail in Section 3.3. Several snapshots
of the visual interface were presented in Section 2.

During the editing process, the XQBE constructs are internally represented as XQBEML
data; then they are either saved on the client or sent to the server. XQBEML maps the
graphical constructs to XML tags, grouped into categories that depend on their role ad
position (nodes or arcs, the side of the query they belong to, their shape); the properties of
each node or arc are represented as attributes of the corresponding XML tag. XQBEML
only represents the syntax (or topology) of the XQBE graphs; it contains no information
about the corresponding XQuery statement. For educational and debugging purposes, the
XQBEML representation of the query is visible on the client in a dedicated window.

When a query is completed and sent to the server for being processed, the application
protocol allows to request either a simple translation (so that the server only returns the
corresponding XQuery statement) or the query execution as well (so that the server also
returns the resulting XML data). If the client only asks for the translation, the returned
XQuery statement can be executed on a local XQuery engine; this mode is typical for queries
targeted to local or private data, while the remote execution is typical for queries upon data
available on the Web or for clients which are not provided with querying capabilities. The
XQBE client packs the query represented in XQBEML into a SOAP message with several
parameters that characterize the request, and sends it to the server.

3.1.2. The XQBE server. The server is implemented as a Web Service: when the server
receives a SOAP request containing the XQBEML specification of an XQBE query, it
executes the translation algorithm and then sends back a SOAP response containing the

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 303

generated XQuery statement. The part of the server that executes the translation is the core
of our architecture; the translation algorithm is described and exemplified in Section 3.2.
For tracing and debugging purposes, all requests are logged, together with the generated
XQuery statements.

The server is also capable of executing the generated statement on several server-side
XQuery engines. This optional feature is controlled by one of the parameters in the SOAP
message. The query can be executed by invoking the APIs offered by several different third
party query engines. The XML data produced as the result of the execution is packed in the
SOAP response and sent back to the XQBE client, in addition to the XQuery statement,
which is always included in the response.

Figure 12 shows that several XQuery engines can be simultaneously used to execute the
same query (an idle `halloworld’ query in the example). Note that a `Remote Execution’
checkbox allows to control if the query is to be executed client-side or server-side (provided
that the specified engines are available). Also note that the response time is displayed
within the result, so that the performances of different XQuery implementations can be
“synoptically” compared. None of the available XQuery implementations was correct and
complete at the time we deployed the architecture, and each engine prototype had its own
limitations and syntax restrictions. In order to use a common interface for them all, we
implemented an `adaptation layer’ that hides some differences and possibly rewrites parts
of the generated XQuery statements so that they are accepted by each engine (the simplest
rewriting, just to give one simple example, was the switch between the doc() and document()
functions, according to the different versions of the supported XQuery specification).

3.2. Implementation of the translation algorithm

This section describes the translation algorithm that takes as input a query, composed of a
set of directed acyclic graphs (DAGs) compliant with the topological constraints enforced
by the syntax of XQBE, and produces as output its XQuery translation. The description
considers q8 (in 2.7) to exemplify all the translation steps.

The algorithm first performs a pre-processing of the source part, so as to compute once
for all the variables and the predicative terms that will be later assembled into the for and
where clauses of the output query. The XQuery statement is then generated by processing
the construct part with a recursive traversal; this traversal combines intofor, where, and
return clauses the pre-computed terms of the source part. These clauses are assembled in
suitable FLWOR expressions, nested one into another according to the hierarchy of the tree
structure in the construct part (and therefore of the XML data fragments to be constructed).

3.2.1. Preprocessing. The source part is parsed to detect those graphical configurations
which map to variable definitions; these variables are used in the predicative conjunctive
terms that express join conditions and selection criteria, according to the labels on the leaf
nodes.

Variables are associated to some nodes in the source part; each variable is defined in
terms of a path expression, corresponding to the path that reaches the node in the graph.

304 BRAGA AND CAMPI

Figure 12. Query results from several XQuery engines.

These path expressions are constructed mapping each arc to the ‘/’ step (‘//’ if the arc is
labeled with the Kleene cross) and each node maps to its node label. Each path expression
either starts from a root node (corresponding to the root element of a source document)
or starts from another variable, already defined for a node above in the hierarchy. Several
kinds of nodes require the instantiation of a variable:

– One variable is instantiated for each node with a binding edge; such variable definitions
map to the for clauses in the XQuery statement, because binding edges control the
cardinality of the nodes in the result document. In q8, the book and author nodes in
the source part qualify for the instantiation of a variable, according to this criterium.

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 305

– Variables are instantiated also in correspondence with every bifurcation, i.e. a node with
multiple outgoing arcs. These variables will help in imposing that the items in the paths
branching from the node do belong to the same common ancestor. In q8 the book node in
the construct part would qualify also according to this criterium, even if it had no binding
edge; a variable for each considered book element is required in order to enforce that
each considered book by “Jack” is not published by “Addison-Wesley”. Without such a
variable, the query would extract all Jack’s books if some book by some other publisher
exists in the document.

– Leaf nodes with labels cause the instantiation of variables to express the selection con-
ditions they are labeled with; Join nodes originate predicative terms as well, taking
into account the comparator associated to the node (within further predicative terms);
such variable definitions are local to the where clauses of the XQuery statement. In
q8 two such variables are instantiated, in order to denote the PCDATA content of the
publisher and author elements.

All variables, paths, and predicative terms are generated with one depth-first traversal
of the nodes of the source part. The traversal orderly and incrementally constructs the
path expressions, generates unambiguous variable names during the descent, and builds the
predicative terms for all labeled leaf nodes and all join nodes. Join predicates corresponding
to a particular join node are built only when the join node has been accessed along all the
incoming paths, so that all variable definitions are available for expressing the comparisons,
as the variable names and path expressions are built during the descent.

Negated branches are visited in the same way, with the only restriction that the traversal
does not begin until all the positive nodes have been visited. This restriction corresponds
to the fact that the conjunctive where clauses are built with two levels of “nesting”, with all
the negated conjuncts within one term; it is thus guaranteed that all positive variables are
already available for building “mixed” predicative terms in the comparisons that take place
in the negated sub-clause.

Going back to q8, the preprocessing phase individuates four variables:

$b in doc("bib.xml")/bib/book
$f in $a/first/text()
$a in $b/author
$p in $b/publisher/text()

associated to the corresponding paths from the root node in the query graph. Two
conditions are extracted as well, upon the values of the leaf nodes: $f = "Jack" and
$p = "Addison-Wesley". The condition about the publisher is marked as negated.

3.2.2. Processing. A depth-first traversal of the construct part generates a FLWOR
expression2 for each node connected by a binding edge. The for clause of this FLWOR
expression defines the variable instantiated for the node on the other side of the binding.

Trapezoidal nodes are translated into trivial node constructors if their short edge is above,
while they are translated into FLWOR expressions if the short edge is below, because they

306 BRAGA AND CAMPI

require the inclusion into the result of as many new tags as the elements that are returned in
correspondence with the nodes placed below in the query hierarchy, which are constructed
by means of a FLWOR expression. In this second case the for clause contains as many
variable definitions as the nodes that are reached by the outgoing arcs of the trapezoidal
node, so that the cardinality of the generated element is that of all the combinations of
the contained items (according to the interpretation of this configuration as a Cartesian
product).

Whenever a bifurcation is encountered in the construct part, either the return clause of
the “current” FLWOR expression is generated, by recursively visiting the branching paths,
or a node constructor is generated, if the “current” node is not bound (and therefore the
bifurcation is just a step in the breadth/depth projection of a node already bound above).
We say that a node is bound if it has a binding edge, and that a path in the graph is bound
if it contains a bound node. Unbound paths in the construct part which are only composed
of ghost nodes are translated into path expressions that traverse the source data without
including the traversed items into the result document; such path expressions are possibly
enriched with filters if there are conditional nodes attached to such paths. Bound paths
and chains of regular element nodes map to recursively nested FLWOR expressions, as
they denote the inclusion of XML elements into the result and such elements have to be
generated in correspondence of XML items in the source data. Such elements are matched
in the for clauses of such expressions, and the corresponding output tags are constructed in
the corresponding return clauses.

We now briefly exemplify this processing applied to the construct part of q8. The traversal
starts from the trapezoidal (root) node, and generates a couple of <list> tags to contain
the rest of the query. The recursive visit then moves to the Jack-s-book node, which is
the vertex of a binding edge (a bound node) and thus originates a FLWOR expression. The
clauses of such expressions are built as follows.

The for clause binds only variable $b, associated to book which is the other vertex of
the binding edge.

The where clause originates from the two branches of the graph in the source part. The
branch on the right contributes with the positive condition about $f, while that on the
left with the condition about $p. These ingredients are combined in a two-level existential
clause:

some $a in $b/author satisfies
some $f in $a/first/text() satisfies

($f = "Jack" and
not(some $p in $b/publisher/text() satisfies

($p = "Addison Wesley")))

The return clause is built to generate the <Jack-s-book> tags and then a nested
FLWOR expression for the FullName node. The decision to generate a nested FLWOR
expression depends on the fact that the FullName node has a binding edge. The algorithm
then recursively generates the nested FLWOR expression binding $a and extracting only
a subset of the conditions, and precisely the about $f. The choice not to consider again

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 307

the condition on the publisher depends on the fact that $b has already been bound in the
outer FLWOR expression, ant that binding is still visible within the scope of the FLWOR
expression currently under construction. This visibility corresponds to the fact that the
two binding edges of q8 are in a precise hierarchical relationship, so that the one above
influences the one below. Such an influence would not hold if the edges were attached to
nodes placed on parallel paths in the construct part. Accordingly, the corresponding nested
FLWOR expressions would not have a common scope, as they would not be nested one
into another (due to the depth-first recursive traversal strategy).

Besides the nested FLWOR expression, the algorithm also inserts a path expression that
inserts into the result the corresponding titles, so as to conclude the “breadth” projection
of the extracted book elements, thus completing the translation.

For the sake of readability, all the XQuery versions of queries q1 to q7 were presented
as they are in the W3C Use Cases or how a human programmer would write them. Our
algorithm translates the XQBE corresponding queries in a form that is equivalent, but more
regular and more suited to the automatic generation.

3.3. The visual interface and its usability

This section briefly describes the features of our implementation of the XQBE visual
interface.

3.3.1. The XQBE editor. The XQBE client is a Java stand-alone application that provides
an editing interface similar to that of many editors for visual languages based on graphs.
Users can draw their queries in windows composed of two parts, corresponding to the
source and construct parts. The query graphs are built by choosing the graphical constructs
from the toolbar on the left; any portion of these graphs can be cut and pasted from a query
to another and the queries can be compiled to XQuery and executed with a single click.

Figure 13 demonstrates three views for query q1 (from Section 2.1). The snapshot on the
left shows the “XQBE” panel, with the visual query. The snapshot above on the right shows
the XQuery statement obtained from the translation server; we recall that it is not equal to
the W3C version given in 2.1, but it is equivalent (the automated translation systematically
exploits existential quantifications for expressing selection conditions). The snapshot below
on the right shows the result of the execution of the query upon the data set of the running
example (obtained by means of the default query engine, which is currently IPSI-XQ [18]).

The tool also offers the possibility to associate textual annotations to the queries. This
feature mainly aims at helping unskilled users, but is also an attempt to make an XQBE
query more self-explanatory, since often a filename is too short or simply unsuited for
capturing the semantics and the motivation of a query. For educational purposes, in the ex-
amples distributed with the downloadable tool the annotations contain the natural language
specification of the queries and a short explanation of the use of the constructs relevant for
that query.

308 BRAGA AND CAMPI

Figure 13. Editing, translation and execution of q1.

The tool assists the user in many ways during the editing process, and provides syntactic
feedback to facilitate the building of correct queries. Many incorrect configurations are pre-
vented by the tool while editing, while other feedbacks are provided at query compilation
time. The syntactic feedback is not limited to detecting “topological” errors, but provides
default automatic and semi-automatic corrections to typical or frequent errors, both during
the query editing process and at compile time. For some “typical” errors the tool oper-
ates default automatic correction, but warns the user, who might discard the proposed
modifications.

3.3.2. Schema-guided composition. The tool allows the user to build the graphs of a
query by using a guided construction, with the wizard shown in Figure 14. Users can load
a DTD or XML Schema definition for the target data (step 1 in the Figure), thus enabling
the tool to suggest the allowed subelements of each selected item by showing its first-
level expansion. The suggestions take into account the cardinality and mutual exclusion
constraints. Sequences of repeated items are iteratively inserted by clicking on special
“element generators”. The Figure shows the first steps in loading the DTD of the running
example:

<!ELEMENT bib (book*)>

<!ELEMENT book (title,(author+|editor+),publisher,price)>

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 309

Figure 14. The schema-guided composition interface.

<!ATTLIST book year CDATA #REQUIRED>

<!ELEMENT author (last,first)>

<!ELEMENT editor (last,first,affiliation)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT affiliation (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT price (#PCDATA)>

Exploiting the DTD, the user can choose the root bib element and expand it to its
sub-nodes. The wizard (step 2 in the Figure) only shows one book element generator as
descendant of bib, with a new icon that suggests the containment of multiple elements.
Indeed, according to the DTD, the only legal subelements are book elements. Also, the
node is shown in grey and in a smaller size, so as to stress the fact that it is just a suggestion
to the users, not yet a node included in the query.

Users can “confirm” the nodes they want to include (which become black) with a single
click, and then recursively expand them in turn, thus incrementally constructing a tree with
a navigational “explorative” paradigm. Step 3 in Figure 14 shows what happens clicking on

310 BRAGA AND CAMPI

Figure 15. The schema-guided composition interface (continued).

the generator icon: a black book icon is generated, and the grey one remains for generating
other book nodes. When the user disables the wizard (as in step 4) all the unconfirmed
nodes disappear, while the selected (black) ones become regular components of the query.

Figure 15 shows how the wizard expands a book element into the tree of its components
(step 5, where only the year attribute and the publisher have been confirmed and are
therefore in black). Step 6 shows that, with a further descent, only the PCDATA node of
the publisher is shown in grey (there is no further legal content for publishers): the
skeleton of the source part of q1 has been constructed with six mouse clicks and is now
ready for being labeled with the selection conditions.

The construction wizard also prevents the user from confirming an element if it is
in mutual exclusion with a confirmed subelement, and exploits colors to highlight these
constraints; the forbidden elements are displayed in red, clicking on them has no effect,
and they become selectable again only when the alternatives are deselected. According
to the DTD of the running example, authors are mutually exclusive with editors, and
Figure 16 shows that choosing an author disables the editors (which are still displayed, but
in red), while choosing an editor disables the authors.3

The description of the schema-aware guided construction has focused on a DTD specifi-
cation, because the equivalent XML Schema would be too verbose to fit these pages. Indeed,
the user would not notice the difference, as the wizard is strictly based on the XQBE data
model, that only distinguishes between tags, attributes, and text. XML Schema specifi-
cations (and also DTDs in their full capabilities) are more expressive than the constraints

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 311

Figure 16. Mutual exclusion in the guided composition.

representable with the composition wizard; indeed,.dtd and .xsd files are parsed in order
to extract only those constraints that are applicable to XQBE. The data model underlying
XML Schema specifications, in particular, is far richer than that of XQBE, which does
non support data types, namespaces, substitution groups, and so on. Once again, according
to the XQBE “philosophy”, a too sophisticated interface has been discarded in favor of a
wizard capable of giving intuitive support for querying data sets whose structure is only
partially known or unknown at all.

Last, it is worth noting that the schema is exploited only for giving suggestion, not for
validating purposes: a user can deliberately draw a structure not compliant with a particular
schema, say, for finding those documents that violate that schema.

312 BRAGA AND CAMPI

3.4. Usability test

The usability of the language and the tool is the primary characteristic of XQBE. The
intended final user of XQBE is any user who is at least partially aware of the basics of the
XML data model and has a query to be performed on some XML data whose schema is
somehow well known, either because its XSD/DTD specification is available or because the
user is confident with it. We performed an extensive testing activity in order to obtain the
desired level of usability. XQBE was not born with the current syntax and semantics; instead,
it evolved through several intermediate steps up to the present version. Every version of
the language was tested mainly by graduate and undergraduate students of the database
courses at Politecnico di Milano. We taught (and still teach) the basics of the XML data
model and the syntax and semantics of XQBE in a two hour introductory lecture; XQuery
in its full complexity comes in our courses only after this introduction, and we evaluate the
students’ ability to formulate simple and not-too-simple queries and transformation both
on paper and using the tool. The evolution of the language and the prototype took into
account several kinds of feedbacks which e got from users. As an example, the first version
of XQBE, which was published in [4], had two different kinds of binding edges, separately
addressing the problem of transferring values from the source to the construct part and the
problem of enforcing the cardinality of the sets of XML fragments included in the result. In
the first revision we decided that one king of binding was sufficient and decided to disallow
multiple binding edges for a node in the construct part - two characteristics which were
perceived as confusing. Several cycles of revision led us to establish the final XQBE version
[5], accurately trading between the expressive power and the intuitiveness and ease of use
of the language. The same type of analysis was applied also to the tool: and the version
presented in this paper is also the result of several revisions.

4. Related work

Since the early days of XML, several textual query languages were proposed and analyzed
by the database community [16,19], far before the proposal of XQuery [28]. XQBE, in
turn, comes after a long stream [7] of research on graph-based logical languages, started
many years ago with QBE [29], a language based on the visual representation of tables and
conditions.

A relationally complete visual query language that supports recursion (specifically de-
signed for relational data) is QBD∗ [1]. QBD∗ is characterized by a uniform graphical
interface for both schema specification and query formulation, based on the use of an
Entity-Relationship oriented data model. The main idea of the system is to provide the
users with a large set of graphical primitives, in order to friendly extract the required infor-
mation from the database schema and deal uniformly with the same graphical environment
during all the interaction with the database, without textual intermediate. According to this
approach, the visual data model of XQBE is isomorphic to the target XML data, and the
availability of a schema specification is exploited for “navigating” along the hierarchies at
query formulation time.

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 313

The first graph-based query languages with recursion were G [14] and G+ [15]; they are
targeted to data sets represented as graphs and are general enough to query also relational
data, as long as it is represented as a graph. Graphlog [13] is a direct descendant of G+. A
uniform notation for object databases where nodes represent objects and edges represent
relationships was used in Good [24]. A Good-like notation was used by G-Log [25], a
logic-based graphical language that allows to represent and query complex objects by
means of directed labeled graphs. An evolution of this language, WG-Log [12], was built to
query internet pages and semi-structured data adding to G-Log some hypermedia features.
A direct descendent of WG-Log is XML-GL [11], an early and self-standing visual query
language for XML, designed far before XQuery.

XQBE can be considered a successor to XML-GL, however with several new features.
Due to the specificity of XQuery, new constructs have been introduced from scratch and
some constructs of XML-GL have been revised. The semantics has significantly changed in
order to facilitate the translation into XQuery. Thanks to these extensions, several queries
not expressible with XML-GL are very easily expressible with XQBE (and with XQuery).
For example, XML-GL does not provide the capability to specify conditions in the construct
part, nor that of projecting “in depth” the extracted fragments without imposing at the same
time an existential condition in the left side of the query.

QSByE (Query Semi-structured data By Example [17]) is a graphical interface that
represents data as nested tables and extends the QBE paradigm to deal with semi-structured
data. MiroWeb Tool [2] uses a visual paradigm based on trees that implements XML-QL.
QBEN is a graphical interface to query data according to the nested relational model; the
users specify their queries with the operations of the nested relational algebra [20]. Equix [9]
is a form-based query language for XML repositories, based on a tree-like representation of
the documents, automatically built from their DTDs. Intra-document relationships cannot
be visually rendered. Equix has limited restructuring capabilities: the only restructuring
primitive is the introduction of new nodes, containing aggregation values (sum, count,
max, . . .). In [10] a new syntax for Equix is proposed, more user-friendly but limited
to searching the Web. BBQ [22] (Blended Browsing and Querying) is a graphical user
interface proposed for XMAS [21], a query language for XML-based mediator systems
(a simplification of XML-QL). In BBQ XML elements and attributes are shown in a
directory-like tree and the users specify possible conditions and relationships (as joins)
among elements. The expressive power of BBQ is higher w.r.t. Equix, but restructuring
capabilities are limited and aggregations are not supported.

PESTO [6] (Portable Explorer of STructured Objects) is an integrated user interface that
supports browsing and querying of object databases; PESTO allows users to navigate in a
hypertext-like fashion, following the relationships that exist among objects. In addition, it
allows users to formulate object queries through a unique, integrated query paradigm that
presents querying as a natural extension of browsing. PESTO includes support for basic
query operations (such as simple selections, value based joins, universal quantification,
negation, and complex predicates). VQBD [8] address the objective to explore an XML
document of unknown structure.

XQForms [26] is a generator of Web-based query forms and reports for XML data.
XQForms takes as input the XML Schema, a declarative specification of the logic of the

314 BRAGA AND CAMPI

query and a set of template libraries. The usage of these three different inputs allow a clear
separation between data to be queried, query logic and presentation of the results.

QURSED [23] allows the development of web-based query forms and reports (QFRs) for
XML data. QURSED produces XQuery-compliant queries. The QURSED Editor inputs the
XML Schema describing the structure of XML data and an HTML query form page (that
provides the visual part of the form page). The editor displays the XML Schema and the
HTML pages to the developer, who uses them to visually build the query set specification
and the query/visual association (that indicates how each parameter is associated to HTML
form). Then a compiler generates Java Server Pages, which control the interaction with the
end user.

5. Conclusions and future work

In this paper, we presented XQBE, a graphical query language that offers a visual interface
to query XML documents. This contribution may stimulate academic and industrial research
in a field that is fundamental to the success of XQuery for a wider audience.

We have also presented a prototype implementation of XQBE based on a client-server
architecture; it provides a visual editor for our proposed interface and translates graphical
queries into XQuery, so that it can be used in conjunction with any XQuery-compliant
query engine. The prototype can benefit of available schema specifications of the source
documents; such information can be exploited to guide the users in the composition of their
query, especially if they are not familiar with the data set they have to manage.

There are several potential opportunities for future work. The main undergoing extension
of is to allow the generation of XSLT translations for XQBE queries.

Another opportunity is that of specializing XQBE and its implementation with constructs,
primitives and capabilities specific to some applicative domain, to provide a simple and
visual language for “information extraction” tasks. We are currently planning an attempt
in this direction, in cooperation with a research group that develops a system for fast and
efficient access to digital libraries with semi-structured data.

From a usability viewpoint, we are designing an integrated environment to support both
XQuery and XQBE, where users can use the graphic tool to produce textual queries and/or
to produce the XQBE view of a given XQuery statement.

Acknowledgments

We wish to thank Stefano Ceri, Letizia Tanca, and Sara Comai for the interesting discussions
and useful suggestions. We are grateful to Enrico Augurusa, Alessandro Raffio, Massimo
Sarchi, and Luca Lulani for their fundamental help with the implementation; we also deem
valuable the contribution of Marco Sartor, Simone Tognetti, Alessandro Vacca, and Paolo
Tomasi

XQBE: A GRAPHICAL ENVIRONMENT TO QUERY XML DATA 315

Notes

1. The full schema and instance of review.xml are available in [27].
2. We recall that one of the basic constructs of XQuery is the so-called FLWOR expression, acronym of For-Let-

Where-Orderby-Return, the names of the clauses of the construct.
3. In the figure the nodes are labeled with the color they are displayed in (in case of the grey-scale print).

References

[1] M. Angelaccio, T. Catarci, and G. Santucci, “QBD∗: A graphical query language with recursion,” IEEE
Transactions on Software Engineering 16(10), 1990, 1150–1163.

[2] L. Bouganim, T. Chan-Sine-Ying, T.-T. Dang-Ngoc, J. L. Darroux, G. Gardarin, and F. Sha, “Miro web:
Integrating multiple data sources through semistructured data types,” in Proc. of the 25th Int. Conf. on Very,
Large Data, Bases (VLDB’99), Edinburgh, Scotland, UK, 1999, pp. 750–753.

[3] D. Braga, and A. Campi, 2003, "XQBE, W,eb Site". http://dbgroup.elet.polimi.it/XQBE.
[4] D. Braga, A. Campi, and S. Ceri, “A graphical environment to query XML data with XQuery,” in Proc. of

the ACM-SAC 2003, Melbourne, Florida, USA, 2003
[5] D. Braga, A. Campi, and S. Ceri, 2005, “XQBE (XQuery by example): A visual interface to the standard

XML query language,” ACM Transactions on Database Systems (TODS). To appear in June 2005.
[6] M. Carey, L. Haas, V. Maganty, and J. Williams, “PESTO: An integrated querybrowser for object databases”.

in D. McLeod, R. Sacks-Davis, and H. Schek (eds.), in Proc. of the 22nd Int. Conf. on Very, Large Data,
Bases (VLDB’96), 1996, pp. 203–214.

[7] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini, “Visual query systems: Analysis and comparison,”
ACM TODS—Transactions on Database Systems 8(2), 1997, 215–260.

[8] S. Chawathe, T. Baby, and J. Yeo, “VQBD: Exploring semistructured data (demonstration description),” in
Proc. of the ACM SIGMOD, 2001, p. 603.

[9] S. Cohen, Y. Kanza, Y. A. Kogan, W. Nutt, Y. Sagiv, and A. Serebrenik, “EquiX easy querying in XML
databases,” in WebDB (Informal, Proceedings), 1999, pp. 43–48.

[10] S. Cohen, Y. Kanza, Y. A. Kogan, W. Nutt, Y. Sagiv, and A. Serebrenik, “Combining the power of searching
and querying,” in 5th Int. Conf. on Cooperative, Information Systems, 2000.

[11] S. Comai, E. Damiani, and P. Fraternali, “Computing graphical queries over XML data,” ACM TOIS 19(4),
2001, 371–430.

[12] S. Comai, E. Damiani, R. Posenato, and L. Tanca, “A schema based approach to modeling and querying
WWW data,” in FQAS’98.1998, pp. 110–125.

[13] M. P. Consens, and A. O. Mendelzon, “The G+/GraphLog visual query system,” in Proc. of the 1990 ACM
SIGMOD, Atlantic, City, NJ, May 23–25, 1990, p. 388.

[14] I. F. Cruz, A. O. Mendelzon, and P. T. Wood, “A graphical query language supporting recursion,” in Proc.
of the ACM SIGMOD 1987, pp. 323–330.

[15] I. F. Cruz, A. O. Mendelzon, and P. T. Wood, “G+: Recursive queries without recursion,” in 2nd Int. Conf.
on Expert, Database Systems, 1988, pp. 355–368.

[16] M. Fernandez, J. Siméon, P. Wadler, S. Cluet, A. Deutsch, D. Florescu, A. Levy, D. Maier, J. McHugh, J.
Robie, D. Suciu, and J. Widom, 1999, “XML query languages: Experiences and exemplars,” http://www-
db.research.belllabs.com/user/simeon/xquery.ps.

[17] I. M. R. E. Filha, A. H. F. Laender, and A. S. da Silva, “Querying semistructured data by example: The,
Qsbye interface,” in Workshop on Information, Integration on the Web, 2001, pp. 156–163.

[18] Fraunhofer Gesellschaft IPSI: 2003, “IPSI-XQ — The, XQuery Demonstrator”. http://ipsi.fhg.de/oasys/
projects/ipsi-xq/index e.html

[19] Z. G. Ives and Y. Lu, “XML query languages in practice: An evaluation,” in Proc. of WAIM’00, 2000, pp.
29–40.

[20] G. Jaeschke and H. J. Schek, “Remarks on the algebra on non first normal form relations,” in Proc. of 1st
ACM SIGACT-SIGMOD, Symposium on the Principles of Database, Systems, 1982, pp. 124–138.

316 BRAGA AND CAMPI

[21] B. Ludaescher, Y. Papakonstantinou, P. Velikhov, and V. Vianu, “View, Definition and DTD, inference for
XML,” in Proc. Post-IDCT, Workshop, 1999.

[22] K. Munroe and Y. Papakonstantinou, “BBQ: A visual interface for browsing and querying XML,” in Proc.
of the 5th Working Conference on Visual Database Systems, 2000, pp. 277–296.

[23] Y. Papakonstantinou, M. Petropoulos, and V. Vassalos, “QURSED: querying and reporting semistructured
data,” in Proc. of the ACM SIGMOD, 2002.

[24] J. Paredaens, J. V. den Bussche, M. Andries, M. Gemis, M. Gyssens, I. Thyssens, D. V. Gucht, V. Sarathy,
and L. V. Saxton, “An overview of GOOD,” SIGMOD Record 21(1), 1992, 25–31.

[25] J. Paredaens, P. Peelman, and L. Tanca, “G-Log a declarative graph-based language,” IEEE, T,rans. on
Knowledge and Data Eng, 1995.

[26] M. Petropoulos, V. Vassalos, and Y. Papakonstantinou, “XML Query Forms (XQForms): Declarative, Spec-
ification of XML Query Interfaces,” in Proc. of the 10th WWW, Conference, 2001.

[27] W3C: 2004a, “XML, Query Use, Cases,” http://www.w3.org/TR/xmlquery-use-cases
[28] W3C: 2004b, “XQuery: An, XML, query language,” http://www.w3.org/XML/Query
[29] M. M. Zloof, “Query-by-Example: A data base language,” IBM, Systems Journal 16(4), 1977, 324–343.

