
World Wide Web: Internet and Web Information Systems, 8, 179–224, 2005
 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Automating Content Extraction of HTML
Documents

SUHIT GUPTA and GAIL E. KAISER {suhit,kaiser}@cs.columbia.edu
Columbia University, Department of Computer Sciences, New York, NY 10027, USA

PETER GRIMM pmg23@columbia.edu
Columbia University, Department of Electrical Engineering, New York, NY 10027, USA

MICHAEL F. CHIANG chiang@dbmi.columbia.edu
Columbia University, Departments of Ophthalmology and Biomedical Informatics, New York, NY 10032, USA

JUSTIN STARREN starren@dbmi.columbia.edu
Columbia University, Departments of Biomedical Informatics and Radiology, New York, NY 10032, USA

Online version published in December 2004

Abstract

Web pages often contain clutter (such as unnecessary images and extraneous links) around the body of an article
that distracts a user from actual content. Extraction of “useful and relevant” content from web pages has many
applications, including cell phone and PDA browsing, speech rendering for the visually impaired, and text sum-
marization. Most approaches to making content more readable involve changing font size or removing HTML
and data components such as images, which takes away from a webpage’s inherent look and feel. Unlike “Con-
tent Reformatting,” which aims to reproduce the entire webpage in a more convenient form, our solution directly
addresses “Content Extraction.” We have developed a framework that employs an easily extensible set of tech-
niques. It incorporates advantages of previous work on content extraction. Our key insight is to work with DOM
trees, a W3C specified interface that allows programs to dynamically access document structure, rather than with
raw HTML markup. We have implemented our approach in a publicly available Web proxy to extract content
from HTML web pages. This proxy can be used both centrally, administered for groups of users, as well as by
individuals for personal browsers. We have also, after receiving feedback from users about the proxy, created a
revised version with improved performance and accessibility in mind.

Keywords: DOM trees, content extraction, reformatting, HTML documents, accessibility, speech rendering,
text summarization

1. Introduction

Web pages are often cluttered with distracting features around the body of an article that
distract the user from the actual content they are interested in. These “features” may in-
clude pop-up ads, flashy banner advertisements, unnecessary images, or links scattered
around the screen. Automatic extraction of useful and relevant content from web pages
has many applications, ranging from enabling end users to accessing the web more easily
over constrained devices like Personal Digital Assistants (PDAs) and cellular phones to
providing better access to the Web for the disabled.

180 GUPTA ET AL.

Most traditional approaches to removing clutter or making content more readable in-
volve increasing font size, removing images, disabling JavaScript, etc., or a combination
of these methods, all of which eliminate the webpage’s inherent look-and-feel. Examples
include WPAR [15], Webwiper [35] and JunkBusters [27]. All of these products involve
hardcoded techniques for certain common web page designs as well as fixed “blacklists”
of advertisers. This can produce inaccurate results if the software encounters a layout that
it has not been programmed to handle. Another approach has been content reformatting
which reorganizes the data so that it fits on a PDA; however, this does not eliminate clutter
but merely reorganizes it. Opera [31], for example, utilizes their proprietary Small Screen
Rendering technology that reformats web pages to fit inside the screen width. We propose
a “Content Extraction” technique that can remove clutter without destroying webpage lay-
out, making more of a page’s content viewable at once. These techniques should also
work on web pages made up of multiple content bodies, even if they are separated by the
distracting features or with them interspersed within the different sections of content.

Content extraction is particularly useful for the visually impaired and blind [9]. A com-
mon practice for improving web page accessibility for the visually impaired is to increase
font size and decrease screen resolution; however, this also increases the size of the clutter,
reducing effectiveness. Screen readers for the blind, like Hal Screen Reader by Dolphin
Computer Access [22] or Microsoft’s Narrator [29], do not usually automatically remove
such clutter either and often read out full raw HTML. Webaim Screen Reader [34] and IBM
Homepage Reader [16] do attempt to enhance usability by pruning out duplicate pieces of
information, however, they tend to be slow and do not give enough control to the user in
directly selecting what a user may be interested in [9]. Therefore, both groups benefit from
extraction, as less material must be read to obtain the desired results.

Natural Language Processing (NLP) and information retrieval (IR) algorithms can also
benefit from content extraction, as they rely on the relevance of content and the reduction
of “standard word error rate” to produce accurate results [51], where the error rate is num-
ber of words incorrectly processed from the original format. Content extraction allows
the algorithms to process only the extracted content as input as opposed to cluttered data
coming directly from the web [46]. Currently, most NLP-based algorithms require writing
specialized extractors for each web domain [38,46]. While generalized content extraction
is less accurate than hand-tailored extractors, they are often sufficient [37] and reduce labor
involved in adopting information retrieval systems.

While many algorithms for content extraction already exist, it appears that few working
implementations can be applied in a general manner. Our solution employs a series of
techniques that address the aforementioned problems, and makes it easy to implement and
experiment with additional algorithms.

In order to analyze a web page for content extraction, we pass web pages through an open
source HTML parser, which creates a Document Object Model (DOM) tree, an approach
also adopted by Chen et al. [8]. The Document Object Model (www.w3.org/DOM) is a
standard for creating and manipulating in-memory representations of HTML (and XML)
content. By parsing a webpage’s HTML into a DOM tree, we can not only extract infor-
mation from large logical units similar to Buyukkokten’s “Semantic Textual Units” (STUs,
see [5,6]), but can also manipulate smaller units such as specific links within the structure

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 181

of the DOM tree. In addition, DOM trees are highly transformable and can be easily used
to reconstruct a complete webpage. Finally, increasing support for the Document Object
Model makes our solution widely portable.

One caveat is important to note. Determining the specific content that an arbitrary author
intended to portray or, more significantly from our perspective, which an arbitrary user
prefers to read, is very hard. Crunch extracts the “content” heuristically, with heuristics
customizable by an administrator and/or by a savvy user; there is probably no precise “one
size fits all” algorithm that could achieve this goal. In particular, we do not attempt to
model either author or user tasks, nor their corresponding context or intentions, but any
non-intrusive approach to doing so would also likely be heuristic and thus also imprecise.
Therefore, one of the limitations of our framework is that Crunch may remove items from
the web page that the user may be interested in, and may present content that the user is
not particularly interested in. One way to ameliorate this restriction may be to summarize
all removed materials in meaningful chunks, and produce this information in another pane
or at the bottom of the page; another approach may be to “learn” on a per-user and/or per
website basis, e.g., from data gathered via user studies like the one we report.

In Section 2, we discuss the existing solutions out there. In Sections 3 and 4, we describe
our approach at an abstract level and addressing system implementation issues, respec-
tively. We describe two versions of our proxy—Crunch 1 being simply the framework;
and Crunch 2 with substantial improvements to the framework with respect to the plug-
in API and the extensibility of the administrative interface. Section 5 presents the initial
findings from our ongoing user study. We consider potential future work in Section 6, fi-
nally concluding in Section 7. The appendices present additional materials for interested
readers.

2. Related work

There is a large body of related work in content identification and information retrieval that
attempts to solve similar problems using various other techniques. Finn et al. [13] discuss
methods for content extraction from “single-article” sources, where content is presumed
to be in a single body. The algorithm tokenizes a page into either words or tags; the page
is then sectioned into 3 contiguous regions, placing boundaries to partition the document
such that most tags are placed into outside regions and word tokens into the center region.
This approach works well for single-body documents, but destroys the structure of the
HTML and does not produce good results for multi-body documents, i.e., where content
is segmented into multiple smaller pieces, common on Web logs (“blogs”) like Slashdot
(http://slashdot.org). In order for content of multi-body documents to be suc-
cessfully extracted, the running time of the algorithm would become polynomial time with
a degree equal to the number of separate bodies, i.e., extraction of a document containing
8 different bodies would run in O(N8), N being the number of tokens in the document.

McKeown et al. [38,39] similarly use semantic boundaries to detect the largest body
of text on a webpage (by counting the number of words) and classify that as content.
This method works well with simple pages. However, this algorithm produces noisy or

182 GUPTA ET AL.

inaccurate results handling multi-body documents, especially with random advertisement
and image placement.

Rahman et al. [49] propose another technique that uses structural analysis, contextual
analysis, and summarization. The structure of an HTML document is first analyzed and
then decomposed into smaller subsections. The content of the individual sections can then
be extracted and summarized. Contextual analysis is performed with proximity and HTML
structure analysis in addition to “natural language processing involving contextual gram-
mar and vector modeling” [49]. However, this proposal has yet to be implemented. Fur-
thermore, while the paper lays out prerequisites for content extraction, it does not propose
methods to do so.

Many approaches have been suggested for formatting web pages to fit on the small
screens of cellular phones and PDAs. For instance, the Opera browser [32] uses the hand-
held CSS media type. Bitstream ThunderHawk [20] uses intelligent font resizing: “[It]
renders the text using the Kaasila family of fonts, fine tunes images using ThunderHawk’s
graphic scaling, compacts the data, and sends the page to the ThunderHawk client on the
wireless device” [21]. The Skweezer Proxy [26] is architected very similarly to Crunch
in that it operates as a proxy and modifies the content of the webpage before sending it to
the client. Sqweezer reformats web pages such that they wrap intelligently, which prevents
unnecessary side scrolling, simply by reorganizing the physical layout of the webpage
retaining all original content. In general, the reformatting for small screens approaches ba-
sically end up only reorganizing the content of the webpage to better fit on the constrained
device but still require a user to scroll and hunt for content.

Buyukkokten et al. [5,7] define “accordion summarization” as a strategy where a page
can be shrunk or expanded much like the instrument. They also discuss a method to trans-
form a web page into a hierarchy of individual content units called Semantic Textual Units,
or STUs. First, STUs are built by analyzing syntactic features of an HTML document,
such as text contained within paragraph (<P>), table cell (<TD>), and frame component
(<FRAME>) tags. These features are then arranged into a hierarchy based on the HTML
formatting of each STU. STUs that contain HTML header tags (<H1>, <H2>, and <H3>)
or bold text () are given a higher level in the hierarchy than plain text. This hierar-
chical structure is finally displayed on PDAs and cellular phones, but typically showing
different content than the original work. In particular, once the STU has been identified,
Buyukkokten et al. [5,6] perform summarization on the STUs to produce the content that
is then displayed on PDAs and cell phones. While Buyukkokten’s hierarchy is similar to
our DOM tree-based model, DOM trees remain highly editable because they abstract the
tags away from the content, unlike the STUs, but can easily be reconstructed back into
a complete webpage—although summarization filters could similarly be applied to select
subtrees. Further, DOM trees are a widely-adopted W3C standard, easing support and
integration of our technology.

Kaasinen et al. [36] discuss methods to divide a web page into individual units likened
to cards in a deck. Like STUs, a web page is divided into a series of hierarchical “cards”
that are placed into a “deck.” This deck of cards is presented to the user one card at a
time for easy browsing. The paper also suggests a simple conversion of HTML content
to WML (Wireless Markup Language), resulting in the removal of simple information

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 183

such as images and bitmaps from the web page so that scrolling is minimized for small
displays. The cards are created by this HTML to WML conversion proxy [36]. While
this reduction has advantages, the method proposed in that paper shares problems with
STUs. The problem with the deck-of-cards model is that it relies on splitting a page into
tiny sections that can then be browsed as windows. But this means that it is up to the user
to determine on which cards the actual contents are located, and since this system was
used primarily on cell phones, scrolling through the different cards in the entire deck soon
became tedious.

Chen et al. [8] propose a similar approach to the deck of cards method, except in their
case using the DOM tree for organizing and dividing up the document. They propose
showing an overview of the desired page so the user can select the portion of the page
he/she is truly interested in. When selected, that portion of the page is zoomed into full
view. One of their key insights is that their overview page is actually a collection of se-
mantic blocks that the original page has been broken up into, each one color coded to show
the different blocks to the user. This, very nicely, provides the user with a table of contents
from which to select the desired section. While this is an excellent idea, it still involves the
user clicking on the block of choice, and then going back and forth between the overview
and the full view.

None of these concepts solve the problem of automatically extracting just the content,
although they do provide simpler means in which the content can be found. These ap-
proaches perform limited analysis of web pages themselves and in some cases information
is lost in the analysis process. By parsing a webpage into a DOM tree, we have found that
one not only gets better results but has more control over the exact pieces of information
that can be manipulated while extracting content.

3. Our approach

Our solution employs multiple extensible techniques that incorporate the advantages of the
previous work on content extraction like accordion summarization and content discovery,
and attempts to avoid the common pitfalls like noisy results and slow performance. Since a
content extraction algorithm can be applied to many different applications, for example, in
the fields of NLP and IR, as well as assistive technologies like those that help the visually
impaired, we implemented it so that it can be easily used in this variety of cases. Through
an extensive set of preferences, the extraction algorithm can be highly customized for
different uses. These settings are easily editable through the GUI, through method calls that
have been exposed through a simple API, or direct manipulation of the settings file on disk.
The GUI itself can also easily be easily integrated (as a Swing JPanel for Crunch 1.0 or as
a standard widget for Crunch 2.0) into any Java project, or one can customize it directly.
The content extraction algorithm is also implemented as an interface for easy incorporation
into other programs. The content extractor’s broad set of features and customizability allow
others to easily add their own version of the algorithm to any product. Further discussion
on Crunch as a framework can be found in Section 4.2.

184 GUPTA ET AL.

In order to analyze a web page for content extraction, the page is first passed through
an HTML parser that corrects HTML errors and then creates a DOM tree representation
of the web page. (HTML on the Internet can be extremely malformed and most popular
browsers like Internet Explorer and Mozilla are able to handle incorrect HTML by making
the closest guess to what the HTML should be.) Once parsed, the resulting DOM document
can be seamlessly shown as a webpage to the end-user by flattening the tree and producing
back the HTML.

This process accomplishes the steps of structural analysis and structural decomposition
analogous to those done by several other techniques (see Section 2). The DOM tree is
hierarchically arranged and can be analyzed in sections or as a whole, providing a wide
range of flexibility for our extraction algorithm. Just as the approach mentioned by Kaasi-
nen et al. modifies the HTML to restructure the content of the page, our content extractor
navigates the DOM tree recursively, using a series of different filtering techniques to re-
move and adjust specific nodes and leave only the content behind. In our first attempt,
Crunch 1.0, we designed a one-pass system that extracted content by running a series on
filters one after the other, i.e., the selected filters just ran sequentially on the output pro-
duced by the previous filters. This caused problems at times when parts of a webpage that
the user wanted were removed. In Crunch 2.0, we amended this by making it a multi-pass
system. Here we keep multiple copies of a webpage in memory and a filter checks for
the optimal copy to work on. A large number of examples demonstrating the results of
different filter settings are shown in Appendix A.

Crunch as a framework handles the webpage, but the filters that are plugged into the
framework make it dynamic and customizable. The framework defines a standard API,
shown in Section 4.2.3, which a programmer implements when creating a plug-in. The pro-
grammer also decides the order in which the filters are run in order to maximize the benefit
of each one. An example construction of a Crunch 2.0 plug-in is given in Section 4.2.4.
Each of the filters can be easily turned on and off either by the user, the administrator or
the programmer, and can potentially be customized to a certain degree through a GUI if
provided by the programmer.

There are two sets of filters that we have implemented, with different levels of granu-
larity, in both Crunch 1.0 and 2.0. The first set of filters simply ignores tags or specific
attributes within tags but keep track of them in memory. With these filters, images, links,
scripts, styles, and many other elements can be quickly removed from the web page. This
process of filtering is similar to Kaasinen’s conversion of HTML to WML. However, the
second set of filters is more complex and algorithmic, providing a higher level of con-
tent extraction. This set, which can be extended, currently consists of the advertisement
remover, the link list remover, the removed link retainer and the empty table remover. In
Crunch 2.0, we also added filters that allow the user to control the font size and word wrap-
ping of the output, and heuristic functions guiding the multi-pass processor, to evaluate the
acceptability of the output as each filter pass edits the DOM tree. This ensures that we
do not suffer from some of the pitfalls of version 1.0 where occasionally pages returned
null outputs after passing through Crunch, e.g., link heavy pages like www.msn.com, as
shown later in Figures 11 and 12. Finally, in the newer version, we have attempted to allow
for greater control on most of the filters by adding supplementary options. For example,

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 185

users now have the ability of controlling, at a finer granularity, complex web pages where
certain HTML structures are embedded within others, e.g., within table cells.

The advertisement remover uses a common and efficient technique to remove advertise-
ments. As the DOM tree is parsed, the values of the “src” and “href” attributes throughout
the page are surveyed to determine the servers to which the links refer. If an address
matches against a list of common advertisement servers, the node of the DOM tree that
contained the link is removed. This process is similar to the use of an operating systems-
level “hosts” file to prevent a computer from connecting to advertiser hosts. Hanzlik [14]
examines this technique and cites a list of hosts, which we use for our advertisement re-
mover. In order to avoid the common pitfall of deploying a fixed blacklist of advertisers,
our software also periodically updates the list from http://accs-net.com, a site that
specializes in creating such blacklists. This is a technique employed by most ad blocking
software.

The link list remover employs a filtering technique that removes all “link lists,” which are
bodies of content either in the page or within table cells for which the ratio of the number
of links to the number of non-linked words is greater than a specific threshold (known as
the link/text removal ratio). When the DOM parser encounters a table cell, the Link List
Remover tallies the number of links and non-linked words. The number of non-linked
words is determined by taking the number of letters not contained in a link and dividing
it by the average number of characters per word, which we preset as 5 (although it may
be overridden by the user and could, in principle, be derived from the specific web page
or web domain). If the ratio is greater than the user-determined link/text removal ratio
(default ratio is set to 0.35), the content of the table cell (and, optionally, the cell itself)
is removed. This algorithm succeeds in removing most long link lists that tend to reside
along the sides of web pages while leaving the text-intensive portions of the page intact.

After these steps, we have found that numerous tables that are either completely empty
or have several empty cells take up large swaths of space remain on the webpage. The
empty table remover removes tables that are empty of any “substantive” information. The
user determines, through settings, which HTML tags should be considered to be substance
and how many characters within a table are needed to be viewed as substantive, set much
like the word size or link-to-text ratio settings set earlier. This does not require much prior
knowledge of HTML since the syntax of the markup language is simple and matches words
from the English language closely, e.g., table, form, etc. The table remover checks a table
for substance after it has been parsed through the filter. If a table has either no substance
or less than some user defined threshold, it is removed from the tree. This algorithm
effectively removes any tables left over from previous filters that contain small amounts
of unimportant information. This filter is typically run towards the end to maximize its
benefit.

While the above filters remove non-content from the page, the removed link retainer
adds link information back at the end of the document to keep the page browsable. The
removed link retainer keeps track of all the text links that are removed throughout the
filtering process. After the DOM tree is completely parsed, the list of removed links is
added to the bottom of the page. In this way, any important navigational links that were
previously removed remain accessible, and since the parser had parsed them initially as

186 GUPTA ET AL.

separate units, each menu or navigational link is kept intact and they can all be viewed
without any loss of original setup or style.

After the entire page is parsed and modified appropriately, it can be output in either
HTML or as plain text (filters could be added to translate to another output format such as
WML). The plain text output removes all the tags and retains only the text of the site, while
eliminating most white space. The result is a text document that contains the main content
of the page in a format suitable for summarization, speech rendering or storage. This
technique is significantly different from Rahman et al. [49], which states that a decomposed
webpage should be analyzed using NLP techniques to find the content. It is true that
NLP techniques may produce better results, but at the cost of far more time consuming
processing. Our algorithm does not technically find the content but instead eliminates
likely non-content. In this manner, we can still process and return results for sites that do
not have an explicit “main body.”

Crunch, however, does have some limitations:

(1) Crunch cannot filter non-HTML content like Flash. It allows a Boolean choice of
whether to keep or remove such structures but it cannot help edit or filter within the
animation itself.

(2) Dynamically generated pages often are not filtered so nicely for the same reason as
above. The script, whether it be javascript, ASP or JSP is either left completely dis-
abled, causing dynamic pages to not load correctly, or left on which leaves all respec-
tive scripts active on the page.

(3) Crunch does not distinguish between different users. There is only one set of options,
whether an individual is using the proxy or whether it is set up as groupware.

(4) There are no artificially intelligent heuristics or machine learning algorithms imple-
mented yet, e.g., to learn a user’s browsing patterns and change user (or group) settings
dynamically.

4. Implementation

4.1. CRUNCH 1.0

4.1.1. Overview In order to make our extractor easy to use, we implemented it as a web
proxy (program and instructions are accessible at http://www.psl.cs.columbia.
edu/proxy). The proxy can be used as a personal filter by individual users as well as a
central system for groups of people. In the case where Crunch is set up as groupware, users
can access the proxy by simply setting their browser to do so, as most modern browsers can
now point to external proxies for filtering content. This allows an administrator to set up
the extractor and provide content extraction services for a group. The proxy is coupled with
a graphical user interface (GUI) to customize its behavior. The separate screens of the GUI
are shown in Figures 1–3. Figure 1 shows the very broad options that can be turned off or
on that ignore certain tags completely. Figure 2 has more advanced options that give more
granular control, whereas Figure 3 shows controls on output. The current implementation

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 187

Figure 1.

Figure 2.

188 GUPTA ET AL.

Figure 3.

of the proxy is in Java for cross-platform support, and has been successfully tested on
Windows, MacOS, Linux and Solaris.

The Content Extraction framework itself has a complexity of O(N +P), where N is the
number of nodes in the DOM tree after the HTML page is parsed and P is the sum of the
complexities of the plug-ins; therefore the overall complexity is O(N) without plug-ins.
Crunch 1.0 is implemented as a one-pass system, so it is the plug-ins that truly determine
the running time of the system. For example, the plug-in that edits tables has an algorithm
whose worst case running time is O(M2) for complex nested tables; without such nesting,
the typical running time is O(M), where M is the number of elements composing the ta-
ble; so the overall running time of the system works out to be O(N + M2) with the table
plug-in. During tests, the algorithm performs quickly and efficiently following proxy cus-
tomization. The proxy can handle most web pages, including those with badly formatted
HTML, because of the corrections automatically applied while the page is parsed into a
DOM tree. However, sites that are extremely link heavy produce bad results; when the link
to text ratio approaches 100%, we experienced anomalous behavior.

Depending on the type and complexity of the web page, the content extraction suite
can produce a wide variety of output. The algorithm performs well on pages with large
blocks of text such as news articles and mid-size to long informational passages. Most
navigational bars and extraneous elements of web pages such as advertisements and side
panels are removed or reduced in size. Figures 4 and 5 show an example before and after
Crunch is applied, respectively. When printed out in text format, most of the resulting text
is directly related to the content of the page, making it possible to use summarization and
keyword extraction algorithms efficiently and accurately. Text-only output for this example
is shown in Figure 6.

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 189

Figure 4. Before.

Figure 5. After.

The initial implementation of the proxy was designed for simplicity in order to test
and design content extraction algorithms. It spawns a new thread to handle each new
connection, limiting its scalability. Most of the performance drop from using the proxy
originates from the proxy’s need to download the entire page before sending it to the
client.

190 GUPTA ET AL.

Figure 6. Text only.

4.1.2. More examples Figures 7 and 8 show the front page of a website dedicated to a
first-person shooter game, before and after content extraction, respectively. Despite pro-
ducing results that are rich in text, in this particular Crunch configuration the screenshots
of the game are also removed, which the user might deem relevant content. This might be
a case where the user might want to tweak the default settings.

Figures 9 and 10 show a “link-heavy” page in its pre- and post-filtered state, respec-
tively. Since the site is a portal which contains links and little else, the proxy does not find
any coherent content to keep. We investigated heuristics that would leave such pages either
untouched, or alternatively employ only the most basic filters that only remove advertise-
ments and banners, and implemented such techniques in Crunch 2.0.

From these examples one may get the impression that input fields are affected irregularly
by our proxy; this is because the run-time decision of leaving them in or removing them
from the page is dependent on the tables or frames they are contained in. Forms are handled
as one semantic unit, where either a form is displayed or not based on the user setting.
Additionally, we should mention that there is not any sort of preservation of objects that
may be lost after the HTML is passed through our parser, except links can be retained as
explained above. The user would have to change the settings of the proxy and reload the
page to see the previously removed content. However, a different set of filters could be
developed to move rather than just remove content, for forms or other identifiable HTML
elements or data.

4.1.3. Implementation details The life cycle of the process that gets a page to the
client’s browser through the proxy from a very high level is—the client passes a request for
the webpage to the proxy which opens a socket, fetches the original content of the page,

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 191

Figure 7. Before.

Figure 8. After.

192 GUPTA ET AL.

Figure 9. Before.

Figure 10. After.

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 193

Figure 11.

and parses the page to create a DOM tree representation. It is then passed through the
different filters based on the settings set by the user. The edited DOM tree is then either
flattened into the HTML form, to be sent back to the client’s browser, or stripped of all
HTML tags and only the text content is sent to the client for rendering. An architectural
diagram of Crunch 1.0 is shown in Figure 11.

In more detail, in order to analyze a web page for content extraction, the page is passed
through an HTML parser that creates a Document Object Model tree. The algorithm begins
by starting at the root node of the DOM tree (the <HTML> tag), and proceeds by parsing
through its children using a recursive depth first search function called filterNode(). The
function initializes a Boolean variable (mCheckChildren) to true to allow filterNode() to
check the children. The currently selected node is then passed through a filter method
called passThroughFilters() that analyzes and modifies the node based on a series of user-
selected preferences. At any time within passThroughFilters(), the mCheckChildren vari-
able can be set to false, which allows the individual filter to prevent specific subtrees from
being filtered. That is, certain filters can elect to produce the final result at a given node and
not allow any other filters to edit the content after that. After the node is filtered accord-
ingly, filterNode() is recursively called using the children if the mCheckChildren variable
is still true.

The filtering method, passThroughFilters(), performs the majority of the content extrac-
tion. It begins by examining the node it is passed to see if it is a “text node” (data) or
an “element node” (HTML tag). Element nodes are examined and modified in a series of
passes. First, any filters that edit an element node but do not delete it are applied. For ex-

194 GUPTA ET AL.

ample, the user can enable a preference that will remove all table cell widths, and it would
be applied in the first phase because it modifies the attributes of table cell nodes without
deleting them.

The second phase in examining element nodes is to apply all filters that delete nodes
from the DOM tree. Most of these filters prevent the filterNode() method from recursively
checking the children by setting mCheckChildren to false. A few of the filters in this
subset set mCheckChildren to true so as to continue with a modified version of the original
filterNode() method. For example, the empty table remover filter sets mCheckChildren to
false so that it can itself recursively search through the <TABLE> tag using a bottom-up
depth first search while filterNode() uses a top-down depth first search. Finally, if the node
is a text node, text filters are applied, if any.

We have implemented several basic filters in order to demonstrate the capabilities of
Crunch. The pseudo-code for the text size modifier filter looks like:

procedure wrapTextNodes(n: node)
if n is a textnode then

f := new font node
f .sizeAttribute := settings.size
n.parent.replaceChild(n, f)

f .addChild(n)

else if n.name = “TITLE” then return
nodes := n.getChildren()

foreach node m in nodes
wrapTextNodes(m)

And the empty table removing plug-in looks like:

procedure removeEmptyTables(iNode: node)
if iNode.hasChildNodes() then

next := iNode.getFirstChild()
while next != ∅
begin

current := next
next := current.getNextSibling()
filterNode(current)

end
lengthForTableRemover := 0;
empty := processEmptyTable(iNode)

if empty then
iNode.getParentNode().removeChild(iNode)

Please refer to Section 4.2.3 to get a better look at a more in-depth description of the
plug-in API.

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 195

4.2. CRUNCH 2.0

4.2.1. Overview Crunch 1.0 nicely demonstrated the proof-of-concept design of the
system as a framework, but certain problems needed to be addressed in order for Crunch
to be widely used. After releasing Crunch 1.0 in September 2002, we received several
suggestions from early users for additions and improvements. An informal user study of
blindfolded students was conducted in May 2003 followed by a formal user study with
blind and visually impaired users begun in December 2003; the first results from the latter
are discussed in Section 5. The NLP group at Columbia University tried using Crunch
briefly for their Newsblaster [39,56] project, which is a system that automatically tracks,
clusters and summarizes each day’s news programmatically. They used Crunch as their
input mechanism in order to run their natural language processing algorithms on content
extracted by Crunch rather than noisy data streams coming straight from the web.

As indicated in Section 3, Crunch 2.0 is similar to its predecessor. However, we spent
time on improving its performance and user interface, and several changes were made
in the supplied set of heuristic filters, e.g., to show more useful results for link-heavy
pages. We optimized the content extractor filter even though function is inherently the
same. Additional filters were added that allow the user to control the font size and word
wrapping of the output. Perhaps most importantly, heuristic functions were added in the
form of a multi-pass system that evaluates the output the DOM tree passed through each
filter. This prevents link-heavy pages like www.msn.com from returning blank pages as
output; with the new result-checking heuristics of Crunch 2.0, we instead got the better
results. Figure 12 shows the original form of a link-heavy page; Figures 13 and 14 show
the outputs from Crunch 1.0 and Crunch 2.0, respectively.

Finally, in the newer version, we have attempted to allow for greater flexibility to most of
the filters by adding supplementary options to each. For example, users now have the abil-

Figure 12. Link-heavy page.

196 GUPTA ET AL.

Figure 13. Crunch 1.0 output.

Figure 14. Crunch 2.0 output.

ity of controlling, at a finer granularity, complex web pages where certain HTML structures
are embedded within others, such as having the ability to control not only the content on
the entire page but also within table cells. Appendix A show several suites of screenshots
with different sets of Crunch 2.0 filters applied.

Like Crunch 1.0, the complexity of the newer version remains at O(N + P); however,
the worst case running time increases to O(N · P), where N is the number of nodes in the
DOM tree after the HTML page is parsed and P is the complexity of the plug-ins with
highest running time. The increase in worst case complexity is due to the fact that we have

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 197

switched to a multi-pass system. Therefore, in case of a bad result, a filtered webpage
may have to revert to a previous state and re-run through the proxy with a different set of
options; this may happen for any number of nodes in the DOM tree.

4.2.2. Technical improvements in version 2 Even though the basic architecture of the
system is the same as shown in Figure 13, there are some notable changes.

(1) Replaced OpenXML with NekoHTML.

The original version of Crunch used OpenXML [31] as the HTML parser. OpenXML
had problems with efficiency, which did not seem likely to be fixed since OpenXML is
apparently no longer an active project. So we switched to NekoHTML [18]. NekoHTML is
an HTML scanner and tag balancer that parses HTML for Xerces, an XML implementation
that is part of the Apache project [17]. It has many benefits, most notably the increased
speed, but a key longer-term benefit is that we are now using a parser that is under active
development. NekoHTML currently has some problems parsing some pages, most notably
the output not always rendering the same as the input, e.g., for certain complex nested
tables and some CSS pages. However, most of these errors are minor cosmetic ones that
Crunch attempts, usually successfully, to fix in its new multi-pass scheme. Additionally,
the developers of NekoHTML are apparently working on its deficiencies. NekoHTML,
however, does assist in our handling of multiple versions of HTML. Crunch downloads the
appropriate HTML stream and sends it to NekoHTML and gets back a DOM tree upon
which it applies filters. It then uses an HTML serializer to send data to the client. With
this architecture, the bottleneck is NekoHTML in terms of which versions of HTML we
can handle and since it can handle all versions of HTML as well as XHTML, Crunch can
handle the same.

(2) Performance tuning.

Some speed improvement was achieved through switching to NekoHTML. The other major
contributor to increased speed was the optimization of Crunch’s networking code. The
code was originally written using the Java IO package. Switching to the Java NIO package
was considered and we wrote a small testbed, but ran into excessive complications using
NIO’s asynchronous callbacks. Therefore, we instead optimized the Java IO code, e.g., by
collapsing multiple writes and reads, dealing with timeouts more efficiently, and removing
unnecessary or redundant calls in the transfer loops. Server performance and bandwidth
utilization now seems adequate, but we have not yet conducted a performance study with
large loads.

We moved to the staged event architecture and asynchronous callbacks to avoid thread-
ing scalability issues. The concept of the staged event architecture was introduced formally
by Welsh [57] for performance gains in highly concurrent server applications, so that they
are able to “support massive concurrency demands” [57]. We took the same concept and
extended it in our framework so that Crunch can meet the demands of several parallel
requests in a groupware setup.

(3) Switch to SWT.

198 GUPTA ET AL.

The original proxy GUI written using Java Swing was replaced using SWT, IBM’s Stan-
dard Widget Toolkit [24]. SWT is highly responsive, partially due to its use of JNI and
native routine calls that can take advantage of the operating system’s built-in optimiza-
tions. It also uses native GUI widgets to provide a look and feel consistent with that of
the operating system, while remaining operating system independent. As an added bene-
fit, SWT allows the program to be compiled into a binary executable, resulting in a faster
startup time, a smaller distribution, less memory used, and an easier installation for novice
users.

Screenshots of the new proxy GUI are shown in Table 1, where we see the basic settings
and the available plug-ins in the first row and the actual plug-in setting controls in the
second row. The tabs shown in the second row are similar to the original Crunch 1.0 GUI,
shown in Figures 1–3; the additional tabs in the first row are new with Crunch 2.0.

(4) Accessibility.

Of the plethora of benefits to switching to SWT, the most important for our purposes is
accessibility. One of Crunch’s main goals is to assist disabled persons in browsing the
web, yet the previous version of Crunch itself, i.e., the proxy and its administrative user
interface, were highly inaccessible.

There are three basic categories of accessibility support: mobility enablement, visual
enhancement, and screen readers [23]. Mobility enablement is provided in that all settings
can be easily accessed through the keyboard without any assistance through the mouse.
SWT provides keyboard accelerators in the API, as well as intelligently supporting tab-
bing through GUI components. SWT uses the operating system’s theme for its look and
feel, which means that the operating system is allowed to handle usability and visual en-
hancements. The best example of this is Window’s accessibility features [23], such as
large fonts and high contrast themes, being incorporated into the GUI. SWT also supports
Microsoft Active Accessibility Support (MAAS) [28], so by default there is support for
screen readers that read content from the window with focus and its associated widgets.

Usually a person requiring a screen reader will not be able to position a mouse pointer
finely enough to successfully use a mouse [23], so it is important that mobility enhance-
ment features coincide nicely with screen readers. Since SWT uses native APIs, screen
readers and other accessibility options are able to work nicely together to provide the dis-
abled with a viable way of configuring Crunch 2. As an added benefit to Windows users,
SWT can use Windows themes in the same way that it uses accessibility features of the
operating system [23].

Example screenshots of the proxy GUI in the high contrast scheme are shown in Ta-
ble 2; compare to the second row of Table 1 (and also to Figures 1–3 from Crunch 1.0).
Figure 15 shows how the user can adjust the font size of the website text from within the
proxy.

4.2.3. Code differences between Crunch 1.0 and 2.0

• Plug-in API improvements.

The original Crunch plug-in was required to implement the ProxyFilter interface. This
interface consists of 3 methods. The first and most important method is the process method.

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 199
Ta

bl
e

1.

200 GUPTA ET AL.

Ta
bl

e
2.

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 201

Figure 15.

It takes a file and returns a file. It does all the processing on html content that passes through
the proxy. The second method is getSettingsGUI. It returns the settings GUI so that the
settings for the plug-in can be changed. The third method is getContentType. It returns the
content type of the output of the plug-in.

The newer ProxyFilter was created as an abstract class. The new version is similar
to the old one, but forces the plug-ins to works on the DOM documents rather than just
plain files. It includes seven methods. One method is for filtering and the other meth-
ods are for GUI integration. To have the plug-in do processing on content, there is the
process method. The process method takes 3 DOM documents for input. One is the doc-
ument that should be processed and the other two are for reference. CurrentDocument
is the document that should be processed. PreviousDocument is the output of the pre-
vious filter and is initially just a copy of currentDocument. PreviousDocument is used
for rolling back changes or other analysis after changes to currentDocument have already
been made. OriginalDocument represents the document as Crunch 2 has received it from
the server. This allows for more advanced heuristics, quality checking, and even rollback
of the processing. The methods hasSettingsGUI and getSettingsGUI are for determin-
ing if the plug-in has a settings dialog, and if it does, displaying it. Currently there is
a button that can be clicked if the plug-in has a settings GUI that will display it. The
methods isEnabled and setEnabled are for changing and checking the state of the plug-
in. If the plug-in is disabled, it is skipped during processing of content and is shown
grayed in the plug-ins tab of the main Crunch 2 window. The next two methods, get-
Description and getName are used for displaying information about the plug-in and just
return strings. Code details of ProxyFilter.java and ProxyFilterSettings.java are shown in
Table 3.

The original ProxyFilterSettings extends JPanel, which is inserted into the GUI. Each
proxy filter had its own tab; unfortunately this forced the implementer to use Swing, which
is not available in many versions of java, such as gcc-java, also known as gcj [25]. It also
does not unify the API for easy settings modification in the software, which is important
for AI algorithms. It contains three methods: commitSettings, revertSettings, and getTab-
Name. CommitSettings and revertSettings are for committing and reverting, respectively,
the settings that were made in the GUI. GetTabName is for naming the tab to put the panel
in. This is usually the name of the plug-in.

The new ProxyFilterSettings is not tied to a GUI at all. Its sole purpose is to program-
matically allow for the editing settings. It has four functions. Get takes a string name of
the setting and passes back the value as a string. Set takes a setting name and a value and
sets the setting. CommitSettings and revertSettings save the settings to a file and load the
settings from a file, respectively.

202 GUPTA ET AL.

Table 3. Crunch 1.0 vs. Crunch 2.0 Plug-in APIs.

ProxyFilter.java

package psl.memento.pervasive.crunch; package psl.memento.pervasive.crunch2.plugins;
import java.io.*; import org.w3c.dom.Document;
public interface ProxyFilter { public abstract class ProxyFilter {

public File process(File in) throws IOException; private boolean enabled = true;
public ProxyFilterSettings getSettingsGUI();
public String getContentType(); public void getSettingsGUI() {

} // no settings GUI is required
}

public boolean hasSettingsGUI() {
return false;

}

public abstract String getName();
public abstract String getDescription();

public void setEnabled(boolean b) {
enabled = b;

}

public boolean isEnabled() {
return enabled;

}

public abstract Document process(
Document originalDocument,
Document previousDocument,
Document currentDocument);

}

ProxyFilterSettings.java

package psl.memento.pervasive.crunch; package psl.memento.pervasive.crunch2.plugins;

import javax.swing.JPanel; public interface ProxyFilterSettings {
public void set(String key, String value);

public abstract class ProxyFilterSettings extends JPanel { public String get(String key);
public abstract void commitSettings(); public void commitSettings();
public abstract void revertSettings(); public void revertSettings();
public abstract String getTabName(); }

}

Notice the differences between the Crunch 1.0 and 2.0 implementations. The Crunch 2.0
plug-in implementation is now more flexible than the original. It is no longer Swing depen-
dent. In fact, it no longer forces the user to have any sort of settings GUI. In Crunch 2.0,
while no settings implementation is forced, one is provided so that all the plug-ins can
have a common method of changing settings. This will simplify the implementation of any
filtering heuristics using AI algorithms that could produce better results, which may need

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 203

to adaptively change the user settings based on the site and the user’s reaction to a given
page.

• Methods that run filters over content.

ProxyThread.filter(HttpStream http) in Crunch 1.0. In the original Crunch, the filter
method inside ProxyThread is what passes content through the plug-ins. It works by down-
loading the http content to a file, and then it runs each filter on the file and updates the
content type each time. After that, it replaces the content file in the http stream with the
filtered file.

public void filter(HttpStream http)
throws IOException {
File workingFile = null;
workingFile = http.downloadToFile();
while (filters.hasNext()) {
try {

ProxyFilter filter =
(ProxyFilter) (filters.next());

System.out.println("Started filtering...");
workingFile.deleteOnExit();
workingFile = filter.process(workingFile);
workingFile.deleteOnExit();
http.setAttribute(
"content-type",
filter.getContentType());

System.out.println("Done filtering.");
} catch (Exception e) {

e.printStackTrace();
}

}
http.replaceContentWithFile(workingFile);
System.out.println("content replaced");

}

PluginFilterRunner.process(File f) in Crunch 2.0. In Crunch 2.0, the process method in-
side the PluginFilterRunner class is what runs all the plug-ins on the content. It takes a file
as input. First it parses that file into xml, and then it gets a copy of that file and sets it as
currentDocument. Next, it enters a loop that checks each plug-in for being enabled and,
if so, rotates currentDocument and previousDocument, and then runs the plug-ins process
method. After the loop, it writes the most current non-null document to a file.

public File process(final File f) {
// generate xml document from file
Document originalDocument = getXML(f);
Document previousDocument = null;

204 GUPTA ET AL.

Document currentDocument = null;

currentDocument = copyDocument(originalDocument);

for (int i = 0; i < plugins.length; i++) {
ProxyFilter plugin = plugins[i];
if (!plugin.isEnabled())

continue;

if (currentDocument != null)
previousDocument = currentDocument;

if (previousDocument != null)
currentDocument =
copyDocument(previousDocument);

currentDocument =
plugin.process(
originalDocument,
previousDocument,
currentDocument);

}

if (currentDocument == null)
currentDocument = previousDocument;

if (currentDocument == null)
currentDocument = originalDocument;

return xMLtoFile(currentDocument);
}

• Content Extractor Plug-in.

The Content Extractor Plug-in is the main filtering plug-in for Crunch 2.0. Its implemen-
tation is very similar to how it was in the original Crunch. This is possible even though
quite a few things like the parser, etc were changed since it is all compliant with the W3C
standards. The main changes were optimization, bug fixing, and working it into the new
interface.

When process(Document, Document, Document) is called on the content extractor plug-
in, it creates a child ContentExtractor, and has that process the currentDocument. This
allows the content extractor processing to be thread safe, which is important because the
proxy is multithreaded. The processing begins with the filterNode(Node iNode) method
being run on the document, which is the root node of the DOM tree.

• Content Extraction Plug-in filterNode method.

This is a typical set of recursive methods when working with DOM. Passing through
every node is very simple. FilterNode(Node iNode) passes iNode through a set of filters.
Then it determines whether to filter iNode’s children based on the mCheckChildren vari-
able, which the method passThroughFilters sets. The filterChildren(Node iNode) method

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 205

takes a node and runs filterNode on each of its children. Running filterNode on the root of a
DOM tree will result in all the nodes being filtered recursively. This process was smoothed
out in Crunch 2.0.

private void filterNode(final Node iNode) {
mCheckChildren = true;

passThroughFilters(iNode);

if (mCheckChildren)
filterChildren(iNode);

}
private void filterChildren(final Node iNode) {
if (iNode.hasChildNodes()) {
Node next = iNode.getFirstChild();

while (next != null) {
Node current = next;
next = current.getNextSibling();
filterNode(current);

}
}

}

• Content Extraction Plug-in: main filtering method—passThroughFilters method.

PassThroughFilters(Node iNode) takes a node and determines what filters in the content
extractor plug-in to run on it. MCheckChildren is changed to tell the recursive method not
to check a given node’s children. The first thing passThroughFilters(Node iNode) does is
gather information about the node. Currently it gets the node’s type, parent, and attributes.
Then it runs filters based on the node type. Currently the only node type that it runs filters
on are element nodes. Element nodes represent tags such as
 and . Element
nodes are filtered in several stages. The first stage is more information gathering. The node
is checked for being a link and then if it is an image. This information is recorded, and then
the node is passed through a second set of filters. The second set of filters only modifies
element attributes. Currently the attributes that are modified are the width attributes of
tables and table cells, and the style attributes of div elements. After the attributes are
modified, the element is passed through filters that can delete element nodes. An example
of a node to delete is an ad link. This code sequence worked well in the previous version
so we stayed with it.

private void passThroughFilters(final Node iNode) {
//Check to see if the node is a Text node or an element node
//and act accordingly
int type = iNode.getNodeType();
Node parent = iNode.getParentNode();
//Get the attributes of the node

206 GUPTA ET AL.

NamedNodeMap attr = iNode.getAttributes();

//Element node
if (type == Node.ELEMENT_NODE) {

String name = iNode.getNodeName();
//===
// Set of conditions that just check the nodes without
// editing or deleting them
//===
//Any type of link is encountered
if (isLink(iNode))

recordLink(iNode);
if (isImage(iNode))

recordImage(iNode);

//===
// Set of conditions that edit the nodes but do not delete
// them
//===
//<TD|TABLE width=*> removes widths
if ((name.equalsIgnoreCase("TD")

|| name.equalsIgnoreCase("TABLE"))
&& settings.ignoreCellWidth) {
if (hasAttribute(iNode, "width"))

removeAttribute(iNode, "width");
} //if

//<DIV style=*> removes style
else if (

name.equalsIgnoreCase("DIV")
&& settings.ignoreDivStyles) {
if (hasAttribute(iNode, "style"))

removeAttribute(iNode, "style");
} //if

//===
// Set of conditionals determining what to ignore and not to
// ignore (Conditions that DELETE nodes from the DOM tree)
//===
if (isAdLink(iNode) && settings.ignoreAds) {

parent.removeChild(iNode);
mCheckChildren = false;

}
//<TD> with Link/Text Ratio higher than threshold
else if (name.equalsIgnoreCase(”TD”)

&& settings.ignoreLinkCells) {
testRemoveCell(iNode);

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 207

}
//<A HREF> with no Images
else if (isTextLink(iNode) && settings.ignoreTextLinks) {

parent.removeChild(iNode);
if (settings.addLinksToBottom)

enqueueLink(iNode);
mCheckChildren = false;

}
//<BODY>
else if (name.equalsIgnoreCase("BODY"))

mBodyNode = iNode;
} //if (type == Node.ELEMENT_NODE)

}

• Example check methods.

– isLink(Node iNode). isLink checks to see if a Node is a link. First, it gets the node
type and the node attributes. Then it checks to see if the node is an element and it
contains an HREF attribute. If that is true, then it returns true indicating that the node
is a link. Otherwise it returns false.

private boolean isLink(final Node iNode) {
int type = iNode.getNodeType();

NamedNodeMap attr = iNode.getAttributes();

if (type == Node.ELEMENT_NODE) {
String name = iNode.getNodeName();
if (name.equalsIgnoreCase("A")) {
for (int i = 0; i < attr.getLength(); i++) {
if(attr.item(i).
getNodeName().
equalsIgnoreCase(”HREF”)) {
return true;

} //if
} //for

} //else if
} //if
return false;

}

– isImage(Node iNode). isImage checks to see if the node is an image.

private boolean isImage(final Node iNode) {
boolean image = false;

//Check to see if the node is an image
int type = iNode.getNodeType();
if (type == Node.ELEMENT_NODE) {

208 GUPTA ET AL.

if (iNode.getNodeName().equalsIgnoreCase("IMG"))
image = true;

} //if

return image;
}

– isImageLink(Node iNode). This method checks to see if a node is a link with an image
as the link or if the node is an image, it checks if it is a link. First, it checks to see if
the node is a link, and then it checks to see if any of its children are images. If that
is true, then the method returns true, indicating the node is an image link. Second, it
checks if the node is an image, and if its parent is a link. If this is the case, it will
indicate that the node is an image link. Maps are also check for and treated as image
links. Otherwise, it returns false.

private boolean isImageLink(final Node iNode) {
boolean imageLink = false;

//Check to see if the node is a link
if (isLink(iNode)) {

//Check to see if the children have an image in it
if (iNode.hasChildNodes()) {
Node next = iNode.getFirstChild();

while (next != null && !imageLink) {
Node current = next;
next = current.getNextSibling();
if (isImage(current))
//imageLink = true;
return true;

} //while
} //if

} //if
//If the node is an image, check if its parent is a link
else if (isImage(iNode)) {
if (isLink(iNode.getParentNode()))
//imageLink = true;
return true;

else {
// check for image maps
if (nodeContainsAttribute(iNode, "usemap"))
//imageLink = true;
return true;

}
} //else if
return imageLink;

} //isImageLink

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 209

Note that while it would be trivial to add content based filters, Crunch does not currently
attempt to do any NLP-level “understanding” of the content, although one of its purposes,
as previously stated, is to find the content so NLP algorithms can process it without also
dealing with all the clutter.

4.2.4. Example plug-ins for PDAs One very important requirement is that Crunch be
able to support existing and new heuristics invented by others (that is, by persons and orga-
nizations other than the Crunch developers), following a modular approach. One popular
application for content reformatting and filtering heuristics is retargeting conventional web
pages to the small screens of PDAs. Most web pages are designed for resolutions upwards
of 800 × 600 while a majority of PDAs support only 240 × 320. Numerous utilities and
tools have been developed attempting to solve this problem, some of which were discussed
in Section 2.

We believe that many of the algorithms and heuristics underlying these tools (as well
as other web page filters and reformatters devised for other purposes by third parties)
could easily be integrated with Crunch via the plug-in interface. New filtering and ref-
ormatting approaches oriented towards a variety of applications could also be easily pro-
totyped by third parties using our plug-in approach, particularly the improved API de-
veloped for Crunch 2.0. See Table 3 to compare the Crunch 1.0 and 2.0 extension
APIs.

For instance, we found it very easy to re-implement both the ThunderHawk PDA
browser [21] and the Sqweezer proxy [26] functionalities (both discussed in more detail in
Section 2) as Crunch plug-ins, giving results essentially identical to the original utilities.
If the source code of either system had been available, the relevant code could have in-
stead been integrated directly, also via a plug-in. Part of the GUI for the Thunderhawk-like
plug-in was shown in Figure 15 (there in the high contrast format).

The plug-in that simulated the functionality of Thunderhawk that we implemented
is on the order of about 150 lines of code. Similarly, the Skweezer plug-in was about
140 lines of code. We have found that most of our plug-ins average about 200 lines of
code.

To implement any such plug-in, one would create a class that extends ProxyFilter. The
method that should do the actual processing is the process(Document, Document, Docu-
ment) method. It should be thread safe because multiple threads can be accessing it at the
same time.

public abstract Document process(
Document originalDocument,
Document previousDocument,
Document currentDocument);

Crunch 2.0 can be told to load the plug-in at initialization by editing the constructor of
Crunch2.java to have a line like

210 GUPTA ET AL.

proxy.registerPlugin(new SkweezerPlugin());

appended to the already existing plug-ins.

proxy.registerPlugin(new ContentExtractor());
proxy.registerPlugin(new SamplePlugin());
proxy.registerPlugin(new SizeModifier());

The order these lines appear in is the order the plug-ins are applied to filtered content. In
this manner, one can add any number of plug-ins.

5. User study: Web accessibility by visually disabled users

5.1. Introduction: Web accessibility

Crunch can be used for many purposes, ranging from reformatting for small screens, to
keyword extraction for information retrieval, to preprocessing Web pages for devices and
software aides for disabled users. We had a unique opportunity to participate in a brief
“user study” that compared conventional screen readers for the blind and visually impaired
with the same screen readers but operating on the Web page content extracted by Crunch
rather than directly on the posted Web page. The study was performed using Crunch 1.0,
but we anticipate the results would be similar with Crunch 2.0.

The number of visually impaired Web users (and computer users in general) is expected
to increase dramatically as the population continues to age. For example, it is estimated
that the number of Americans over the age of 65 will double between 2000 and 2040
[52]. In 1997, the United States Census Bureau estimated that there were 7.7 million
adults with “non-severe visual limitation,” which was defined as “difficulty with seeing
words and letters, even with eyeglasses,” and 1.8 million American adults with “severe
visual limitation,” which was defined as the “inability to see words and letters, even with
eyeglasses” [1]. Persons with even minimal visual impairment are likely to encounter
problems in everyday life. For example, people with vision worse than 20/40 cannot obtain
an unrestricted driver’s license in most states, and may require assistive devices such as
magnifiers for reading [55].

The goal of visually assistive technology is to provide alternative, equivalent mecha-
nisms for computer and Web accessibility. Screen readers translate text and graphical dis-
plays into auditory output, and have become a predominant assistive technology for users
with severe visual disability [3]. However, the current quality of speech-based Web navi-
gation is very limited. In particular, the large quantity of information on Web documents
imposes an enormous cognitive load on visually disabled users who must rely on auditory
transmission alone, compared to sighted users who are able to identify relevant informa-
tion by visual scanning [48]. Content extraction from Web pages using Crunch provides
an opportunity to provide filtered documents as input to screen readers. This may allow
visually disabled users to understand the essential content of Web documents more quickly
and effectively.

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 211

We performed a preliminary usability evaluation of Crunch 1.0 to supplement screen
reading software for Web navigation by visually disabled users. The study design was
based on previously established usability testing and cognitive analysis methodologies, in
which subjects are asked to “think aloud” while performing representative computer-based
tasks [12,44,45]. This process was captured with full video and audio recordings, providing
a source of data rich in physical, temporal, and social context [42,43]. In particular, this
usability study was intended to compare the quantitative and qualitative aspects of speech-
based Web navigation by a completely blind user, both with and without Crunch.

5.2. Usability study methods

5.2.1. Subject and software The subject was a 50 year-old woman who had been com-
pletely blind since birth. She had no light perception from either eye, and required a guide
dog for mobility. She learned Braille as a child, finished a graduate school degree program,
and was employed as a full-time teacher. The subject described herself as “comfortable”
with computers and the Web, and used these regularly for work. She was very familiar
with assistive technologies such as screen readers, and was able to type over 20 words per
minute using a standard QWERTY keyboard.

A popular screen reading Web browser (IBM Homepage Reader®) was selected for this
study because it was easy to install and integrate with Crunch. The study subject had used
this particular screen reader in the past, and was asked to perform Web navigation until she
felt comfortable using all basic commands.

5.2.2. Design of Web-based tasks Two representative Web-based tasks were developed
that satisfied three criteria: (1) Each task involved a website that was among the 50 most
popular sites, based on the well-known PageRank algorithm [2,33]. This was to ensure
that tasks were representative of common Web browsing procedures. (2) Each task was
extensively bench-tested to ensure that it met a sufficient number of World Wide Web
Consortium accessibility guidelines to be completed using speech-based navigation with a
screen reader alone [10]. Many popular websites failed to satisfy this criterion. (3) Each
task was extensively bench-tested to ensure that it functioned properly with Crunch 1.0,
and that it could be completed by speech-based navigation using Crunch 1.0 together with
screen reading software.

Table 4 describes the two tasks. Each task was further bench-tested to determine the se-
quence and number of steps required for completion with screen reading software, both

Table 4.

Task (website) Description

A (www.usatoday.com) Identify and read top story under “Sports” section
B (www.cnn.com) Identify and read top headline story

212 GUPTA ET AL.

with and without Crunch. Additional testing was performed to determine the optimal
Crunch system configuration settings that would allow both tasks to be completed.

5.2.3. Test protocol Approval for the study protocol was obtained by the Institutional
Review Board at Columbia University Medical Center. The subject (who gave fully in-
formed consent according to IRB requirements) was asked to perform Task A using the
screen reader alone, and then to perform Task B using Crunch 1.0 and the screen reader.
The idea is that the two tasks were deemed sufficiently “similar” to be reasonably compa-
rable, whereas performing the same task twice, one with and once without Crunch, would
contaminate the second trial.

During this process, the subject was instructed to “think aloud” and verbalize impres-
sions while performing speech-based navigation. After completing the two tasks, the sub-
ject was asked to provide specific qualitative feedback about the testing procedure. A sur-
vey was used to rate various aspects of Web navigation, both with and without Crunch, on
a five-point Likert scale: (a) Usefulness of technology for performing the task. (b) Ease
of deciding next step in navigation using technology. (c) Ease of understanding Web doc-
ument layout with technology. (d) Ease of locating desired information of Web document
using technology. (e) Overall satisfaction with technology.

While performing the tasks, the study subject was videotaped and audiotaped using a
portable usability engineering system [43,47]. A video converter converted the monitor
display to a video signal for capture on videotape using a digital video camera. A mi-
crophone provided audio input to the video camera, in order to record statements and
questions, as well as the screen reader sounds. A cassette recorder was used to capture
additional sounds. Finally, a standard 8 mm video camera was used to record keystrokes
while the user interacted with the system.

5.2.4. Data analysis The contents of the video and cassette tapes were transcribed ver-
batim, and annotated with time-stamps. Tapes were then coded using a standard method
adapted from previous studies, in order to note particular aspects of system usability [43].
User actions were described as an overall task, which was divided into goals and subgoals.
Each subject action was coded either as a correct response, an error, or a correct response
to an error. Errors were categorized into one of three groups: (1) Errors in understanding of
the interface. This included selection of unintended links, incorrect interpretation or hear-
ing of speech, and confusion with manipulation of GUI widgets or browser commands.
(2) Errors in understanding of document layout or navigation. This included any confu-
sion caused by incorrect mental representation of documents, such as misunderstanding of
navigation bars, or becoming “lost” while navigating within or between pages. (3) Errors
in understanding caused by Web design or browser malfunctions. This included failure to
comply with standard Web accessibility guidelines [10].

The total time required to complete each task was measured. This was used to calculate
the time required to complete each step of the task, based on results from bench-testing.
The causes of Web browsing errors were determined from detailed analysis of audiotapes
and videotapes. Numerical ratings of Web browsing surveys were tabulated.

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 213

Task B: Go to www.cnn.com. Identify and begin reading top headline story.

Using screen reader without CRUNCH 1.0:

(A) Open text box and go to website → CNN homepage opens.
(B) Pass 2 lines. Select “Skip to main content” link.
(C) Pass 9 lines. Select “Full Story” link → Full Story page opens.
(D) Pass 2 lines. Select “Skip to main content” link.
(E) Pass 52 lines. Begin reading story text.

Using screen reader with CRUNCH 1.0:

(A) Open text box and go to website → CNN homepage opens.
(B) Pass 2 lines. Select “Skip to main content” link.
(C) Pass 8 lines. Select “Full Story” link → Full Story page opens.
(D) Pass 2 lines. Select “Skip to main content” link.
(E) Pass 26 lines. Begin reading story text.

Figure 16.

5.3. Results

5.3.1. Bench-testing of tasks Each task was carefully reviewed to determine the se-
quence and number of steps required for completion, both without and with Crunch 1.0.
Figure 16 demonstrates the results of this analysis for Task B, which required more steps
without Crunch (65 steps) than with it (38 steps). Similarly, Task A required more steps
without Crunch (73 steps) than with it (23 steps). This reduction of steps required for
each task was because the content extraction process simplified direct access to the Web
document contents, e.g., by removing advertisements and banner links.

5.3.2. Features of navigation Using a screen reader without Crunch, the subject did
not successfully complete Task A (“Go to www.usatoday.com and read the top Sports
story”). After 21 minutes and 15 seconds, she began reading an incorrect story. Based
on the fact that this task should have taken 73 steps to complete successfully, the subject
required an average of 17.5 seconds per step without Crunch. Transcription and subsequent
analysis of tapes revealed that the subject made a total of 31 cognitive errors during the
navigation process for Task A. Based on the taxonomy described above, these errors were
classified into three categories: (1) 11 errors in understanding or using the speech-based
interface. For example, the subject attempted to use a “search” function, but was unable
to properly enter the desired term into the text box. (2) 14 errors in document layout or
navigation. For example, the web page layout caused the screen reader to announce the
full navigation bar on every page (Figure 17). Even when the subject had already reached
the correct “Sports” page, she became disoriented by hearing the navigation link lists. As a
result, she mistakenly re-selected the “Sports” link nine additional times. When the subject
finally reached the top sports story, she failed to recognize it as a story, apparently because
the document made no announcement before beginning to read the story title. Therefore,
she continued past the top story and eventually selected an incorrect link as the story to
read. (3) 6 errors caused by Web design or browser malfunctions. For example, the subject

214 GUPTA ET AL.

Figure 17. Task A.

Figure 18. Task B.

mistakenly attempted to select a link to an advertisement banner, believing that it contained
relevant information.

Using the screen reader with Crunch, the subject successfully completed Task B (“Go
to www.cnn.com and read the top headline story”). After 2 minutes, she began reading
the correct story. Based on the fact that this task should have taken 38 steps to complete
successfully, the subject required an average of 3.2 seconds per step with Crunch. Tran-
scription and subsequent analysis of tapes revealed that the subject did not make any cog-
nitive errors during the navigation process. This was apparently because Crunch placed the
main headline story very near the beginning of the filtered document, without extraneous
navigation bar or other link lists (Figure 18).

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 215

Table 5. Scores are based on Likert scale (1 = Strongly Agree, 2 = Agree, 3 = Neutral,
4 = Disagree, 5 = Strongly Disagree).

Score

Aspect of navigation Without CRUNCH With CRUNCH

Useful to read Web pages 4 2
Easy to decide next step 3 2
Easy to understand Web layout 2 2
Easy to locate information 4 3
Overall satisfied with navigation 5 3

5.3.3. Qualitative user evaluation After completing Tasks A and B, the subject was
surveyed regarding attitudes toward various aspects of speech-based Web navigation with-
out and with Crunch 1.0. Results are summarized in Table 5.

5.4. Discussion of user study

This pilot evaluation employed a usability engineering approach to analyze the application
of Crunch for speech-based Web navigation by a completely blind subject. It was designed
as a paired study, in which the subject was asked to perform tasks without and with Crunch.
Bench-testing confirmed that Tasks A and B required a similar number of steps for comple-
tion, suggesting that they were of comparable complexity. By transcribing, time-stamping,
and coding the video and audio recordings of user interactions with the system, it was pos-
sible to measure the speed and error rate of Web navigation, and to categorize the cause of
each navigation error.

Overall, the results of this preliminary user study suggest that Crunch has potential to
provide advantages over conventional speech-based browsing in terms of speed, error rate,
and qualitative satisfaction. This is primarily by removing extraneous content, and thereby
simplifying the process of finding the important information on the page. Bench-testing
also demonstrated that Tasks A and B both required fewer steps for completion with Crunch
than without it.

However, supplementation with content extraction is not clearly superior to conventional
speech-based browsing. For example, by removing features such as link lists, Crunch
has potential to cause new errors in understanding page layout and navigation. Similarly,
Crunch inserts removed link lists at the end of the Web document, where they may be
extremely difficult for users to navigate because of the lack of surrounding context. Finally,
Crunch does not perform useful content extraction on all websites (e.g., see Figures 11
and 12), and it was difficult to develop a corpus of representative tasks for evaluation
purposes.

This preliminary usability evaluation has two important limitations. (1) The study in-
volved only one subject, and therefore could not include meaningful analysis for statistical
significance or reproducibility among various users. (2) Because it involved only two stan-
dardized tasks, conclusions may not be generalizable to other Web-based tasks. These
limitations are being addressed by ongoing usability studies that involve recruitment and

216 GUPTA ET AL.

testing of additional visually disabled subjects. Results of evaluation studies will provide
additional data for iterative design improvements to content extraction systems such as
Crunch, and provide insight into the cognitive models used by visually disabled users for
speech-based Web navigation.

6. Future directions

Crunch uses a third-party HTML parser to create DOM trees from web pages. We have
switched to NekoHTML to resolve the problems with OpenXML. However, we still intend
to support commercial parsers, such as Microsoft’s HTML parser (which is used in Internet
Explorer), in the next revision. Integration will be accomplished by porting the existing
Crunch proxy to C#/.NET, which will allow for easy integration with COM components
(of which the MS HTML parser is one).

We are continuing work towards improving the proxy’s performance; in particular, we
aim to improve both latency and scalability, especially with the advent of browsers such
as Avantbrowser [19] and Mozilla [30] that support tabbed browsing, i.e., treating multiple
open web pages as part of the same session.

We are also investigating supporting more sophisticated statistical, information retrieval
and natural language processing approaches as additional heuristics to improve the utility
and accuracy of our current system.

We are currently working on integrating CSS support into Crunch in order to better
handle the layout. We believe that supporting the webpage’s CSS will help maintain a
website’s original look and style even when element from the page have been removed.

We also feel that there need to be some preset defaults for certain genres of websites that
users can select instead of perhaps painstakingly adjusting the fine granularity of controls
that Crunch offers.

Currently we do not do any form of learning of a user’s browsing habits. It may be
possible to implement artificially intelligent heuristic algorithms, such as Bayesian learning
or Markov Model creation, as a browser plug-in that reads metadata from the client about
how to change the settings. Such a browser plug-in might provide an interface for the user
to rate pages, that is, Crunch’s rendition of pages, and could update Crunch’s configuration
via extra HTTP metadata. The improved Crunch 2.0 plug-in interface is instrumental in
allowing these kinds of heuristics because it allows programmatic changes to settings. With
the addition of trainable filtering, Crunch could adapt to a particular user’s or group’s
preferences. Even basic control from the browser, without any AI, would enhance Crunch’s
usability because the user would not have to switch applications to change a setting or to
enable or disable filtering.

Finally, one of our main goals was to expose a simple API for programmers to extend,
so that current and future natural language processing and information retrieval algorithms
can easily be added to Crunch. This would allow users to truly be able to customize the
content they would like to view on visited web pages. Full evaluation of the API and plug-
in framework will not be possible until sufficient outside developers have worked with
Crunch.

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 217

7. Conclusion

Many web pages contain excessive clutter around the bodies of one or more articles, the
actual content of the page. Although much research has been done on content extraction,
and there are many special-case solutions to remove advertising (particularly pop-ups) or
reformat for small screens, it is still a relatively new field where few general purpose tools
are available so most researchers must construct their content extractors from scratch. In
this paper we describe two versions of our proxy—Crunch 1 being simply the framework;
and Crunch 2 with substantial improvements to the framework with respect to the plug-in
API and the extensibility of the administrative interface. Our approach, working with the
Document Object Model tree as opposed to raw HTML markup, enables us to apply in
tandem an extensible collection of Content Extraction filters, and potentially other kinds of
filters such as format translators and NLP summarizers. The heuristic filters that we have
developed to date, though simple, are quite effective.

Crunch has been implemented as a freely-available web proxy that anyone can use to
extract content from HTML documents for their own purposes. The second version of
Crunch is fast and efficient, and allows for easy integration of third party filters as plug-
ins. It also offers a simple, easy to use user interface for both administrators and end users.
And perhaps most importantly, we have designed this system with accessibility in mind for
the visually impaired, so as to facilitate the best possible web experience in conjunction
with devices such as screen magnifiers and screen readers.

Acknowledgements

During the reported research, Prof. Kaiser’s Programming Systems Laboratory was funded
in part by Defense Advanced Research Project Agency under DARPA Order K503 mon-
itored by Air Force Research Laboratory F30602-00-2-0611, by National Science Foun-
dation grants CCR-02-03876, EIA-00-71954, CCR-99-70790, and by Microsoft Research
and IBM. Dr. Chiang was supported by grant LM07079 from the National Library of Medi-
cine, and grant EY013972 from the National Eye Institute.

We would like to extend a special thanks to David L. Neistadt, who participated in
the development of Crunch 1.0, and to David Kaufman, Vimla Patel, and Roy Cole for
helpful discussions regarding the usability study, as well as to the subject who generously
volunteered her time to participate in the study.

Appendix A. Example screenshots

We show some examples of typical websites with different Crunch 2.0 options turned on.
The point is to give the reader an idea of the degree of control a user can have over what
he/she wants to see on a webpage. The pages we chose are:

(1) A typical article from www.spacedaily.com
(2) An article from a link and script heavy site, www.msnbc.com

218 GUPTA ET AL.

F
ig

ur
e

A
.1

.

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 219

Figure A.2.

220 GUPTA ET AL.

Figure A.3.

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 221

Figure A.4.

222 GUPTA ET AL.

(3) An article from www.cnn.com
(4) The entry page to the WWW2004 website, www2004.org

Each of the four following pages shows the corresponding set of images. The images
start from a screenshot of the original site, followed by a gradual increase in the number of
filters used, continuing to the screenshot that was taken of the site in text-only mode. We
have created this anthology of images to help the user get an idea of how Crunch and its
filters work on a given webpage.

References

[1] American Foundation for the Blind, Statistics and Sources for Professionals, American Foundation for the
Blind: New York, 2000.

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” Computer Networks
and ISDN Systems 30, 1998, 107–117.

[3] C. Brown, “Assistive technology computers and personal with disabilities,” Communications of the ACM
35, 1992, 36–45.

[4] M. H. Brown and R. A. Shillner, “A new paradigm for browsing the Web,” in Proc. of Human Factors in
Computing Systems (CHI’95 Conference Companion), 1995.

[5] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke, “Accordion summarization for end-game browsing
on PDAs and cellular phones,” in Proc. of Conference on Human Factors in Computing Systems (CHI’01),
2001.

[6] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke, “Seeing the whole in parts: text summarization for
Web browsing on handheld devices,” in Proc. of 10th Internat. World-Wide Web Conference, 2001.

[7] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke, “Text summarization for Web browsing on handheld
devices,” in Proc. of 10th Internat. World-Wide Web Conference, 2001.

[8] Y. Chen, W. Y. Ma, and H. J. Zhang, “Detecting Web page structure for adaptive viewing on small form
factor devices,” in Proc. WWW’03, Budapest, Hungary, May 2003.

[9] M. Chiang, “World Wide Web accessibility by visually disabled patients: Problems and solutions,” Final
Report for CS6125 WHIM, Columbia University’s Computer Science Department.

[10] W. Chisolm, G. Vanderheiden, and I. Jacobs, “Web content accessibility guidelines 1.0,” Interactions 8,
2001, 35–54.

[11] W. K. Edwards, E. D. Mynatt, and K. Stockton, “Access to graphical interfaces for blind users,” Interactions
2, 1995, 54–67.

[12] K. A. Ericsson and H. A. Simon, Protocol Analysis: Verbal Reports as Data, MIT Press: Cambridge, MA,
1993.

[13] A. Finn, N. Kushmerick, and B. Smyth, “Fact or fiction: content classification for digital libraries,” in
Proc. of Joint DELOS–NSF Workshop on Personalisation and Recommender Systems in Digital Libraries
(Dublin), 2001.

[14] S. Hanzlik, “Gorilla design studios presents: the hosts file,” Gorilla Design Studios, August 31, 2002,
http://accs-net.com/hosts/

[15] http://sourceforge.net/projects/wpar
[16] http://www-3.ibm.com/able/solution_offerings/hpr.html
[17] http://www.apache.org/
[18] http://www.apache.org/∼andyc/neko/doc/html/
[19] http://www.avantbrowser.com
[20] http://www.bitstream.com/wireless
[21] http://www.bitstream.com/wireless/server/workflow.html
[22] http://www.dolphinuk.co.uk/products/hal.htm

AUTOMATING CONTENT EXTRACTION OF HTML DOCUMENTS 223

[23] http://www.eclipse.org/articles/Article-Accessibility/accessibility.
html

[24] http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html
[25] http://www.gnu.org/software/gcc/java/
[26] http://www.greenlightwireless.net/services/default.asp
[27] http://www.junkbusters.com
[28] http://www.microsoft.com/enable/
[29] http://www.microsoft.com/technet/treeview/default.asp?url=/technet/

prodtechnol/winxppro/reader_overview.asp
[30] http://www.mozilla.org
[31] http://www.openxml.org
[32] http://www.opera.com
[33] http://www.promotiondata.com/article.php?sid=190
[34] http://www.webaim.org/simulations/screenreader
[35] http://www.webwiper.com
[36] E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski, and T. Laakko, “Two approaches to bringing Internet

services to WAP devices,” in Proc. of 9th Internat. World-Wide Web Conference, 2000.
[37] M.-Y. Kan, Private communication, Columbia NLP group, 2002.
[38] M.-Y. Kan, J. L. Klavans, and K. R. McKeown, “Linear segmentation and segment relevance,” in Proc. of

6th Internat. Workshop of Very Large Corpora (WVLC-6), 1998.
[39] K. R. McKeown, R. Barzilay, D. Evans, V. Hatzivassiloglou, M. Y. Kan, B. Schiffman, and S. Teufel,

“Columbia multi-document summarization: approach and evaluation,” in Proc. of Document Understanding
Conference, 2001.

[40] R. L. Kline and E. P. Glinert, “Improving GUI accessibility for people with low vision,” in Proc. of Human
Factors in Computing Systems (CHI’95 Conference Companion), 1995.

[41] M. Kunze and D. Rosner, “An XML-based approach for the presentation and exploitation of extracted
information,” in Proc. of the 19th Internat. Conference on Computational Linguistics (Coling), 2002.

[42] A. W. Kushniruk, D. R. Kaufman, V. L. Patel et al., “Assessment of a computerized patient record system:
A cognitive approach to evaluating medical technology,” MD Comput. 13, 1996, 406–415.

[43] A. W. Kushniruk, V. L. Patel, and J. J. Cimino, “Usability testing in medical informatics: cognitive ap-
proaches to evaluation of information systems and user interfaces,” in Proc. AMIA Sympos. 1997, pp. 218–
222.

[44] A. W. Kushniruk, M. Y. Kan, K. McKeown et al., “Usability evaluation of an experimental text summariza-
tion system and three search engines: Implications for the reengineering of health care interfaces,” in Proc.
AMIA Sympos. 2002, pp. 420–424.

[45] C. Lewis, Using the ‘Thinking-Aloud’ method in cognitive interface design, IBM Research Report RC
9265, IBM Thomas J. Watson Research Center: Yorktown Heights, NY, 1982.

[46] I. Muslea, S. Minton, and C. Knoblock, “A hierarchal approach to wrapper induction,” in Proc. of the 3rd
Internat. Conference on Autonomous Agents (Agents’99), 1999.

[47] J. Nielsen, Usability Engineering, Academic Press: New York, 1993.
[48] I. J. Pitt and A. D. N. Edwards, “Improving the usability of speech-based interfaces for blind users,” in Proc.

of the 2nd Annual ACM Conference on Assistive Technologies (ASSETS), 1996.
[49] A. F. R. Rahman, H. Alam, and R. Hartono, “Content extraction from HTML documents,” in Proc. of the

1st Internat. Workshop on Web Document Analysis (WDA2001), 2001.
[50] A. F. R. Rahman, H. Alam, and R. Hartono, “Understanding the flow of content in summarizing HTML

documents,” in Proc. of the Internat. Workshop on Document Layout Interpretation and Its Applications,
DLIA’01, September 2001.

[51] W. Reichl, B. Carpenter, J. Chu-Carroll, and W. Chou, “Language modeling for content extraction in
human–computer dialogues,” in Proc. of the Internat. Conference on Spoken Language Processing (IC-
SLP), 1998.

[52] D. P. Rice, Chronic Care in America: A 21st Century Challenge, Institute for Health and Aging, University
of California, San Francisco, Robert Wood Johnson Foundation: Princeton, NJ, 1996.

224 GUPTA ET AL.

[53] B. Schneiderman, Designing the User Interface: Strategies for Effective Human–Computer Interaction, 3rd
ed., Addison-Wesley: Reading, MA, 1997.

[54] I. U. Scott, W. J. Feurer, and J. A. Jacko, “Impact of graphical user interface screen features on computer
task accuracy and speed in a cohort of patients with age-related macular degeneration,” Amer. J. Ophthalmol.
134, 2002, 857–862.

[55] J. A. Shoemaker, “Vision problems in the US: prevalence of adult vision impairment and age-related eye
diseases in America,” National Eye Institute: Bethesda, MD, 2002.

[56] N. Wacholder, D. Evans, and J. Klavans, “Automatic identification and organization of index terms for
interactive browsing,” in Proc. of the Joint Conference on Digital Libraries’01, 2001.

[57] M. Welsh, “The staged event-driven architecture for highly-concurrent server applications,” Ph.D. Qualify-
ing Examination Proposal, UC Berkeley, December 2000, http://www.cs.berkeley.edu/∼mdw/
papers/quals-seda.pdf

