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Abstract
The understanding of how users in a network update their opinions based on their neigh-
bours’ opinions has attracted a great deal of interest in the field of network science, and a 
growing body of literature recognises the significance of this issue. In this work, we pro-
pose a new dynamic model of opinion formation in directed networks. In this model, the 
opinion of each node is updated as the weighted average of its neighbours’ opinions, where 
the weights represent social influence. We define a new centrality measure as a social influ-
ence metric based on both influence and conformity. We measure this new approach using 
two opinion formation models: (i) the Degroot model and (ii) our own proposed model. 
Previously studies have not considered conformity, and have only considered the influence 
of the nodes when computing the social influence. In our definition, nodes with low in-
degree and high out-degree that were connected to nodes with high out-degree and low 
in-degree had higher centrality. As the main contribution of this research, we propose an 
algorithm for finding a small subset of nodes in a social network that can have a signifi-
cant impact on the opinions of other nodes. Experiments on real-world data demonstrate 
that the proposed algorithm significantly outperforms previously published state-of-the-art 
methods.
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1  Introduction

Recently, a large number of research studies have been undertaken to achieve a better 
understanding of individuals’ everyday opinions on various subjects. This increase in atten-
tion is due to the fact that opinions crucially shape human behaviour in important areas 
such as economics, political science, cultural problems etc. Social networks play a funda-
mental role in the forming and reshaping of public opinions, and have therefore attracted 
a great amount of attention in the area of opinion formation studies [11, 28, 37, 39, 45]. 
Consider a prominent application in a viral marketing campaign that aims to convert a 
small number of initial users in order to eventually influence the majority of people in the 
market. This problem can be viewed as an example of finding “opinion leaders” in a social 
network, which is also the main challenge of this research paper. A further example might 
involve the forecasting of the final opinion of each node and the maximisation of the spread 
of influence via a network [9, 23, 38]. Society can also be seen in terms of a network, and 
we can therefore apply our approach for finding opinion leaders to a large number of social 
problems such as control of the spread of disease [59, 62], game theory based on financial 
problems [44, 52] and any other problems related to finding the influential nodes in an arbi-
trary network [2, 10, 18, 33, 48, 58, 60].

We should emphasise that our method should not be confused with influence maximisa-
tion research studies that operate under certain propagation models [22, 34, 35, 61]. Our 
research paper finds opinion leaders using opinion formation models, which despite certain 
similarities has critical differences from influence maximisation studies. Firstly, influence 
maximisation studies are based on the solution of an optimisation problem through lev-
eraging some kind of greedy algorithm, and although the details of these vary from one 
research study to another, they all use the same technique, as mentioned above. However, 
our research paper takes a different approach involving the use of an iterative algorithm. 
This paper aims to find the values of a concept called “centrality” for each node in order to 
use these further in finding opinion leaders. Centrality is a measure of the relative impor-
tance of each node in a network based on its connectivity or influence within the network. 
Centrality metrics vary in how they define and quantify importance, common metrics 
include degree centrality, which counts the number of direct connections a node has, and 
betweenness centrality, which quantifies how often a node serves as a bridge along the 
shortest path between two other nodes. These centrality measures help identify nodes that 
are potentially influential or central to the network’s structure and dynamics. In addition, 
we test opinion formation models. In most influence maximisation studies, each node has 
two Boolean values. A node is either active or inactive, and unlike opinion formation mod-
els, does not have continuous values. We explain our opinion formation model in more 
detail in Sect. 2.3.

The main approaches to opinion formation theory can be divided into methods based on 
(i) Bayesian learning and (ii) non-Bayesian learning. Opinion formation based on Bayes-
ian updates, such as the work presented in [8, 24, 30, 43] involves updating the opinion 
of each user based on the Bayes theorem. The difficulty with Bayesian methods is that 
they generally form and update opinions based on the underlying state of and signals from 
the world, and consequently the results obtained by such methods cannot be easily gen-
eralised to other states of the network. This does not mean that these methods are not at 
all generalizable; however, compared to non-Bayesian methods, they are much less gener-
alizable. Opinion formation methods based on non-Bayesian approaches employ rule-of-
thumb methods to form the opinion of agents, giving good approximations of each agent’s 
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behaviour and avoiding the difficulties of Bayesian approaches. These approaches are 
widely applied in the literature, such as the research studies presented in [6, 11, 17, 32, 51, 
56]; these are closely related to the Degroot model [15], and form the foundations of our 
proposed opinion formation model. Previous researchers in the area of opinion formation 
studies have typically focused on undirected networks, and have assumed no significant 
distinction between ingoing and outgoing links in the network. In this paper, we introduce 
a new model for directed networks in which are two type of links for each node: (i) ingo-
ing; and (ii) outgoing. Outgoing links represent connections between that node and its fol-
lowers, while ingoing links are the connections to its followees.1 In our model, the opinion 
of a node is updated based on the weighted sum of the opinions of its neighbour nodes; 
the weights of these neighbour nodes are given by their centrality, which we will define 
in Sect. 2. The main component of this research is based on the concept of centrality, and 
we design an efficient algorithm for finding the most influential nodes, that is, nodes that 
impose their own opinion on a significant proportion of the other nodes. Previous cen-
trality models, apart from traditional models such as betweenness or degree centrality, do 
not consider both ingoing and outgoing links, and thus are not optimally suitable for find-
ing opinion leaders. For example, game centrality aims to find the most suitable nodes to 
defect in a network modelled with game theory, and can be modelled by a game [52]. Fur-
ther examples of game theory-based approaches are Shapley centrality [53]. Other works 
leverage centrality, with the main focus of specific domain of brain networks [31, 47], and 
perturbation centrality, which is a model inspired by vessel communications, Another work 
[13] introduces a centrality measure combining return random walk and effective distance 
gravity model, effectively identifying influential nodes by considering both local, global, 
and dynamic information. Another example is [1] which examine centrality measures in 
Protein-Protein Interaction (PPI) networks, focusing on topological and gene annotation 
approaches to identify essential proteins. Some works have even expanded their criteria to 
multilayer networks or applications of centrality in aspects of daily life such as urban trans-
port [40]. There are also comprehensive surveys [4, 14, 57] dedicated to introducing the 
most recent works in the area of centrality. All of these methods perform well within their 
specific domains or other networks. However, they are not conceptually suitable for finding 
opinion leaders, this is true even for novel models like k-shell centrality, which shows very 
good great performance in various domains [36]. In addition, the centrality measures used 
in other papers to find opinion leaders are specifically designed for the opinion formation 
networks (e.g. [8, 16, 17, 25–27]). We are not the first to consider opinion networks in our 
centrality model, since previous works such as [12] consider opinion networks in their cen-
trality models, but we choose a different approach to do so. In all the networks considered 
here, the experimental results indicate that our proposed method significantly outperforms 
the other algorithms, such as those based on eigenvector, betweenness and closeness cen-
tralities. Section 2 of this paper will discuss methods and materials, while Sects. 3 and 4 
present the experimental results and the conclusion and future research respectively.

1  Other nodes which follow that particular node.



	 Z. Ghorbani et al.

2 � Why Another Model?

As mentioned in the introduction section, there are already a number of state-of-the-art 
methods dedicated to finding influential nodes and opinion leaders, in which more cen-
tral nodes are referred to under the name of “centrality”. Despite the strong performance 
achieved by most of these methods, we believe that there are a number of deficiencies that 
can provide good motivation for seeking a new novel method. Firstly, although there are 
plenty of research studies dedicated to the problem of finding opinion leaders, their num-
bers are still lower than the number of articles about influence maximisation. Another rea-
son is that some of the existing research studies are domain-specific, and although their 
methods show good performance within these specific domains, their performance in other 
areas such as opinion formation is not guaranteed. A key consideration in our research is 
considering conformity in our opinion leader detection algorithm. Conformity, in the con-
text of this research, refers to a node’s tendency to align its opinions or behaviours with 
those prevalent among its neighbouring nodes in a social network. Unlike influence, which 
measures the capability of a node to affect others, conformity assesses how strongly a 
node’s opinions are influenced by its peers. This metric considers factors such as the num-
ber of incoming links from other nodes, indicating the extent to which a node integrates 
opinions from its immediate network environment.

From a technical point of view, we believe that our method has the following advan-
tages: (i) conformity and input and output links are considered in our computations; (ii) a 
heuristic is proposed to reduce the number of computations in each step; and (iii) a novel 
opinion formation model is proposed that takes the conformity of nodes into account.

Table  1 shows a comparison of several state-of-the-art methods with our proposed 
method in terms of three technical criteria.

3 � Methods and Materials

The main goal of this paper is to solve the problem of measuring the social influence of users 
in online social networks; this in turn is used as a metric to find the nodes. In real-world prob-
lems, the term “social influence” could refer to individuals’ income, persuasiveness of speech, 
level of education or even their physical attributes, their power among other society ranking 
members, or the place of each individual in such rankings. Most of the existing research stud-
ies [7, 17, 25, 27, 41], measure social influence by raising the question of the extent to which 
a node can affect other nodes of the network. We extend these methods by taking into account 

Table 1   Comparison between 
different methods

Advantage Method (1) (2) (3)

Our proposed method ✓ ✓ ✓
[27] ✖ ✓ ✖
[26] ✖ ✓ ✖
[58] ✖ ✖ ✖
[50] ✖ ✓ ✖
[3] ✖ ✓ ✖
[8] ✓ ✖ ✓
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another attribute of nodes called conformity. We consider conformity to be a metric of the 
bias of a node’s opinion based on the opinions of the other nodes in the network. As a result, 
our approach improves upon previous methods by not only considering a node’s influence but 
also using its conformity to evaluate the extent to which a node adheres to its current opinions. 
For example, consider the Instagram network, in which ingoing links represent the connec-
tions to the users that are followed, and outgoing links represent the connections from the 
user’s followers. In citation networks of scientific papers, the ingoing links represent connec-
tions among papers that are cited by a given paper, while the outgoing links represent con-
nections to papers that have cited that paper. The conformity of each node is based on a num-
ber of parameters, such as the number of its input links, the stability of each node’s opinion, 
the nature of the specific relations in the social network and so forth. All of these parameters 
should be considered in calculating the conformity of each node; however, to simplify our 
formulation, we simply omit other factors and consider only the number of input links as a 
measure of conformity.

3.1 � Existing Metrics

The discovery of influential nodes is a challenging issue in the field of complex network 
analysis. A number of large cross-sectional studies suggest that heuristic methods can effi-
ciently recognise the most influential nodes of networks. The influence of a node is pri-
marily associated with the mathematical definition of a quantity called “centrality”, which 
refers to several measures that define each node’s importance in a graph. As shown in the 
next section, we compare our proposed method for identifying influential nodes using 
several other measures of centrality such as degree, betweenness, closeness and eigenvec-
tor centralities. The simplest measure of centrality is degree centrality, which denotes the 
number of immediate neighbours of a node. Degree centrality can be interpreted as the 
number of walks of length one, starting from that particular node, and this measures the 
local influence of a node. The degree centrality for a directed graph has one of two forms: 
either the in-degree, which counts the number of direct ties to the node, or the out-degree, 
which counts the number of ties that a node directs to others. Each of these forms has a dif-
ferent meaning in networks. For comparison purposes, we use out-degree centrality here, 
in which a node with high out-degree indicates an influential node.

The betweenness centrality [20] is defined as a fraction of the shortest paths between 
each pair of nodes passing through the considered node. Equation 1 shows the betweenness 
centrality of node i:

where �jk refers to the total number of shortest paths from node j to node k , and �jk(i) 
denotes the number of these paths passing through i . Another measure of centrality is 
closeness centrality, defined as the inverse of the average of the shortest-path distance to 
other nodes. In this measure, nodes with high closeness reach others quickly and play an 
important role in spreading information. Equation 2 reveals the closeness centrality for a 
given node i in a directed network as:

(1)gi =
∑

j≠k≠i

�jk(i)

�jk

(2)Ci =
N − 1

∑N

j=1
d(i, j)
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Eigenvector centrality, as introduced by Bonacich [5], links nodes to other important 
nodes, known as central nodes. It defines the centrality of a node based on the centrality of 
the other nodes connected to it. For a node i with neighbouring nodes N(i) , the centrality 
score can be calculated as follows:

or in matrix format,

In general, there are many different eigenvalues where � refers to a non-zero eigenvector 
solution. Each row in C represents a node’s eigenvector centrality.

Another centrality that is often used for comparison is the PageRank centrality, which 
is a variant of eigenvector centrality. It was introduced for use by the Google web search 
engine to rank web pages in the World Wide Web [46]. It ranks web pages based on the 
sum of the ranks, and can be computed through the following equation:

where N is the total number of pages on the Web, d is a damping factor and dout
j

 is the 
out-degree of j . PageRank centrality is currently used to rank nodes in various types of 
directed networks (e.g. its usage in designing an opinion formation model) [17].

3.2 � A New Centrality Measure: Global Centrality

Centrality is a well-known measure in network theory and has several variations in litera-
ture reviews [4]. Centrality is defined as the main indicator of the extent to which a node is 
influential.

In this section, we propose a new centrality measure for finding the top k influential 
nodes of the network. We first define a new parameter called the “effective degree” for each 
node.

Definition 1  The effective degree of a node i is calculated as follows:

We also define another parameter, which we call the degree centrality. This parameter 
measures the local social influence, and its value for each node is calculated based on the 
sum of that node’s effective degree, plus the effective degree of the nodes.

Definition 2  The degree centrality of node i is calculated as follows:

We prefer to work with smaller values and for all the calculated degree centralities to 
fall within a positive interval; we therefore subtract the minimum degree centrality that 
exists in the network from the degree centrality value of each node:

(3)ci =
1

�

∑
j∈N(i)

cj =
∑

j
Aijcj

(4)AC = �C

(5)PR(i) = (1 − d) + d
∑

j∈Ai,in

PR(j)

dout
j

(6)EDeg(i) = outdegree(i) − indegree(i)

(7)Ci = EDegi +
∑

jout−neighboursofi
EDegj
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 where V  refers to the set of all nodes in the network.

So far, all we have done has been the calculation of the centrality of nodes based on 
their immediate neighbours’ degrees. However, we now propose a more generic metric that 
is able to find the centrality based not only on each node’s immediate neighbours, but also 
the structure of the entire graph. In doing so, we define a recursive equation. We refer to 
the centrality obtained by this recursive equation as the global centrality. This is due to the 
fact that each node that has neighbours with higher centrality has higher centrality itself.

To calculate this global centrality measure, we first consider the graph G = (V ,E) , in 
which N = |V| and L = |E| indicate the number of nodes and edges, respectively. We repre-
sent this graph with a N × N adjacency matrix A.

Each element in the matrix A can either be oneorzero ; if aij equals one, this indicates a 
direct connection between node i and j , whereas a value of zero implies that no connection 
exists between these two nodes. We normalise the elements of each row by dividing them 
by the sum of the elements of their corresponding row, in order to transform the adjacency 
matrix into the form of a stochastic matrix.2 We use the stochastic matrix property to prove 
that our model in Equation 17 converges to the true value.

Obviously, the sum of each row of matrix W is equal to one, and thus the matrix is in the 
form of a stochastic matrix.

Using this stochastic matrix, we propose a measure for computing the global centrality. 
Unlike the degree centrality in Eq. 7, the stochastic matrix considers the structure of the 
entire graph.

Or in another form

In these equations, C represents the local centrality, or what we have previously defined 
as the degree centrality in Eq. 7. The parameter � refers to a localisation parameter that 
optimises the extent to which C and WCg influence each node’s global centrality. � is the 
value that controls the tradeoff between the global and the local views of the graph. If the 
value of � is close to one, our computation will be closer to the local centrality, and if it 
is close to zero, the global centrality will be mainly based on the global view of the whole 
graph.

We compare our proposed method with existing metrics in order to find the influential 
nodes. We also introduce an opinion formation model and show that our method can find 
opinion leaders in the network more effectively and can speed up the process of spreading 
ideas. We illustrate the performance of our method compared to other methods using a simple 
example. Consider the graph shown in Fig. 1: node 1 influences the other nodes, but does not 

(8)Ci = Ci − mi
(
Cj

)
(j ∈ V)

(9)W(i, j) =
A(i, j)

∑
kA(i, k)

(10)Cg = �C + (1 − �)WCg

(11)Cg = (I − (1 − �)W)−1�C

2  A matrix in which the values of each of the rows sum to one.
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follow any other node. For this reason, it is considered to be the best candidate for spreading 
an idea across the network. We implemented and discussed the centrality measure algorithms 
for this graph, and the results are presented in Table 1. As can be observed from Table 2, our 
method identifies node 1 as a leader, while other methods identify node 2 as a leader. The Cg 
column denotes our proposed algorithm.

3.3 � The Degroot Opinion Formation Model

In this section, we present a brief review of the Degroot model [15]. We assume that time 
is discrete t = 0, 1, 2,… and that each agent initially has a predefined opinion xi concerning 
some topic. The opinions are values between zero and one, i.e. xi ∈ [0, 1] . The opinions of 
all agents at time t are collected in x(t) ∈ R (we assume n agents). In each period, agents talk 
to each other, and finally each of the agents updates its own opinion by obtaining a weighted 
average of the opinions of its neighbours. We then have:

where the weight matrix T = [Tij]i,j∈N represents the level of truth that any agent places on 
the opinion of any other agent. All the elements of T  satisfy tij ∈ [0,1] for 0 ≤ i, j < n . The 
elements in each row of the matrix T  sum to one, which implies that it is row stochastic. 
Another variation of this formula can be expressed as:

(12)xi(t + 1) =
∑

j
Tijxj(t)

(13)x(t + 1) = Tx(t) = Tt+1x(0)

Fig. 1   A sample graph for com-
parison of centrality measures

Table 2   Comparison between 
centrality measures in a sample 
graph

Values are normalised

NodeID Closeness Betweenness Eigenvector PageRank Cg

Node 1 0.6 0 0.32 0.11 1.0
Node 2 1.0 1.0 1.0 1.0 0.82
Node 3 0.75 0 0.67 0.96 0.89
Node 4 0.75 0 0.67 0.9 0.7
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The weight matrix T can be interpreted as representing the credibility or trust that each 
agent assigns to the opinions of their neighbors in the network.

An interesting variation of this model was developed by Friedkin and Johnsen [21], Jia 
et al. [30]. Their model addresses opinion formation under social influence and assumes 
that an agent i adheres to its initial opinion with a certain probability gi , and that the agent 
is socially influenced by the other agents with probability 1 − gi . According to the classical 
model, we have:

or in matrix notation,

Here, G is the diagonal matrix where 0 < gi < 1 on the diagonal and I is the identity 
matrix.

3.4 � Proposed Opinion Formation Model

In this section, we present a brief overview of the opinion formation model that we intend 
to use in our benchmarking alongside the Degroot opinion formation model. This model 
has a different structure from the opinion-leader-finding algorithms, with a different defini-
tion of global centrality. In other words, this opinion formation model is one of the novel 
aspects of this research. Consider a network consisting of n agents (nodes) in which the 
agents interact with each other. Each agent holds certain opinions on specific topics, and 
their opinions are updated on a regular basis based on their neighbours’ opinions. The 
issues of how to update opinions and in which situations each agent’s opinion is updated 
are referred to as the opinion formation model in the literature.

Opinion formation models that have been presented so far are either applicable only 
to undirected graphs [29] or do not take into account the differences between ingoing and 
outgoing links [8, 17, 54]. In this section, we present a new opinion formation model that 
takes into account the differences between ingoing and outgoing links.

Consider a graph with n nodes in which each node corresponds to an agent and each 
neighbourhood relation between two nodes is represented by an edge. For example, i is 
j ’s neighbour if and only if a directed edge (i, j) exists. We define a weight matrix W , and 
use this matrix to calculate the new opinion of each node. Its elements indicate how much 
influence each node experiences from its neighbours. The opinion of agent i is represented 
as xi and is updated by a linear combination of its neighbours’ opinions. It can be calcu-
lated as follows:

In matrix form, we have:

or in another form:

(14)xi(t + 1) = gixi + (1 − gi)(ai1(t) +⋯ ainxn(t))

(15)x(t + 1) = Gx(0) + (I − G)Ax(t)

(16)xi = diixi(0) +
∑n

j=1,j≠i
wijxj

(17)X = WX + DX◦

(18)X = (I −W)−1DX◦
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As explained earlier, W refers to the influence matrix, in which the elements on the 
main diagonal are all zero and the other elements represent each neighbour’s influence on 
a node. Matrix D is a diagonal matrix in which the elements of the main diagonal represent 
the level of coherence of each agent regarding its own opinion.

The main problem in this model is how to set the values of the influence matrix W . In 
this research study, we assume that each node has an influence proportional to its degree 
centrality, which is calculated using the following formula:

In cases where we have a Eulerian graph,3 which has equal in-degree and out-degree for 
each node, we set the corresponding Ci zero values to a value of 1∕100 to ensure that the 
matrix (I −W)−1 is invertible.

Our opinion formation model is a recursive model, and we build the opinion of each 
node based on the opinion of other nodes. In this model neighbourhood feature selection 
selects influential nodes in a network by weighting each node’s opinion influence on its 
neighbours, considering both ingoing and outgoing links. This method utilizes a weighted 
matrix W based on degree centrality Ci to measure node influence. In Sect. 2.3.1, we prove 
that this equation converges to a unique answer. In Sect. 2.3.2, we presented a method of 
finding this unique answer.

3.4.1 � Solving the Opinion Formation Model

Equation 17 has the form of a system of linear equations, and we can solve this by various 
direct and iterative methods. Cramer, Gaussian elimination, Gaussian Jordan elimination, 
and inverse matrix computation are examples of direct methods that are not suitable for 
problems with large numbers of variables due to their high computational complexities. 
For example, the inverse matrix method has a time complexity of O(n3) , and the Cramer 
method has a complexity of O(n!) , making these methods impractical for problems with 
more than three variables. We need to solve the following equation:

In addition, in matrix form, we have

(19)dii =
Ci∑

j∈ in−neighbours of iCj + Ci

(20)wik =
Ck∑

j∈ in−neighbours of iCj + Ci

(21)X = WX + DX◦

(22)

[

x1x2 ⋮ xn
]

=
[

0
w12

∑

kw1k

w13
∑

kw1k
…

w1n
∑

kw1k

w21
∑

kw2k
0

w23
∑

kw2k
…

w2n
∑

kw2k
⋮⋮⋮⋱⋮]

[
wn1

∑

kwnk

wn2
∑

kwnk

wn3
∑

kwnk
… 0

]

[

x1x2 ⋮ xn
]

+
[

w11
∑

kw1k
00… 00

w22
∑

kw2k
0… 0 ⋮⋮⋮⋱⋮ 000…

wnn
∑

kwnk

]

[

x(
◦)
1 x(

◦)
2 ⋮ x(◦)n

]

3  Directed graphs in which every node has the same in-degree and out-degree.
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Our research study is mainly performed on large graphs such as the Facebook and 
Twitter networks with high numbers of variables; we therefore need methods with a 
linear time complexity. In view of this difficulty, we can use iterative methods such as 
Jacobi and Gauss-Siedel methods, since these methods converge with linear time com-
plexities. Here, we use the Jacobi iterative method. As a result, the iterative solution for 
each step of the algorithm is formulated as follows:

3.5 � Finding Opinion Leaders: An Algorithmic Approach

The global centrality defined in the previous section forms the foundation of our algo-
rithm. We use the algorithm schema proposed by Salehi-Abari and Boutilier [50] and 
apply our centrality measure to find the opinion leaders. We need to find the nodes with 
most influence, which is similar to the global centrality. The influence rate for each 
node is computed using a recursive equation based on its neighbours’ influence rates. In 
this definition, nodes that are connected to more influential nodes are more influential 
themselves.

Based on the definition of global centrality presented in Eq. 10, we define the influ-
ence computation formula as follows:

Definition 3  The influence of node i is calculated as follows:

or in matrix form:

or in another form

 where Influ is the influence vector and C is the degree centrality defined above in Eq. 7. 
The iterative form of this equation in the t + 1th step is

Moreover, in matrix form, we have

We set the initial influence value equal to the effective degree ( Influ(0) = EDeg ), as intro-
duced in Def. (6).

Corollary 1  Equation 27 has a unique solution and the iterative approach converges to a 
correct solution.

(23)x
(t)

i
= diix

(◦)

i
+
∑n

j=1,j≠i
wijx

(t−1)

j

(24)Influi = �Ci + (1 − �)
∑

j≠i
wijInfluj

(25)Influ = �C + (1 − �)WInflu

(26)Influ = (I − (1 − �)W)−1�C

(27)Influ
(t+1)

i
= �Ci + (1 − �)

∑
j≠i
wijInflu

(t)

j

(28)Influ(t+1) = �C + (1 − �)WInflu(t)
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Proof  In order to provide a proof for this, we need to prove that 1 − �w is invertible. As 
explained above, W is a row stochastic matrix, so the sum of the elements in each row sums 
to one and 𝛼 < 1. Therefore, 1 − 𝛼w < 1 and is invertible.

In order to design an algorithm based on this approach, we define an error interval. We 
use this error interval to eliminate some of the nodes at each step of the algorithm that do 
not influence the final result. To proceed further in computing this interval, we need to use 
the definitions of norms, as follows.

Definition 4  A scalar norm is a type of norm that is defined for a vector or matrix and has 
the following properties:

1.	 For each x ∈ Rn × n, � ∈ R we have ‖�x‖ = ���‖x‖
2.	 ‖XY‖p ≤ ‖X‖p‖Y‖p
3.	 ‖Xk‖p ≤ ‖X‖k

p

Definition 5  An infinite norm is defined as follows:

Theorem 1  The error value in the tth step of the proposed iterative method is bounded by 
the following interval:

Influ is the correct value of the influence, which is calculated by the proposed iterative 
method, and Influ

◦

 represents the initial value of the influence.

Proof  Influ is the correct value of the influence after convergence of the proposed iterative 
approach. We therefore have:

We also have 

which is equal to:

From Property 2 of Definition 4, we have:

In addition, from Property 3 of Definition 4, we can write:

By using the property of the infinite norm:

(29)‖A‖∞ = maxi

��n

j=1

���aij
���
�

(30)‖Influ − Influt‖∞ ≤ (1 − �)t‖Influ − Influ
◦‖∞

(31)Influ = (1 − �)WInflu

(32)‖Influ − Influt‖∞ = ‖(1 − �)WInflu − (1 − �)WInflu(t−1)‖∞

(33)= ‖((1 − �)W)t(Influ − Influ
◦

)‖∞

(34)≤ (1 − �)t‖Wt‖∞‖Influ − Influ
◦‖∞

(35)≤ (1 − �)tWt
∞
‖Influ − Influ

◦‖∞

(36)= (1 − �)t(
�n

j=1

���wij
���)
t

‖Influ − Influ
◦‖∞
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which yields the following result:

Using this theorem, we can find the most influential nodes at each step.

Theorem 2  For each node in the tth iteration, the maximum value of the error is bounded 
by the following interval.

Proof  From theorem 1, we have:

From the properties of the infinite norm:

Matrix W  in Eq. 27 is normalised. A node’s influence in each iteration is therefore 
a linear combination of the normal coefficients of the influences of all nodes, and will 
never violate its maximum. Thus, we always have max(influ) ≤

(
influ

◦) . In addition, as a 
result of the equality of the initial influence and the degree centrality vector ( influ◦

= C) , 
we have max(influ) ≤ max(C) . We can therefore conclude:

Using the above theorem, we can conclude the following proposition:

Proposition 1  If influ(t)
i
− influ

(t)

j
> 2(1 − 𝛼)t((C) − min(C)) then influi > influj

Proof  influt
i
− influt

j
= influt

i
+ influi − influi − influt

j
+ influj − influj

From Theorem 5, we have:

According to the proposition itself, we also know that:

With respect to this inequality, we know:

(37)= (1 − �)t‖Influ − Influ
◦‖∞

(38)
|||Influi − Influ

(t)

i

||| ≤ (1 − �)t(
(
Influ

◦)
− min(Influ

◦

))

(39)‖Influ − Influ(t)‖∞ ≤ (1 − �)t‖Influ − C‖∞

(40)||Influi − Influi(t)
|| ≤ (1 − �)t|Influ − C|

(41)
|||Influi − Influ

(t)

i

||| ≤ (1 − �)t
|||Influ − Influ(

◦)|||

(42)
|||
(
Influ − Influ

◦)||| ≤
(
influ

◦)
− min(influ

◦

)

(43)
|||influi − influ

(t)

i

||| ≤ (1 − �)t((C) − (C))

(44)= ||influi − influt
i
|| + influi +

|||influj − influt
j

||| − influj

(45)influt
i
− influt

j
≤ 2(1 − �)t((C) − (C)) + influi − influj

(46)influ
(t)

i
− influ

(t)

j
> 2(1 − 𝛼)t((C) − min(C))
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To make both of these inequalities true, we need:

We therefore have:

Using this error interval, we can design a time-efficient algorithm for finding the top k 
influential nodes in the network. In this algorithm, the initial influence of each node is set 
to the degree centrality, as discussed above. At each iteration, the value of the influence of 
each node is updated based on Eq. 27, and the nodes that do not satisfy the conditions of 
Preposition (1) are eliminated.

The process of eliminating these nodes is as follows: in each iteration of the algorithm, 
we find the k th influential nodes which have a different in influence from the detected node 
that is greater than the threshold in Proposition (1); these are considered not to be influ-
ential nodes. The exclusion of less influential nodes in the current iteration is a heuristic 
used to reduce the computational complexity of the algorithm. We can be sure that these 
nodes are not in the set of the top k most influential nodes in the current iteration, and there 
is therefore a good chance that they will not be in the same set in the future. This hypoth-
esis is supported with good experimental results. We have also built our algorithm on the 
assumption that nodes with a smaller number of influential neighbours are less influential 
themselves. Hence, there is a relatively small probability that the exclusion of less effective 
neighbours at each iteration will lead to a profound difference in the final results, and thus 
they are extracted from the set of nodes.

4 � Experimental Results

In this section, we demonstrate the practical performance of our approach on several 
datasets collected from real-world social networks. Our method is evaluated based on 
both the Degroot opinion formation model and our opinion formation model, as dis-
cussed above. We use three variations of the Degroot model, as explained below. The 
reason for using the Degroot model in addition to our own opinion formation model 
is to prevent the assumption of a ‘chicken and egg’ problem that might arise due to 
the similarities between our model and an opinion leader-finding algorithm. In other 
words, we show that our model is not the only one to give good performance using 
the algorithm’s outputs.4 However, our own opinion formation model shows good per-
formance for our algorithm, and in a real-world situation in which the ‘chicken and 
egg’ problem is not a concern, our model and opinion-finding algorithm can be used 
simultaneously. The statistics of all datasets are summarised in Table 2, in which the 
parameters N  and M denote the number of nodes and edges in the network, k is the 
average degree of the nodes in the network, and kmax is the maximum degree of a node 
that exists in the network. The parameter C represents the average of the clustering 

(47)influt
i
− influt

j
≤ 2(1 − �)t((C) − (C)) + influi − influj

(48)influi − influj < 0

(49)influi > influj.

4  The datasets can be downloaded from: http://​konect.​uni-​koble​nz.​de/​netwo​rks/.

http://konect.uni-koblenz.de/networks/
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coefficient of the nodes in the graph, and LCC represents the size of the largest con-
nected component in each graph.

We evaluated our approach on four datasets: Advogato, Epinions, Pokec and Twit-
ter. The Advogato network [42] is an online community platform launched in 1999, 
catering specifically to developers of free software. In this network, nodes represent 
individual users of Advogato, and directed edges signify trust relationships between 
these users, reflecting the degree of trust each user places in others within the commu-
nity. The Epinions network [49] is derived from an online social network where nodes 
represent users of the platform. Directed edges in this network denote trust relation-
ships established between users, indicating which users trust others’ opinions or rec-
ommendations on products and services within the platform. The Pokec network [55] 
originates from the Slovak social network Pokec, where nodes correspond to individ-
ual users of the platform. Directed edges in this friendship network represent mutual 
friendships between users, highlighting social connections and interactions among 
members of the Pokec community. Twitter [19] is a directed network where nodes rep-
resent users of the platform, and each directed edge indicates that the user on the left-
hand side follows the user on the right-hand side. This network structure captures the 
follower relationships among users, reflecting the influence and connectivity dynamics 
within the Twitter platform.

Firstly, to test the influence of the detected influential nodes in the opinion forma-
tion model, a random value in the range [0, 1] is assigned to each node to represent its 
opinion on certain subjects. If this value is close to zero, this indicates that the node 
has a negative view on that subject; conversely, if this value is close to one, this indi-
cates that this node fully supports this subject. In all our experiments, we consider 10% 
of the nodes to be influential, and thus their opinions are set to one. We update each 
node’s opinion based on the opinion formation model used in the experiment until the 
results converge to certain values and no further changes are seen. The final opinion 
in the network, which is the average of all nodes’ opinions, is used as a benchmark to 
evaluate the influence of influential nodes.

We conduct these tests for three different scenarios: (i) all initial values are set to 0; 
(ii) all initial values are set to 0.5; and (iii) the initial values are random, i.e. the values 
are set to a random number between zero and one. The value for parameter � is set to 
0.8, since the algorithm works best for this value, as observed in Sect. 3.4.

Table 3   Properties of test networks

Network N M ⟨k⟩ k
max

C LCC

Advogato 6541 51,127 15.633 943 9.22 5042
Epinions 75,879 508,837 13.412 3079 6.57 75,877
Twitter 465,017 834,797 3.5904 678 0.0613 465,017
Pokec 1,632,803 30,622,564 37.509 20,518 4.68 1,632,803
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4.1 � Test Results for the Proposed Opinion Formation Model

In this section, the efficiency of the proposed method using the opinion formation 
model is compared to other commonly used methods, namely betweenness centrality, 
closeness centrality, eigenvector centrality and PageRank centrality. We assign initial 
values as explained at the beginning of Sect. 4. We run the test for our proposed opin-
ion formation model and compare the values of the opinions for each method at each 
iteration. Thus, the results presented here are the averages of 20 runs of the simulation.

In these experiments, the opinions of the users were numbers in the range 0–1; if the 
value is close to one, then it means that a particular user supports the idea completely; 
its closeness to zero indicates the opposite. The y-axis in the figures denotes the aver-
age of the opinions of all nodes, and the x-axis indicates the time step in the test.

4.2 � Test Results for the Degroot Opinion Formation Model

As in the previous section, we test our proposed method and compare the results to other 
methods; however, this time our tests are conducted for the Degroot model. All other eval-
uation criteria are the same as in Sect. 4.1.

4.3 � Test Results for Three Different Variations of Centrality for the Degroot Opinion 
Formation Model

In this section, we compare different choices for Ci (here we use Ci instead of Tij, which was 
used in the original Degroot model) in Eq. 12 for the Degroot opinion formation model. 
The Degroot model is used for all of these tests. The three variations of Ci are as follows: 
(i) using global centrality, as in Sects. 4.1 and 4.2; (ii) including nodes that are two hops 
away in computing Ci with a discount factor of 0.5; and (iii) using degree imbalances5 
without adding the neighbours’ degree imbalances (Table 3).

5  Absolute values of the in-degree minus the out-degree of nodes.
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Algorithm 1   Mining Top k Most influential Nodes

4.3.1 � Evaluation of Results

As we can observe from Fig. 2 and from all the datasets except the Epinions network, the 
values of the opinions increase and finally converge to a particular value. In the Epinions 
dataset, the values of the opinions decrease but also converge as in the other datasets. We 
can see the same behaviour in Figs. 3 and 4 in all datasets (except for the Epinions network 
in Fig. 3). In all cases, the proposed method was superior to the other methods of finding 
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opinion leaders, except for the case of the Epinions network in Fig. 2 and the Pokec net-
work in Fig. 4. As can be seen from Fig. 5, our method outperforms the other methods of 
finding opinion leaders since it considers both influence and conformity simultaneously. In 
the Pokec network, the proposed method gives the same performance as the betweenness 
centrality and is better than the other choices.

Another interesting observation is that there is no significant difference between the 
curves except for Pokec network in Figs. 2, 3 and 4 and the Epinions network in Fig. 2. 
Both the results for the proposed opinion formation model and for the Degroot model 
converge immediately to almost the same curves, regardless of the method used. This is 
due to the fact that if the initial opinion leaders are chosen correctly, then there is no sig-
nificant difference of what opinion formation model they have and this will converge to 
the same results. The consistent convergence of opinion values across Figs.  2, 3, and 4 
reveals important insights for abnormal behaviour analysis using truth discovery methods. 
This can be used to leverage weighted matrices for representing trust and influence, where 
deviations from expected convergence patterns may indicate anomalies or influential nodes 
exhibiting atypical behaviours. Such an approach not only improves outlier detection but 

Fig. 2   Comparison of methods for finding opinion leaders in the Degroot opinion formation model with 
global centrality and initial values of zero
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also deepens our understanding of how information propagates and exerts influence within 
intricate social networks.

4.4 � Fault Tolerance Against Noisy Data

Fault tolerance is of paramount importance, especially in situations where some of the 
links in the input data do not exist in the real world and our data contain errors. Social 
networking data may be associated with uncertainty, especially in cases where we deter-
mine relationships between agents. For example, in a protein network obtained from a 
biological experiment, there is always the possibility of error when modelling the links 
of the network. In order to achieve the task of finding the top k influential nodes in these 
networks, we require algorithms with great tolerance against such errors. In this section, 
we examine the fault tolerance of our proposed method against the PageRank algorithm. 
In order to create a graph containing errors, we add some edges to our original graph. 
The addition of wrong connections to the graph makes the graph ‘noisy’. In the next 

Fig. 3   Comparison of methods for finding opinion leaders in the Degroot opinion formation model with 
two-hop centrality and initial values of zero
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step, we compute the centrality for this noisy graph and measure the error between the 
noisy and normal graphs using the following equation:

Si′ and Si correspond to the centrality score of node i in the noisy and original graphs, 
respectively. In Fig. 6, the term ‘spurious edges’ refers to the number of edges that do 
not actually exist in the graph. As previously stated, these are errors in the network. As 
shown in the same figure, our centrality is more robust to noisy data than the PageRank 
centrality, as indicated by its lower value of Is.

Figure 7 shows the final opinions in the network that are reached by multiple pro-
portions of leaders in the Pokec network. This curve has an ascending shape, and 
by increasing the number of leaders, the average of the final opinion of the system 
increases. The results for the other networks tested are similar. In Fig. 8, we can observe 

(50)Is =

N∑

i=1

||Si� − Si
||

Fig. 4   Comparison of methods for finding opinion leaders in the Degroot opinion formation model with 
degree imbalance as centrality with initial values of zero
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the effects of different values of � on the average of the opinions of the nodes in the 
Pokec network. A larger value of � makes leaders more local, while a smaller value 
makes them more global. The results for the other networks tested are similar.

5 � Conclusion and Future Works

In this research paper, we propose a new centrality measure to find opinion leaders and an 
algorithm to find these leaders. Furthermore, we introduce a new opinion formation model 
to calculate the opinions of the network nodes.

The main advantage of our method is that it considers both the input and output links, 
while previous methods have mostly focused on the output links and have ignored the role 
of the input links. We test our proposed opinion-leader-finding algorithm with our pro-
posed opinion formation model and the Degroot opinion formation model. Our method 
outperforms classic centrality measures, and also has the advantage of fault tolerance.

Fig. 5   Comparison of methods for finding opinion leaders in the proposed opinion formation model with 
initial values of zero
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Fig. 6   Comparison of fault tolerance in the proposed method and the PageRank method

Fig. 7   Effect of the proportion 
of leader nodes on the average of 
the final opinions of nodes in the 
Pokec network
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Our proposed algorithm is specifically designed to identify a small subset of nodes 
within a social network that can significantly influence the opinions of other nodes. By lev-
eraging our novel centrality measure and opinion formation model, we can pinpoint these 
key nodes with greater accuracy and efficiency than traditional methods. This approach 
not only enhances the precision of identifying opinion leaders but also underscores the 
importance of considering the bidirectional nature of interactions within the network. Our 
method is evaluated against the Degroot opinion formation model and our own model, 
demonstrating superior performance in large real-world social networks such as Facebook, 
Twitter, Advogato, and Epinions. We tested the influence of detected nodes by assigning 
initial opinion values and updating them iteratively until convergence, showing that our 
model leads to more accurate identification of influential nodes compared to traditional 
centrality measures like betweenness, closeness, eigenvector, and PageRank centralities.

Directions for future research may include the implementation of our method in a dis-
tributed framework (e.g. Hadoop, using the MapReduce programming model). Another 
interesting area of research would be the application of these methods to graphs for which 
we do not have full knowledge about the network’s structure, or to graphs in which the 
topology of the graph changes constantly, thus giving the network a dynamic structure.
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