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Abstract
The article focuses on the concepts of Cell Image Segmentation (CIS) and the gradual 
introduction of cell counting. Motivated by the rapid development of Machine learning 
(ML) methods, which is carried out in this investigation. ML is evolving from theory to 
practical applications, with deep neural network models extensively used in academia and 
business for various applications, including image counting and natural language process-
ing. These advancements can greatly influence medical imaging technologies, data process-
ing, diagnostics, and healthcare in general. Main objectives of the research are to provide 
an overview of biological cell counting methods in microscopic images and to explore deep 
learning (DL)-based image segmentation approaches. The study expertly describes current 
trends, cutting-edge learning technologies, and platforms utilized for DL approaches. Cell 
counting is one of the most researched and challenging subjects in computer vision sys-
tems. Academics are increasingly interested in this area due to its real-time applications in 
biology, biochemistry, medical diagnostics, computer vision-based cell tracking systems 
for large populations, and stem cell manufacturing. Counting cells in the biological field is 
beneficial. For instance, the ratio of white blood cells to cancer cells in the blood can help 
determine the origin of a disease. Biologists also need to count cells within cell cultures to 
monitor the time-dependent growth of cells during bacterial experiments. Numerous meth-
ods for cell counting have been developed, after addressing the challenges with Cell Count-
ing algorithms; the article explores promising future directions in CIS and cell counting 
research fields.
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1  Introduction of Cell Counting and Motivation

Cell counting, also known as cell enumeration, is the process of determining the total num-
ber of cells, including red blood cells and white blood cells, in human blood. It is a fun-
damental measure used in biotechnology for various purposes, such as advanced therapy, 
medical diagnostics, and bio-manufacturing [1]. Cell number is essential for determining 
the correct dosage for cell-based treatments. Cell counting plays a vital role in various 
fields of research, including biological applications, genetics, biochemistry, and medi-
cal diagnostics and treatments. Additionally, cell counts are essential for preparing cells 
for research, assessing cell viability, and determining growth rates. Cell counts must be 
accurate, trustworthy, and rapid to measure cellular responses. For example, the number 
of leukocytes, known as white blood cells, in the blood indicates the presence of a disease 
during a medical diagnosis. The most prevalent type of leukocyte, neutrophils, defends 
the body from bacterial infections. Similarly, lymphocytes, another type of white blood 
cell, defend the body against viral diseases. Another example is the reappearance of can-
cer following treatment of cancer cells. To prevent the issue from recurring, the system 
can automatically monitor and preserve both normal and abnormal cells related to the ill-
ness [2]. Researchers have developed both manual and automated cell-counting techniques. 
Although manual methods are labor-intensive and error-prone, they are often preferred due 
to their cost-effectiveness compared to other methods. Automated cell counting techniques, 
such as flow cytometry, have been developed to provide faster and more accurate results. 
In flow cytometry, cells are individually passed through a narrow channel, which is a key 
feature of this technique. One of the active cell treatment drug tests in Great Britain is dif-
ferent from conventional pharmaceutical production patterns, although it shares similari-
ties with them. The efficient and practical advancement of mitochondria to large items, the 
efficient differences and cleansing of goal cellular processes, as well as the price and Good 
Manufacturing Practice (GMP) interoperability of existing processing technologies, are 
significant barriers to the adaptation of stem cell transplantation methods utilizing progeni-
tor cells (PSCs) [3]. Nevertheless, if these limitations can be overcome, autologous medi-
cines would have less diversity in growth in the developing world and would be made on a 
greater scale, enabling them to more effectively treat conditions with a higher prevalence. 
Nilsson et al. state that white blood cells (WBCs), also referred to as leukocytes, play a 
crucial role in human innate immunity. In order to battle infections, these cells destroy 
bacteria, viruses, and other unwanted diseases. An abnormally high white blood cell count 
may indicate the presence of a rare illness. Typically, diseases that harm epithelial cells can 
compromise the body’s ability to eliminate or control infections. Therefore, medical micro-
biology and malignancies focus on white blood cell counts due to their diagnostic signifi-
cance. A total WBC count may identify diseases concealed inside the organism and notify 
clinicians of undetected problems such as autoimmune disease, immunological deficits, 
brain disorders, and malignancy [4]. A WBC count may suggest the existence of an illness 
affecting white blood cells, but it can also help understand the underlying causes. A blood 
smear examination is a technique used to examine blood cells under a microscope. These 
techniques make it possible to automatically count cells and determine things like cell size. 
When different cell types are examined side by side, the ability to classify cells based on 
their size allows researchers to determine how many cells are present in each group. For 
instance, counting the different types of white blood cells can be used to identify the dis-
ease type. One of the flow cytometry methods, electrical impedance spectroscopy, exam-
ines the impact of cell migration on the electromagnetic field applied to the microchannel, 
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allowing the detection, counting, and physical characteristics of cells. Yet, the necessary 
equipment for this method is costly. Wang et al. developed a framework to prevent double 
counting and enhance the accuracy of counting [5–7]. To test how well the method works 
in different scenarios, an evaluation has been conducted using new images. The technol-
ogy for detecting and counting individual cells using visual methods is displayed in Fig. 1. 
Figure 1 displays images of blood cell microscopic images as the dataset. Subsequently, 
the cell detection algorithm was applied to the dataset. To detect the cells, the model has 
been trained on key features such as shape, size, and color. Next, the detected cells are 
counted to determine the total number of cells [8, 9]. The survey paper explores numer-
ous algorithms pertaining to automatic cell counting techniques in machine learning and 
deep learning for medical image analysis. The paper offers a comprehensive review of two 
decades-long research in the field of cell segmentation.

1.1  Key Challenges and Research Gaps

Some of the important key challenges and research gaps have been identified, which can be 
addressed while developing cell counting techniques and applications for medical image 
analysis in a clinical setting. Based on the literature review, some research gaps related to 
cell counting have been identified:

1) Time-consuming process [10]: Automated cell counting is as fast as it sounds. You 
prepare your slide, insert it into the appropriate slot, choose your cell counting protocol, 
and press the count button. Wait a few seconds, and the results will be presented in a 
document.

2) Delicate procedure of coverslip preparation [11]: Let’s take a look at the most com-
mon method for manually counting cells, the hemocytometer. First, you must prepare 
a plastic or glass hemocytometer coverslip by rinsing it with rubbing alcohol. Still 
unfinished, you must attach it to the hemocytometer. A delicate procedure is prone to 
mistakes. With automated cell counting, you remove a chip from its packaging, load a 
suspension of cells onto it, and insert it into the automated cell counter slot.

3) Different staining [12]: Specimens can make it challenging to distinguish between a 
cell’s nucleus and cytoplasm, especially for techniques that divide according to color. 
Cell images have been produced using a variety of techniques.

4) Morphological diversity: Cells appear in a variety of shapes, textures, and orientations 
in microscope photographs. Blood smear images’ ability to be segmented accurately 
is hampered by the morphological diversity of the cells and the murky, complicated 
background.

Fig. 1  Training dataset cell count  
(Source: IET Research Hub)
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5) Irregular borders between cells and nucleus [13], which can vary greatly within cells, 
lobed nuclei. Due to overlapping and distorted cells, it could be difficult to track changes 
in cell boundary topology. Problems could arise when cells and their nuclei combine or 
split, or when boundaries are concave, convex, or have sharp edges.

6) Number of cell count [14]: For segmentation, it is crucial to count the number of cells 
in each area. Unlike the watershed transform, pixel replication does not estimate the 
number of cells in each area.

7) Lack of generalizability [15]: Many researchers ignore the issue of the network 
response’s generalizability in the event that the data source changes. That is what a 
transformation in a data acquisition device will do to image features, like illumination 
or color intensity levels, for example.

8) Lack of sufficiently large imaging datasets [16]: The requirement for very large imag-
ing datasets presents another issue with Deep Learning Classifier (DLC) based networks. 
As a result, there will be significant storage and memory needs, and the networks will 
need a lot of training time.

9) Microscope illumination[17]: The nucleus and cytoplasm may have varied color dis-
tributions due to differing microscope illumination techniques and uneven lighting, 
making it difficult to distinguish between these areas.

10) Manual errors counting the cells: Relying on human vision and finger clicks on a 
clicker will result in inaccurate counts. Why not rely on the automated cell counter, 
which uses a sophisticated detection camera and algorithm to produce consistent and 
accurate results? Each time the cell counter is used to count cells, the system will 
respond consistently.

11) Cell count variability: An automated cell counter can accurately count a variety of 
cell densities. If too few or too many cells populate the field of view, the count may not 
accurately represent the stock solution.

12) Challenging differentiation between cells and debris[18]: For instance, Luna cell 
counters can distinguish between cells and debris much more easily than the human eye. 
The Luna-FL, which utilizes two fluorescent colors for detection, is ideal for counting 
primary and stem cells, which typically contain a great deal of debris.

13) No standardized protocol: For example, Luna cell counters can differentiate between 
cells and debris far more easily than the human eye. Utilizing two fluorescent colors 
for detection, the Luna-FL is ideal for counting primary and stem cells, which typically 
contain a great deal of debris.

Several issues need resolution, with the major ones described here. Due to the close 
proximity of our body’s cells, as seen in Fig 2, detecting and analyzing them when they 
are connected is challenging. To enhance outcomes and establish a well-controlled sys-
tem, we must address these challenges with a comprehensive understanding of technol-
ogy, cell structure, and algorithms.

1.2  Terms Abbreviated Throughout the Paper

Table 1 list of abbreviations utilized in this paper, particularly in the medical field.
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2  Contributions of Research

1. This survey paper explores numerous algorithms pertaining to automatic cell counting 
techniques in machine learning and deep learning for medical image analysis.

2. The paper offers a comprehensive review of two decades-long research in the field of 
cell segmentation.

3. The reviews have been conducted formally, encompassing the most recent advancements 
in microscopic image cell counting techniques. Unlike other surveys, real-time applica-
tions are discussed along with the significance of cell counting in microscopic images.

Fig. 2  The problem of connect-
ing discontinuous object borders 
that are nonetheless need to be 
connected persists

Table 1  List of abbreviations S.no ML Machine learning

1 US Ultrasound
2 NLP Natural language processing
3 CNN Convolutional neural network
4 DL Deep learning
5 MRI Magnetic resonance imaging
6 ANN Artificial neural networks
7 PET Positron emission tomography
8 CT Computed tomography
9 CIS Cell image segmentation
10 EBCT Electron beam computed tomography
11 fMRI Functional mri
12 MRS: MR spectroscopy
13 SPECT Single photon emission ct
14 DLC Deep learning classifier
15 ROI Region of interest
16 RBC Red blood cell
17 WBC White blood cell
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3  Research Methodology

The objective of the narrative review is to identify research that developed or validated 
cell-counting models to detect any disease features from histopathology and medical imag-
ing data. As depicted in Fig.  3, the initial research criteria focused on the classification 
of various biological cell images under "Cell image segmentation," while the secondary 
search criteria centered around "cell detection and counting" within the domain of "Com-
puter vision." This article focuses on various cell counting and cell segmentation tech-
niques from microscopic images. Out of 532 publications, 96 were carefully selected based 
on their relevance to the study. Important methods and the criteria for the study’s selection 
were included in the survey.

Research papers in this field have been classified into three categories:

1. Primary Keywords: This category involves searches based on primary keywords related 
to the field of cell counting, such as biomedical images, cell-counting, types of cells, 
and images.

2. Additional Keywords: Here, additional keywords were added to the primary keywords, 
such as cell counting from microscopic images and image segmentation.

3. Secondary Keywords: This section involves searches based on secondary keywords, 
like techniques for cell counting and the application of cell counting.

3.1  Research Evaluation Standards

Figure 4 illustrates the selection criteria utilized in this study. In the first phase, a key-
word search has been conducted to eliminate redundant and irrelevant materials from 
the selection process, resulting in 532 articles being identified. Subsequently, in the sec-
ond phase, a title-based search has been performed, focusing on automatic cell counting 
techniques, leading to the selection of 190 papers. Following this, a thorough evaluation 
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Fig. 3  Primary, secondary, and supplemental keywords are used to choose the articles
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of the full text was undertaken, resulting in the selection of 101 research manuscripts. 
Finally, from these 101 papers, 60 research articles have chosen for inclusion in the cur-
rent study.

3.2  Research Questions

The strategy of incorporating research questions into the study aligns with the review 
technique. These inquiries are crafted to encompass every aspect of the proposed paper, 
including the utilization of deep learning and machine learning in healthcare analysis, 
medical image processing, and other critical areas essential for delineating the study 
process. Table 2 delineates the rationale behind the research questions (Fig. 5 highlight-
ing the differences between traditional and deep learning approaches for cell counting."  
The latest method is based on images).

3.3  Information Sources

Table 3 depicts the extensive databases that are employed in this review process as a 
search platform.

Section Section

Execution based
on ABSTRACT

SectionSectionSection

Current status

Execution based
on TITLE

Execution
based on full 

TEXT

Fig. 4  Study selection process

Table 2  Research questions utilized in the review process

Sr. No Review questions

Q1 What is the duration of this survey?
Q2 What are the current topics for research in biological cell counting in microscopic images?
Q3 What are the challenges when developing applications for medical cell image analysis
Q4 What is current research in cell images?
Q5 What are the various automatic cell-counting techniques?
Q6 How soft-computing and machine learning helps to develop cell-Counting technique?
Q7 What are the different cell counting based real-world applications?
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4  Cell Counting: A New Age

4.1  What is Cell Counting?

Cell counting is a vital technique used in scientific research and medical diagnostics to 
quantify the number of cells in a sample accurately. This process involves determining the 
concentration of cells within a specified volume of the sample. It plays a crucial role in 
assessing cell proliferation, viability, and response to treatments in laboratory studies. In 
clinical settings, cell- counting aids in diagnosing diseases, monitoring patient health, and 
evaluating treatment outcomes. Biotechnological and pharmaceutical industries rely on cell 
counting to monitor cell cultures during the production of therapeutic products [10]. Vari-
ous methods, such as manual counting under a microscope, automated cell counters, and 
flow cytometry, are employed for cell counting, each offering different levels of precision 
and throughput. Accurate cell counting is essential for understanding cellular behavior, 
disease progression, and the development of new treatments and therapies (Fig. 6 shows 
different types of imaging methods used for biomedical images in cell counting research. 
Most common type of imaging is CT and MRI).

4.2  Why do Cell Counting?

For in vitro cell culture, counting cells is frequently an essential but time-consuming step. 
Accuracy and repeatability in experiments are ensured by maintaining constant cell con-
centrations. Cell counts are important for evaluating immortalization or transformation, 

Fig. 5  Cell counting methods

Manual Automatic

Hemocytometer Image Based 

Coulter Counter

Flow Cytometry

Spectrophocytometry

Methods of cell counting

Table 3  List of information 
sources

S.no Platform

1 Web of science (https:// www. webof knowl edge. com)
2 Science direct (https:// www. scien cedir ect. com)
3 Springer(https:// www. sprin gerli nk. com)
4 IEEE explore (www. ieeex plore. ieee. org)
5 Elsevier (www. elsev ier. com)
6 Google scholar (www. schol ar. google. co. in)

https://www.webofknowledge.com
https://www.sciencedirect.com
https://www.springerlink.com
http://www.ieeexplore.ieee.org
http://www.elsevier.com
http://www.scholar.google.co.in
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seeding cells for further studies, transfection, or infection, monitoring the health and prolif-
eration rate of cells, and preparing for tests involving cells. For quantitative assessments of 
cellular responses, it is crucial that cell counts be precise, reliable, and quick. Calculating 
the number of cells is necessary for monitoring cell reproduction and viability, optimiz-
ing cell culture conditions, and preparing cell-based experiments. Reliable monolayers are 
essential for tracking cell viability and reproduction rate, assessing changes in visibility 
or morphology, seeding colonies for further investigations, transfection, or infections, and 
developing fibroblast analyses [11]. Especially for measuring cellular functions, accurate 
flow cytometry is crucial, consistent, and quick. Despite the importance of speed and preci-
sion in cell counting.

4.3  Benefits of Cell Counting

1. Collecting colonies is a laborious yet important process in in vitro model cultivation.
2. Maintaining constant cell levels improves the credibility and precision of experiments.
3. Inaccuracies in hemocytometers may arise from various factors: irregular handling of the 

specimen, fewer total cell lines in the specimen, subjective judgment regarding whether 
a provided cell falls within the clearly delineated counting area, contamination of the 
counting chamber, variability between users, and differences in the percentage of cell 
suspension used to fill the chamber.

4. Plotting the logarithm of Vorpal blade cell counts against the logarithm of Beckman 
viable cells reveals that, across all investigated cell lines, Scimitar numbers correspond 
to Beckman count data.

4.4  Methods for Cell Counting

The four primary methodologies employed for image segmentation, aimed at identifying, 
analyzing, and assessing cells and their subareas, include histogram-based, boundary-
based, region-based, and pixel-based methods. Various grouping and categorization-based 
perceptual techniques have been demonstrated in the cancer detection process [12]. Pre-
processing will involve the utilization of morphological and image filtering techniques to 
enhance cell images, thereby striving for optimal results.

Fig. 6  Various kinds of medical 
imaging research
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4.4.1  Hemocytometers

The first device specifically designed for obtaining accurate cell counts was the counting 
chamber, also known as a hemocytometer. This chamber consists of a glass slide with a 
gridded pattern attached to it, where the squares are further divided into 0.05 mm x 0.05 
mm squares, typically forming a 1 mm square. A designated glass coverslip is placed at the 
chamber’s edges, creating defined zones with known volumes. Before usage, the hemocy-
tometer should be cleaned with lens paper and 70% ethanol. Then, gently place the cover-
slip on top of the counting chamber, ensuring the Newton’s rings phenomenon, a concen-
tric- ring pattern of color, is observed when the coverslip is correctly positioned. A pipette 
is then used to collect a small sample of the cell suspension, positioning it close to the 
chamber’s edge to allow capillary action to carry the sample into the counting chamber 
[13]. Before adding the cell solution to the chamber, trypan blue (in a 1:1 ratio) should be 
added to the cell solution to determine cell vitality.

4.4.2  Coulter Counters

Coulter counters measure electrical resistance across one or more microchannels rather 
than optical resistance. When cells with higher resistance than the electrolyte solution in 
which they are suspended pass through the channels, there is a brief increase in resistance. 
The Coulter counter detects this change, which increases with cell size. Coulter counters 
function similarly to automated cell counters. Before starting the run, the cell solution is 
placed into a vial after proper mixing and dilution as needed to achieve uniform cell disper-
sion. However, using Coulter counters requires running a blank first and then flushing the 
device after use, unlike automatic cell counters.

4.4.3  Flow Cytometers

Flow cytometers are commonly used for comprehensive cellular analysis, equipped with 
fluorescence detection technologies capable of identifying tagged intracellular components. 
While not all flow cytometers can count cells or measure liquid volumes, those that can, 
using fluorescently labeled antibodies can provide highly accurate cell counts and differen-
tiate cells based on factors such as protein expression. Thanks to this capability, they can 
discriminate between cell types of the same size within the same sample or even between 
cell types at various stages of development. However, such complex studies complicate the 
experimental setup, and antibody incubations usually take hours, potentially prolonging the 
process significantly. Despite this complexity, using a flow cytometer is relatively straight-
forward (load and run), with ease of use heavily dependent on the experimental setup.

4.4.4  Spectrophotometers

Occasionally, it is possible to assess the relative density of cells using spectrophotome-
try. As cell density increases, less light flows through the cuvette due to turbidity caused 
by cells. However, because spectrophotometers measure absorbance rather than actual 
cell counts and other fluctuating elements of cell suspensions may affect absorbance, 
spectrophotometry is not a reliable method for calculating cell density [14]. To deter-
mine cell density, place the cell suspension in a cuvette and measure absorbance using a 
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spectrophotometer. You can compare your sample to another one if you want to assess rela-
tive density. However, to determine absolute cell density, you must compare to cell suspen-
sions with known densities.

4.5  Biomedical Images Types and Samples

Biomedical imaging encompasses a wide array of techniques aimed at analyzing various 
physical measurements of the human body from different perspectives, including micro-
scopic and macroscopic views [15]. In the field of medical science, numerous imaging 
techniques have been developed and utilized. Examples include X-ray radiography and 
fluoroscopy, computed tomography (CT), magnetic resonance imaging (MRI), positron 
emission tomography (PET), single-photon emission computed tomography (SPECT), 
thermography, and ultrasound imaging (USI). Many of these technologies have seen inte-
gration with soft computing and machine learning as they have advanced. Through meth-
ods like X-ray imaging, these techniques are employed to identify and diagnose health 
issues within the body. The following are some of the most prevalent biomedical imaging 
modalities.

1) CT: Computed Tomography
2) EBCT: Electron Beam CT
3) fMRI: Functional MRI; MRI, Magnetic Resonance Imaging;
4) MRS: MR Spectroscopy
5) PET: Positron Emission Tomography
6) SPECT: Single Photon Emission CT

4.6  Biomedical Images Types

Biomedical Images can be classified into three categories based upon their inherent nature 
as shown in Fig 7. They are macroscopic (can been seen by naked eye), light microscope 
and sub-microscopic.

4.6.1  Macroscopic images

These are the images that can be seen with the naked eye. These photos may be analyzed 
without the need of any specific equipment. A specific quantity of item is considered in the 
macroscopic way without events accruing at the molecular level to investigate [16]. We 
didn’t examine changes in the substance’s structure in this technique because only a few 
variables are required to describe the object’s state. As a result, it is possible to conclude 

Fig. 7  Types of biomedical 
images for cell segmentation
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that no mathematical computation is required in this technique since just the average value 
is used to analyze the image as shown in Fig 9. Individual cells cannot be examined using 
this procedure.

4.6.2  Light microscopic images

Visible light is utilized in a light microscope to see the structure of a cell in an image. The 
change in the conditionof individual cells, as well as their behavior and characteristics, 
may be easily observed using this approach. As a result,it aids in the detection of diseased 
and normal cells in images, which is challenging in macroscopic images. The inspection of 
onion cells under a microscope reveals tiny brick-like cells with nuclei, as depicted in Fig 
9.

4.6.3  Sub‑microscopic

A method for acquiring high-resolution images of both biological and non-biological mate-
rials is electron microscopy (EM). In medical science, it is critical for analyzing the interior 
structure, size, and form of cells. With the use of an integrated electron beam with a very 
small duration in the waveform, it produces a high-resolution picture. As seen in Fig 4, it 
provides precise information about the sick cell and the normal cell. So, electron micro-
scopes employ signals generated by an electron beam’s interaction with a sample to gain 
information about structure, morphology, and content [17]. The transmission EM (TEM) 
and the scanning EM (SEM) are the two forms of EM (SEM). The TEM allows research-
ers to see cells at very small scales and analyze living cells in a material. The transmis-
sion pathway of cells and their interior architecture are viewed and studied via TEM. The 
scanning electron microscope is the second type of EM (SEM). It allows you to look at the 
surface of the cells. It provides crucial information about the cell’s whole body as well as 
its surface. It aids in cell counting, size inspection, and cell management in images. Elec-
tron microscopy is used for a variety of purposes, including diagnosing illness and treating 
patients using biopsy samples [18]. It is also used in many industries for quality control 
and defect investigation. EM is now employed mostly in biomedical research.

5  Literature Review

The amount, size, and placement of animal tissue have been the core focus of CIS (Cell 
Imaging Systems) studies since the 1960s [19]. Since the late 1990s, advancements in 
microscopy have made it feasible to view anti-anti entities, leading to the use of anti-anti 
image classification. These studies primarily discuss the nuclei of organisms. From the 
beginnings of CIS research, the differences between the cytoplasmic and nuclear com-
ponents in terms of frequency have been explored to locate the cell’s perimeter. Recent 
CIS research has discovered methods for recognizing microtubules and their elements. 
Cellular actions involve the cytoskeleton, mitochondria, and genetic material. The cyto-
plasm, a semi-fluid structure, contains a system of fibers that influence the shape of the 
cell nucleus. Various coloring treatments and approaches have been used to recognize 
cellular structures, including seedlings. These components help differentiate the nucleus 
from the background more quickly than comprehensive photographs. Investigators and 
counselors regularly inspect cell images for overlapped boundaries due to medication 
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effects or microbial attacks. To analyze these intracellular features, photos must be seg-
mented. Current genome-wide screening initiatives use a computerized High Reliability 
Score (HRS) assessment. This research focuses primarily on CIS work completed since 
the year 2000, encompassing classification techniques in digital technology, electropho-
resis in biological sciences, and histopathology. Machine learning academics are devel-
oping unique methods for identifying, analyzing, and classifying cellular components. 
Different elements are categorized to track cells experiencing nonlinear behavior due to 
mutations. Distributions are utilized to combine and select statistically significant por-
tions. The mobility of cells has been examined using phase-contrast imaging. Addition-
ally, revolutionary template matching techniques are employed in video microscopy to 
recover nuclei using moment photography.

 1. Michele Perry (2022) [20] et al. In the fluorescent direction, all lattice-deceased micro-
organisms are tallied, while the complete cell suspension is recorded in the wide-field 
broadcaster. By adjusting the system configuration, picture focusing, hemocytometer 
spectrum, and stain conditions, precise, quick, and reliable E. coli cell counts and 
viable measurements were attained.

 2. Ertürk (2022) et al. [21] Automated cell counting techniques like flow cytometry have 
been developed for faster and more accurate findings. In all flow cytometry techniques, 
fluid containing cells is transported through a microchannel one at a time. These 
techniques allow for automatic counting of cells and measurement of their physical 
characteristics, including size. When inspecting multiple cell types simultaneously, 
cells can be categorized according to their size, making it possible to calculate the 
number of cells in each group. A camera records the movement of cells through the 
microchannel, and the proposed method enables automatic detection, tracking, count-
ing, and classification of cells based on their size.

 3. You Zhou (2022) et al. [22] proposed the Erythroid Counter pipeline, which fully 
automates the detection and classification of erythroid cells using deep learning 
approaches. To assess the health condition and treatment plans of patients with leuke-
mia or hematopathy, bone marrow erythroid cells must be detected, recognized, and 
counted. Standard hospital procedures rely on manual detection, chemical reagent 
staining, and laboratory equipment-based counting, which are time-consuming and 
labor- intensive. The development of deep learning in image processing allows for 
accurate automated erythroid cell detection and categorization.

 4. Shenghua He et al. (2021) [9] suggested a novel approach for autonomously detecting 
cells in microscope images using distribution of possible extrapolation. Compared to 
previous density correlation coefficient approaches, the proposed method incorporates 
two advances.

 5. Falko Lavitt (2021) et al. [14] Measuring cells are a crucial component of cytology 
in cell biology, processed in both research and practice. For example, the total cell 
count can evaluate whether tumor cells might proliferate under certain circumstances. 
However, counting cells manually is labor-intensive and time-consuming. To automate 
this process, the authors propose using an end-to-end trained Fully Convolutional 
Network (FCN). They frame the diagnostic problem as a predictive task rather than a 
classification task, contrary to most previous work.

 6. Carina Albuquerque (2021) et al. [13] described an automated cell counting method 
based on deep learning using the zebrafish xenograft cancer model. This novel strategy 
helps comprehend tumor biology and tailor individualized treatments. The authors 
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implemented a customized architecture based on the Faster R-CNN with the Inception 
ResNet V2 feature extractor. To enhance the method, they performed several adjust-
ments to address issues such as overlapping cells, the large number of objects to be 
detected, the variety in cell size and shape, and the small dataset size. This approach 
produced a median error of 1% in the total cell count.

 7. Yuefei Lin (2021) et al. Image pre-processing is carried out using the Otsu method 
to establish an automatic global optimal threshold for segmentation to achieve batch 
counting of images. Additionally, marker watershed was used to separate adherent 
cells and avoid over-segmentation. The number of cells in phase-contrast microscopic 
pictures was calculated from the number of connected domains in the binary image. 
To further assess the performance of the proposed method, ImageJ was used for a 
comparative experiment, showing better performance in cell counting.

 8. Suraj Neelakantan (2020) et al. [5] In this study, a machine learning system evaluates 
data input to distinguish traits and learn from them. This dissertation focuses on study-
ing white blood cells (WBC) using deep neural networks. Together with HemoCue AB 
of Ängelholm, Sweden, the authors aim to create artificial intelligence for assessing 
white blood cells using the Uploaded R WBC DIFF Technology.

 9. Weidi Xie (2018) et al. [2] The authors developed and compared settings for two fully 
convolutional regression networks (FCRNs). Because the connections are entirely 
pooling layers, they can predict a mapping population for a variable-shape input vec-
tor, which is adjusted to work effectively via end-to-end training on picture areas. The 
study shows that FCRNs trained entirely on datasets can provide excellent predictions 
on electron micrographs from specific biological experiments without merging the 
data. Additionally, by flipping image features, the authors demonstrate how much 
information an input image retains across multiple elements.

 10. Yujin Zeng (2018) et al. [8] Cellphone microscopy technologies have the potential to 
meet various imaging and cell counting needs in health monitoring. The mobile imag-
ing device produces results that are in great concordance with those of professional 
microscopes and flow cytometry.

 11. Pramit Ghosh (2016) [10] et al. This project aims to provide a health device for the 
automated computation of WBC counts from gram-stained images. Neutrophil enu-
meration using cell counting offers higher accuracy than manual counting, although 
it requires long preparation times and expertise. Designed for use in remote areas, the 
device uses stained blood samples to lower costs. The proposed technique analyzes 
gram stain morphologies to emphasize WBCs for segmentation. The method involves 
rescaling the background and removing unnecessary areas from the image set.

 12. Hugo Miguel (2015) [23] et al. Insufficient health and human resources, as well as 
time-intensive fluorescent dye serum diagnostics, hinder prompt detection and commu-
nity surveillance. Several machine learning strategies have been applied to determine 
and characterize various biological components. The authors propose a technique for 
portable blood smear image segmentation and counting of red blood cells, as well as 
the identification of white blood cells. The method includes thresholding approaches, 
subcellular edge detection methodologies, inhomogeneous segmentation algorithms, 
and length drainage basins for red blood cells and diffusion morphometric restoration 
processes for white blood cells.

 13. Janice Lai (2015) [24] The authors present an image processing algorithm for auto-
matically counting and characterizing hemocytometer cells. The algorithm extracts 
the region of interest and identifies cells using the Canny edge detector and circular 
Hough transform.
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 14. Ivan V. Grishagin (2014) [11] By combining a regular light microscope with a video 
camera to gather images of dispersed cell cultures, the authors propose a comprehen-
sive method for automated live cell detection. They developed two image- processing 
techniques to identify these pixels mechanically.

 15. Xiaomin Guo (2013) [25] et al. This report outlines an efficient graphics-based auto-
mated cell counting method. Using a dual- distribution approach, the method separates 
cells from the background, fills cells using flood fill, and identifies them using blob 
detection. The technique’s greatest benefit is its flexibility to diverse cell types and 
resilience to bright lights.

 16. Venkatalakshmi B. (2013) et al. [15] Red blood cell count provides vital clinical infor-
mation for various disorders. The reliability and efficiency of the traditional method 
of counting RBCs under magnification depend on the medical laboratory technolo-
gist’s skill. This technique is labor-intensive. Automated hematological analyzers offer 
an alternative for detecting RBCs but are costlier, making them impractical for all 
diagnostic environments. This research proposes a fast and cost-effective method for 
automated red blood cell counting using graphics processing.

 17. Per Jesper Sjöström (1999) [19] et al. Automating cell counting in histological prep-
arations containing debris and synthetic materials is challenging using traditional 
image analysis tools, such as systems that rely on boundary contours and histogram 
thresholding. The authors developed an automated cell counter by combining artificial 
intelligence with traditional image analysis to mimic manual cell recognition.

The important key factors that have been observed during the research from year 1977 
to 2022 have been shown in Fig 8 and Table 4.This table is also showing the improvement 
in cell counting from last two decades.

(a, b) (g, h)

Automated
systems for 

cervical cytology

Cell mitosis 
and adhesion

(c, d)

Thresholding
and edge 
detection

CIS & Cell 
Counting
Survey

Morphometry cell 
orientation and 
Heterogeneous

data distributions
(I, j,

Watershed and the 
snake algorithm 
began to emerge

Droplet encapsulated
cell, multiscale 
segmentation

(e, f) (l, m)

Fig. 8  a Aus et al. (1977) [34], b Abmayr et al. (1979) [35], c Gorman et al. (1985) [36], d Harms et al. 
(1986) [37], e Thiran et al. (1996) [38], f Young et al. (1998) [39], g Zimmer et al. (2002) [56], h Schmitt 
and Hasse (2008) [40], i Huang et al. (2018) [41], j Falk et al. (2019) [42], k Van et al. (2019) [43], l Lv 
et al. (2020) [44], m Jingwen et al. (2020) [45]
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This article shows the comparative and full details of the various parameters used for 
cell counting and image segmentation shown in Table 5. It conations different parameters 
used in different articles, such as input, output, dataset used, techniques followed and future 
scope. This table explores state-of-the-art studies in literature to cell counting methods.

6  Algorithms Used for Cell Counting and Cell Segmentation

Figure  9 illustrates various algorithms used for cell counting based on Deep Learning, 
Machine Learning and Soft Computing. It is highlighting their roles and methodologies. 
The figure highlights convolutional neural networks (CNNs), which are adept at identifying 
intricate patterns in cell images through deep learning. The watershed algorithm is shown 
for its effectiveness in segmenting overlapping cells by treating the image as a topographic 
surface [26]. Additionally, fuzzy logic methods are included for handling imprecision in 
cell boundaries, and thresholding techniques like Otsu’s method are noted for determin-
ing optimal segmentation thresholds. Active contour models (snakes) are also featured for 
delineating cell boundaries by evolving curves based on image gradients.

6.1  Deep Learning Techniques

Deep learning strategies have recently been extensively used for cell image segmentation. 
These strategies focus on training classifier systems to be used in various applications. The 
classifier is trained by automatically extracting and selecting the features of the region of 
interest (ROI). These methods have proven to be more efficient compared to many other 
machine learning methods. However, they require a large amount of data for the training 
dataset [27]. Hence, the use of this approach is limited to real-world cases because finding 
large datasets that are openly available is a tedious job. M. Freiman et al. proposed a new 
and almost fully automatic approach for the segmentation of liver tumors [28]. An SVM 
(Support Vector Machine) classifier is used to classify healthy cells and tumor cells from 
CT images, which leads to the generation of a new set of high-quality seeds. This sug-
gested approach is efficient, robust, and comparable to, if not more effective than, many 
other semi-automatic strategies. Authors in [29] proposed a fully automatic segmenta-
tion algorithm to detect tumors in livers from CT images of patients. The novelty of this 
approach was combining follow-up- based detection with convolutional neural networks 

Table 4  Research scope for various decades for cell segmentation

Year Research

1970’s For cervical cytology, computerized prescreening devices [34, 35] were used
1980’s Edge detection and thresholding [36, 37]
1990’s The snake algorithm and Watershed first appeared [38, 39]
2000’s Cell adhesion and mitosis are two examples of object motion, collisions, breakage, and merging 

[56, 40]
2010’s Object count, morphology recognition, cell orientations, and mitogenic dynamics learning systems 

[41, 42]. For training and testing, centralized data distributions [43]
2020’s Cell segmentation using multistate hybrid models and segmentation of droplet-encapsulated cells 

[44, 45]
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1 3

(CNNs). The CNN is trained to construct a voxel classifier with automatic feature learning. 
This approach is more effective and efficient in terms of accuracy, showing an improve-
ment of 60.29% compared to other methods.

6.1.1  CNN (Convolutional Neural Networks)

Convolutional Neural Networks (CNNs) [30, 31] are highly effective for cell counting 
in biomedical images. They automate the detection and counting of cells in microscopic 
images, significantly reducing manual effort. CNNs can accurately segment and classify 
cells, even in dense and overlapping conditions. By using layers of convolutional filters, 
CNNs extract relevant features such as cell edges and textures. After preprocessing the 
images, a CNN model is trained on labeled datasets to learn distinguishing cell characteris-
tics. Post-training, the model can analyze new images to identify and count cells. Advanced 
CNN architectures, like U-Net, enhance segmentation performance for more precise cell 
counts. This technology is crucial for applications in medical diagnostics, research, and 
drug development, providing reliable and reproducible results.

6.1.2  ANN (Artificial Neural Networks)

Artificial Neural Networks (ANNs) can be utilized for cell counting in biomedical images, 
though they are less specialized than CNNs for image-based tasks. ANNs consist of inter-
connected layers of neurons that can learn complex patterns from data. For cell counting, 
ANNs are trained on features extracted from images, such as shape, size, and intensity of 
cells. Preprocessing involves converting images into feature vectors that the ANN can pro-
cess[31]. The network is trained on labeled data, learning to associate specific features with 
cell counts. While ANNs can perform this task, they typically require extensive feature 
engineering. ANNs can be combined with other techniques to improve accuracy. Despite 
their versatility, ANNs are generally outperformed by CNNs in image analysis tasks due 
to CNNs’ ability to automatically learn spatial hierarchies. However, ANNs remain useful 

Algorithms used for Cell Counting

Deep Learning Based Machine learning Based Soft Computing
Based

ANN Watershed Hybrid Method

CNN osto

Density Regression
Based

YOLO

Watershed and 
snake

Snake

Fig. 9  Cell counting algorithm
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in simpler or complementary roles in cell counting applications, contributing to advance-
ments in medical research and diagnostics.

6.1.3  Density Regression Based Model

Density regression-based models for cell counting offer an effective approach to handle the 
challenges of densely packed and overlapping cells in biomedical images. Instead of detect-
ing individual cells, these models estimate a density map where the integral over a region 
gives the count of cells. The method involves training a regression model, often a Convo-
lutional Neural Network (CNN), to predict these density maps from input images. During 
training, the model learns to map image features to the corresponding density values. This 
approach is particularly advantageous in scenarios with highly clustered cells, where tra-
ditional detection methods struggle. It bypasses the need for precise localization, focusing 
instead on accurate cell density estimation. Density regression models are robust against 
variations in cell size and shape [32]. They provide a continuous and smooth estimation, 
making them suitable for real-time and large-scale analyses. This technique is increasingly 
applied in biological research, pathology, and drug development, enhancing the accuracy 
and efficiency of cell counting processes.

6.2  Machine learning based method

Machine learning has significantly advanced the field of cell counting by automating and 
enhancing the accuracy of the process. Techniques like convolutional neural networks 
(CNNs) are particularly effective, as they can learn and identify complex patterns in cell 
images. These methods facilitate the classification and counting of various cell types, even 
in large and diverse datasets. Machine learning algorithms can handle challenges such as 
overlapping cells, varying cell shapes, and differing sizes [33]. Automated systems using 
machine learning reduce the time and labor required for manual counting, providing 
faster and more reliable results. Applications range from medical diagnostics to biological 
research, where precise cell counts are critical. Additionally, innovations like deep learning 
and support vector machines (SVMs) have improved the segmentation and identification of 
cells, leading to more robust and scalable solutions [34].

6.2.1  Watershed Algorithm for Cell Counting

The watershed algorithm is a classical image segmentation technique used for cell count-
ing, particularly effective for separating closely packed cells. It treats the grayscale image 
as a topographic surface, where the brightness represents elevation. By simulating the 
flooding process from local minima (markers), the algorithm segments the image into dis-
tinct regions corresponding to individual cells. This method is particularly useful in scenar-
ios with overlapping cells [35]. However, it requires precise markers and can be sensitive 
to noise, making preprocessing steps like filtering and morphological operations crucial for 
optimal performance.

6.2.2  YOLO (You Only Look Once) for Cell Counting

YOLO is a real-time object detection algorithm that can be adapted for cell counting. 
YOLO treats cell detection as a single regression problem, directly predicting bounding 
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boxes and class probabilities from entire images in one evaluation. It divides the image 
into a grid and assigns bounding boxes to cells, providing high-speed detection suitable for 
real-time applications [36]. YOLO’s efficiency and accuracy make it a powerful tool for 
counting cells in large datasets, though it may struggle with extremely dense or overlap-
ping cells without modifications [35].

6.2.3  Snake Algorithm for Cell Counting

The snake algorithm, or active contour model, is a segmentation technique used for delin-
eating cell boundaries in images. It involves initializing a contour around each cell, which 
then iteratively adjusts to fit the cell’s edges based on image gradients and internal energy 
constraints [37]. This method excels at accurately tracing the shapes of individual cells, 
particularly when they have well-defined edges. However, it can be computationally inten-
sive and may require careful tuning of parameters. It is effective for counting cells with 
distinct boundaries but less so in highly cluttered environments [38].

6.2.4  Otsu’s Algorithm for Cell Counting

Otsu’s algorithm is a thresholding method that separates cells from the background in an 
image by maximizing inter-class variance. It automatically determines the optimal thresh-
old value to convert a grayscale image into a binary image, where cells are distinguished 
from the background [39]. This method is simple and fast, making it suitable for initial 
segmentation stages. While effective for images with clear contrast between cells and back-
ground, Otsu’s algorithm may struggle with images that have variable illumination or low 
contrast, necessitating additional preprocessing for accurate cell counting.

6.3  Soft Computing

Soft computing is an emerging field in computer science that tackles imprecise and uncer-
tain problems, aiming to find approximate, robust, and cost-effective solutions. Its ultimate 
goal is to emulate the human mind as closely as possible. The shift from hard to soft com-
puting is largely influenced by the limitations of traditional mathematical calculations, 
which can make some problems nearly unsolvable or overly complex [44[. Soft computing 
includes approaches like evolutionary computing, artificial neural networks, fuzzy logic, 
and Bayesian statistics. These methods can be used individually, but one of the main advan-
tages of soft computing is the integration of multiple methods, which can provide more 
comprehensive solutions to complex problems. There are two major advantages to using 
soft computing. First, it simplifies the resolution of non-linear problems for which tradi-
tional mathematical methods are unavailable. Second, it incorporates human-like cognitive 
abilities such as recognition, perception, and learning into computing [40]. This integra-
tion allows for the development of intelligent systems like autonomous self-tuning systems 
and automated design systems. Professor Lotfi Zadeh, who also developed the concept of 
fuzzy logic, first introduced the term “soft computing”. Soft computing is applicable to 
both artificial and natural problems, and its role model is the human mind. It encompasses 
a variety of computational techniques used in artificial intelligence and machine learning, 
and is applied in engineering fields such as aircraft, spacecraft, HVAC systems, communi-
cation networks, mobile robotics, inverters and converters, electric power systems, power 
electronics, and motion control[41].
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6.3.1  Hybrid Methods for Cell Counting 

Combine multiple techniques to leverage their individual strengths and mitigate their weak-
nesses. These methods integrate approaches like convolutional neural networks (CNNs) for 
feature extraction, classical algorithms like the watershed for segmentation, and machine 
learning models for density estimation. For instance, a hybrid approach might use a CNN 
to generate a probability map of cell locations, followed by the watershed algorithm to 
delineate individual cells accurately [42]. Combining deep learning with traditional image 
processing ensures robust performance across varied and challenging conditions, such 
as overlapping cells and diverse cell shapes. Hybrid methods can also incorporate post-
processing steps, like morphological operations, to refine segmentation results [43]. These 
approaches offer improved accuracy and reliability over single-method solutions, mak-
ing them ideal for complex biomedical imaging tasks. By harnessing the power of both 
advanced and classical techniques, hybrid methods provide comprehensive solutions for 
automated cell counting, enhancing the precision and efficiency of biomedical research and 
diagnostics. The comparison between various segmentation techniques have been shown in 
Table 6.

6.4  Cell Image Segmentation

Cell is the basic, biological, and operational part of every living bodily parts and it comes 
in a variety of sizes, shapes, and functions [44]. Segmenting a cell image is the method of 
identifying cellular components or things inside a photograph. It is a crucial stage in the 
interpretation of physiological images. It necessitates segmenting or dividing animage’s 
pixels into regions of interest (ROI), as seen in Fig 10. A wide range of research domains, 
such as drug development and the study of cellular dynamics in both healthy and unhealthy 
conditions connected to investigations into small parts, image extraction, and cell research. 
Fluorescence microscopy has advanced recently, making accurate representations of cells 
and their internal architecture possible.

Cytologists, histologists, embryologists, and cell biologists to analyze the shape, size, 
and type of cells and cellular processes use imaging technologies [45]. The two most recent 
developments in CIS are (a) algorithms, namely the watershed and snake algorithms, and 
(b) soft computing, specifically neural computing. Nowadays, a hybrid system is used that 
combines these two methods with soft computing. Around ten years ago, cellular activity 
analyzed using an electronic microscope. The conventional microscope instruments did not 
yield good high-resolution images. High quality images now make it reasonably easy to see 
a cell count, activity, and cell mitosis, as shown in Fig 11. Thus, photogrammetry increases 
the speed and precision of object detection at a low cost. A new approach for gathering and 
analyzingcellular structure in a set of patients must be developed because the population is 
growing daily [46].

One important use case for automated cell segmentation is mitosis, or cell division. 
[47]. Cell division provides accurate information about several fundamental topics, such 
as the severity of the illness. What is the illness’s diagnosis? To what extent is the sickness 
spreading? To what extent do the cells react to the treatment? A microscope that uses light 
and electrons to study cell division in detail generates energy. The promise of throughput 
remains unfulfilled for human physicists and therapists until automated analysis becomes 
available. It has been shown that systems for capturing and analyzing cell pictures are 
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widely employed in biomedical research for training, diagnosis, and therapy of diseases. 
It is difficult to obtain precise data for cell morphological behavior from dynamic micro-
scopic images because of the undesired noise and brightness fluctuations in the picture 
[48]. The following are the three primary goals of an information retrieval and storage sys-
tem for images:

o The system for managing experimental data I/O.
o Verify that there are no brightness or color errors.
o Expert replication for a cell glossary.

Fig. 10  A fluorescence microscope image (left) and the outputs of a segmentation cell (right). The edges of 
the designated squares, as well as the cell center of gravity of the actual truth have shown by emerald circles 
as well as red minus signs, correspondingly

Fig. 11  Mitosis Poses a Challenge for the CIS (source internet)
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There are four important methods are used for image segmentation in terms of iden-
tifying, quantifying and analyzing thecells and their sub parts namely: histogram-based, 
boundary-based, region-based, and pixel-based methods shown in Fig 12. There are other 
perceptive methods based on clustering and classification has been noted in diagnosis of 
cancer. The image filtration and morphological process has used to sharp the cell image for 
get accurate result is known as pre-processing.

6.4.1  Histogram‑based Techniques

This method deals with image histogram where the existence of pixels has counted. After 
that the histogram is divided intosub (m) parts, p1, p2, p3….and pm. An image consist 
numbers of pixels that are connected with each other by same characteristics. So the detec-
tion of same region and other of pixels then grouping these pixels is also done in histo-
gram-based technique. This task is done with threshold value that is why is also known as 
thresholding technique [49]. The division may be done by colors, gray-level deviation, 2D, 
3D or structural equity. Most of the image processing techniques work on color/grey-level 
pixels in binary by using threshold value. Thresholding is a technique to compress and 
make image in a simple form as is required for segmentation. Threshold process is compli-
cated when applied on 3D image buteasy in 1D[43]. There are any number of thresholds 
may be used in a histogram- based method. In some case threshold is more required. Basi-
cally there are two main reasons to adopt threshold method [50]. Firstly, inequity amongst 
object and background only main objective of segmentation like in cell image segmenta-
tion. Secondly, some methods are used to handle alteration and iterate of threshold value 
in histogram method for image analysis that are not developed for detecting multiple 
thresholds

6.4.2  Boundary‑Based Techniques

Several applications are used in biomedical science to identify different items in images. 
Edge detection can be used sinceevery object has an edge that connects it to the bound-
ary. A group of pixels known as an edge forms the border between two sections [51]. Edge 
detection can be done by using first derivative and second derivative step. First derivative 
tells us where the edge in an image is and second derivative tells the direction of edge 
as edge going from black to white or vice versa. So both palyimportant role in bound-
ary based method. It has been noted that derivative based edge detection is extremely 

Cell Image
Segmentation

Histogram
Based

Hybrid
Method

Region
Based Boundary

Based

Pixel
Based

Fig. 12  Image Segmentation Algorithms
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sensitive to noise.So here is need to apply special filter to remove extra noise. The edge 
detection shows the edge information and the relationship between pixels in an image. If 
pixel of image has grayvalue it means not an edge at that point [52]. However, if a pixel 
has a neighbor with widely varying gray level it may be an edge point. In general edges are 
caused by change in color and texture in image or specific lighting condition present during 
image acquisition process.

6.4.3  Region‑based techniques

The goal of segmentation in this method is to divide an image into areas. We solved this 
issue by identifying regional borders based on gray-level discontinuities. Moreover, it is 
done using a threshold depending on the distribution of pixel characteristics like color 
or gray scale values. Growing-and-merging and splitting-and-merging are two ways the 
region-based method is used. More recently, region-based strategies have also relied on 
morphological procedures [53]. The region-growing mechanism divides pixels or smaller 
regions into larger regions based on predefined parameters. Grow areas are made by com-
bining surrounding pixels with each seed that have the same properties as the seed being 
utilized, starting with a collectionof "seed" points. The nature of the problem is frequently 
taken into consideration when choosing a set of one or more starting points. The seed is 
chosen based on an image’s characteristics, such as whether the grey level is high or low. 
Once more seedsare added, this process is repeated until no more seeds are visible [54].

6.4.4  Pixel‑based Techniques

In this, the image segmentation has been done in terms of making clusters of pixels in 
two groups that is foreground (cell) and background pixels. The pixels that belong to same 
group grouped together for making one region[55]. Final output after performing the seg-
mentation is come in the form of fore-/background significant. Selecting of algorithm that 
works on pixelsof image and analyze, whether one can use statistical or neural computing-
based learning techniques here the core idea behindpixel-based methods is intensity. Red, 
blue, and green are the three principal channels that are commonly used to quantify inten-
sity for color images , while gray scale images simply employ the gray-level. The brief 
comparison based on various parameters used for image segmentation by different segmen-
tation techniques have been shown in table 7.

6.5  Hybrid Cell Image‑Segmentation Systems

After the discussion of the above four methods two main point arise here, if we want to 
make a system based on cell image segmentation. First is we have a huge knowledge about 
virtual cell features and its relative intensity in a segmentation system. Second is that mul-
tiple technique based analysis for flexible accommodation of all complication. The design 
of a hybrid segmentation offers two choices: (a) Image experts work with computer scien-
tists to examine segmentation on an exemplar set of images to techniques/parameter tuning. 
(b) Autonomous neural/machine learning from an exemplar set of images and other infor-
mation collateral (Table8 represents comprehensive view of various cell counting methods 
in literature along with some new methods).
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7  Applications of Automatic Cell Counting.

 1. Cell counting is a popular technique and a crucial component of all cell-related 
research, including biological applications, genetics, biochemistry, and medical diag-
nostics and therapies.

 2. Additionally, cell counts are crucial for preparing cells for cell-based experiments, 
transfection or infection, and monitoring cell health and proliferation rates.

 3. Precise, dependable, and timely cell counts are critical, especially for quantitative 
assessments of cellular responses. While establishing a medical diagnosis, for example, 
the amount of leukocytes, or white blood cells, in the bloodindicates if a disease is 
present in the body.

 4. Neutrophils, the most prevalent type of leukocyte subtype, defend the body from bac-
terial infections. Similar to this, another subtype, lymphocytes, defend the body from 
viral illnesses. The ratio of these white blood cells in the blood can be used to identify 
the disease’s origin.

 5. For another illustration, biologists must count the cells in the cell culture they use for 
their bacterial experiments to examine the time-dependent growth in the number of 
cells.

 6. In short, cell-counting techniques have been developed and used for many purposes.
 7. Cell counting is an important aspect of biological research. Manual cell counting, on 

the other hand, is time- consuming, inefficient, and has a high counting error rate.
 8. For patients with abnormal blood cells, blood counts.
 9. Counting sperm.
 10. When sub culturing or tracking the development of cells over time.
 11. Processing cells for downstream analysis: numerous tests call for precise cell numbers 

(PCR, flow cytometry).
 12. Cell size measurements: Inferring the true cell size of a microphage by scaling it to 

the width of a hemocytometersquare

8  Conclusion and Future Work

The preliminary paper presentsthe most recent research on cell identification, cell count-
ing, and deep learning algorithms. Then, in order to comprehend the various types and 
variations of cell images, the eminent datasets that disprove cell-counting concepts are 
also discussed .The major focus of this research is on current advances in deep learning 
and machine learning systems for Cell Counting and Image Segmentation. There is alsoan 
overview of the numerous uses of medical images. The principles of machine learning are 
also covered in order to understand the distinctions between classic machine learning and 
modern deep learning techniques. We are living in an excitingera for medical image pro-
cessing, with endless prospects for innovation and enhancing the present state-of-the-art 
methods, as well as using the ability of deep learning for cell counting to have a big influ-
ence on health care across the board. Finally,a thorough analysis of real-time applications 
is performed, including cell detection, cell image segmentation, edge, cell courting, etc.

Proactive research and development has enabled consumers to get better outcomes faster 
and with less expertise than previously possible techniques, freeing up expert time for the 
most challenging instances. It is also worth noting that the current research emphasizes 
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the use of the cell counting approaches with both classical and deep learning detectors. 
The advancements in recognizing cells from images and their sub-modules are discussed 
by assessing the advantages and limitations of current algorithms and methods. Various 
of image segmentation techniques has been explored and varuious cell counting method 
has been discussed. It has been concluded from current review that hybrid method is more 
efficient for automatic cell counting and cell image segmentation. Finally,a thorough analy-
sis of real-time applications is performed, including cell detection, cell image segmenta-
tion, edge, cell courting, etc. Future directions for machine learning-based detection and 
counting from cell images are summarized from the comprehensive study. Some of the 
important key challenges and research gaps have been identified, such as Different stain-
ing, morphological diversity , differentiation between cells and debris and cell overlapping 
etc which can be addressed while developing cell counting techniques and applications for 
medical image analysis in a clinical setting. Existing methods are not able to resolve these 
limitations efficiently. So on the basis of this review it has been observed that these fac-
tors should be considered for improvements for better and high accuracy result in future. 
Additionally, real-time cell counting and segmentation systems, integrated with advanced 
hardware and software solutions, can revolutionize clinical practices by providing immedi-
ate and accurate diagnostic results. Collaborations between computational scientists and 
biologists will be essential to ensure that these technological advancements are effectively 
translated into practical applications. The exploration of novel algorithms and hybrid 
approaches combining classical image processing techniques with deep learning will also 
be pivotal in overcoming current limitations and achieving higher precision in cell analysis.
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