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Abstract
A low-power wireless network design is an iterative process that integrates multiple opti-
mization techniques to identify and mitigate redundant network operations. Existing power-
aware models either showcase higher complexity or require larger information sets, which 
limits their scalability for real-time networks. Moreover, these models work well under an 
elaborative set network configuration but cannot be used for general-purpose networks. The 
study suggests creating a novel hybrid bioinspired clustering model for energy-aware wire-
less network deployment to address these problems. The proposed model initially collects 
limited network information sets, including approximate node locations, residual energy 
levels, temporal throughput, and packet delivery levels. These sets are processed via a Grey 
Wolf Optimizer (GWO), which performs initial binary-clustering operations. These binary 
clusters are generated by iterative identification of high-energy nodes between a given set 
of source & destination pairs. Results of the clustering process are used to train a Particle 
Swarm Optimizer (PSO) that uses the temporal information sets to identify energy-aware 
routing paths. The PSO models a temporal fitness function capable of reducing redundant 
node selections, thereby improving network lifetime even under many communication 
requests. Performance of the GWO-clustering & PSO-routing model was validated under 
large-scale scenarios, and it was observed that the proposed model reduced energy con-
sumption by 8.3% while improving communication speed by 3.2% with a 4.5% higher data 
rate and 2.9% higher packet delivery performance under real-time heterogeneous network 
scenarios.
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1 Introduction

Wireless Sensor Networks (WSNs) are battery-operated nodes that may gather informa-
tion, process it, transmit it to other nodes, and then take appropriate action in response to 
the information. The omnidirectional antennas these nodes employ to communicate with 
one another reduce the energy consumption of the routing processes [1, 2]. Furthermore, 
sleep scheduling techniques are employed by WSNs to keep most nodes in a sleeping state 
and only wake them when necessary. If routing and sleep scheduling features of WSNs 
are improved, it’s feasible that they run longer and consume less power [3, 4]. A typical 
sleep scheduling and routing system modeled after Low-Energy-First Electoral Multipath 
Alternating Multihop (LEMH) Routing is shown in Fig. 1, showing how the pathways used 
during the process determine the scheduling weights [5, 6]. These weights are used to set 
the sleep and wake times on particular nodes to use the available energy most. To reduce 
the amount of computational redundancy that arises during routing actions, the model also 
uses token-based node discovery via reinforcement learning [7]. To obtain a precise value 
for the fitness function these models employ to predict routes, utilize Eq. 1.

where, E, D & PDR represents residual node energy levels, temporal delay, and packet 
delivery ratio for different communications.

The escalating demand for efficient energy consumption in WSNs underscores the 
critical need for innovative network design and operation approaches. As the backbone of 
modern communication systems, WSNs rely heavily on battery-powered nodes, necessitat-
ing strategic optimization to prolong network lifespan and enhance performance. Despite 
advancements in power-aware models, prevailing solutions either grapple with complex-
ity issues or need to improve scalability, particularly for real-time networks. These limita-
tions impede their efficacy in addressing the dynamic demands of contemporary wireless 
environments [8, 9]. While effective under specific network configurations, existing power-
aware models need help to adapt to the diverse needs of general-purpose networks. Tradi-
tional approaches often require extensive computational resources, rendering them imprac-
tical for large-scale deployments. Furthermore, these models focus on optimizing a limited 
set of parameters, neglecting the broader spectrum of network dynamics [10].

The complexity of existing energy-aware wireless network design methods often pre-
sents a significant challenge characterized by intricate algorithms, extensive computational 
requirements, and scalability limitations. Conventional approaches rely on complex optimi-
zation techniques and sophisticated network configurations, which contribute to elevated 
computational overheads and hinder real-time network deployment. Moreover, existing 
methods may need to help accommodate the dynamic nature of wireless environments 
and be more adaptable to evolving network conditions. In contrast, our proposed hybrid 
bioinspired clustering model for energy-aware wireless networks (BCEWN) offers a para-
digm shift towards simplicity and efficiency. By integrating GWO and PSO methodologies, 
BCEWN streamlines the clustering and routing processes, reducing computational com-
plexity while maintaining robust performance. The iterative binary clustering operations 
facilitated by GWO enable efficient cluster formation with minimal computational over-
head. Subsequently, PSO utilizes temporal information sets to optimize energy-aware rout-
ing paths, leveraging a simplified yet practical approach to achieve optimal network per-
formance. This streamlined methodology enhances computational efficiency, scalability, 
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and adaptability, enabling BCEWN to address the complexities inherent in energy-aware 
wireless network deployments effectively. Our method offers a compelling solution that 
balances simplicity with performance, paving the way for developing more accessible and 
sustainable wireless communication infrastructures & scenarios.

The present study proposes a groundbreaking hybrid bioinspired clustering model tai-
lored for energy-aware wireless networks to address these challenges. Central to this model 
is the integration of two potent optimization techniques: the GWO and the PSO. These 

Fig.1  A standard model for sleep-scheduled routing process
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methodologies are meticulously selected for their complementary strengths in addressing 
the multifaceted challenges of energy-efficient routing. The utilization of GWO is the cor-
nerstone of the proposed model, facilitating initial binary clustering operations. By itera-
tively identifying high-energy nodes between source and destination pairs, GWO lays the 
foundation for efficient cluster formation, minimizing redundant network operations. This 
initial phase capitalizes on limited network information sets, including approximate node 
locations, residual energy levels, temporal throughput, and packet delivery metrics. Subse-
quently, the model harnesses the temporal intelligence of PSO to refine routing paths based 
on real-time network dynamics. PSO employs a sophisticated temporal fitness function, 
which optimizes node selection and route allocation, thereby mitigating energy wastage 
and enhancing network longevity. The seamless integration of GWO clustering and PSO 
routing empowers the model to adapt dynamically to evolving network conditions, ensur-
ing robust performance across diverse deployment scenarios.

The proposed hybrid bioinspired clustering model represents a paradigm shift in energy-
aware network design, offering unparalleled advantages over conventional approaches. 
Through extensive validation under large-scale scenarios, the model demonstrates remark-
able energy savings of 8.3% while concurrently improving communication speed by 3.2%. 
Additionally, the model achieves a 4.5% enhancement in data rate and a 2.9% increase in 
packet delivery performance, underscoring its efficacy in real-time heterogeneous network 
environments. The amalgamation of GWO and PSO in the proposed model heralds a new 
era of energy-efficient wireless network deployment. By addressing the inherent limitations 
of existing methodologies, this research augments the performance and longevity of wire-
less networks. It paves the way for sustainable and resilient communication infrastructures 
in the digital age.

In the following sections, we’ll take a closer look at some of the related models and 
discuss their merits and drawbacks, as well as their potential applications in various set-
tings and deployments. In addition, we’ll look at some possible applications for these mod-
els in multiple settings and deployments. During this conversation, participants concluded 
that the most advanced models currently available either need excessive computing to be 
used on vast networks or concentrate on optimizing too few parameters. The suggested 
hybrid bioinspired model, which combines GWO and PSO, is broken down and discussed 
in Sect. 3 to improve the routing performance of energy-aware wireless sensor networks 
using the model. The technique that has been developed uses GWO to devise more intel-
ligent plans and combines it with PSO to power more effective routes. In Sect. 4, several 
cutting-edge alternatives are evaluated alongside this regarding throughput, latency, energy 
consumption, and PDR. The paper concludes with a few further observations on the sug-
gested model’s history and several suggestions for how such a model may be improved for 
real-time scenarios.

1.1  Contribution

This work makes numerous contributions and marks a substantial development in energy-
aware wireless network design and optimization. Numerous significant contributions are 
made through thorough investigation and testing, each essential in tackling the urgent prob-
lems facing modern WSNs.

1. Novel Hybrid Bioinspired Model The main contribution of this paper is creating a new 
hybrid bioinspired clustering model designed explicitly for energy-conscious WSNs. By 
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combining two powerful optimization algorithms, the PSO and the GWO, this model 
deviates from conventional methods and achieves more excellent performance in energy-
efficient routing.

2. Integration of GWO and PSO A significant contribution of this paper lies in the seamless 
integration of GWO and PSO methodologies within the proposed model. By harnessing 
the unique strengths of these optimization techniques, the model optimizes both cluster-
ing and routing processes, thereby mitigating energy wastage and enhancing network 
longevity.

3. Efficient Cluster Formation The utilization of GWO for initial binary clustering oper-
ations marks a significant advancement in cluster formation techniques. The model 
achieves efficient cluster organization through iterative identification of high-energy 
nodes between source and destination pairs, minimizing redundant network operations 
and conserving energy resources.

4. Temporal Intelligence in Routing Incorporating PSO introduces a temporal dimension to 
routing decisions, enabling the model to adapt dynamically to evolving network condi-
tions. The model optimizes node selection and route allocation in real-time by employ-
ing a sophisticated temporal fitness function, enhancing communication efficiency and 
network resilience.

5. Validation and Performance Analysis Through extensive validation under large-scale 
scenarios, this paper provides empirical evidence of the efficacy of the proposed model. 
The observed energy savings of 8.3%, coupled with improvements in communication 
speed, data rate, and packet delivery performance, underscore the practical viability and 
robustness of the model across diverse deployment scenarios.

6. Potential for Real-World Applications Beyond theoretical advancements, the contri-
butions of this paper extend to practical implications for real-world deployments of 
energy-aware wireless networks. By addressing the inherent limitations of existing meth-
odologies, the proposed model opens avenues for developing sustainable and resilient 
communication infrastructures capable of meeting the dynamic demands of modern 
wireless environments.

In summary, the contributions of this paper transcend theoretical abstraction, culmi-
nating in a tangible advancement in the design and optimization of energy-aware wireless 
networks. By pioneering a novel hybrid bioinspired model and integrating state-of-the-art 
optimization techniques, this research lays the groundwork for transformative innovations 
in wireless communication technologies, with far-reaching implications for academia and 
industry scenarios.

2  Literature Review

To create a sustainable multipath routing protocol (SMRP), Fu et al. [11] created a mixed 
potential field that considers the environment, depth, and residual energy while making 
routing decisions. Message selection via a trade-off between route survivability, energy 
balance, and delivery latency is the fundamental notion of SMRP. Li et  al. [12] provide 
DMARL, an effective multiagent reinforcement learning-based routing protocol for under-
water optical wireless sensor networks (UOWSNs). The network is initially represented as 
a distributed multiagent system to better respond to a dynamic environment and promote 
longer network life. The remaining energy and link quality are considered when designing 
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the routing protocol. The energy and traffic-aware sleep-awake (ETASA) mechanism is a 
hybrid approach that Shagari et al. [13] presented to increase energy efficiency and enhance 
load balancing in a heterogeneous wireless sensor network environment. In contrast to ear-
lier techniques, ETASA allows paired nodes to switch between sleep and waking modes in 
response to node energy and traffic volume. A unique energy-efficient region source rout-
ing protocol (called ER-SR) is proposed by C. Xu et al. [14]. A distributed energy region 
technique is presented in ER-SR to dynamically choose the network nodes with the highest 
residual energy as source routing nodes. Then, to allow partial nodes to participate in the 
routing process and balance sensor node energy consumption, the source routing nodes 
determine the best source routing path for each common node. Chen et al. [15] provide a 
novel distributed 2-hop cluster-routing protocol (D2CRP) to achieve energy efficiency in 
WSNs. During the cluster formation phase, every node gathers neighbor node information 
within the 2-hop range to fully spread the construction of the 2-hop cluster. The transmis-
sion distance and residual energy determine the energy-efficient cluster head (CH) in each 
2-hop cluster. Each member node can send packets to the CH directly or to its 1-hop neigh-
bor once it has been formed. Through their neighboring CHs closer to the base station 
(BS), several chains can be built among CHs to lower the overall transmission distance for 
intercluster communication. NA-TORA is an opportunistic routing technology based on 
normalized advancement proposed by Rahman et al. [16]. The next-hop forwarder in NA-
TORA, a geographically proactive routing algorithm, is chosen using Normalized 
Advancement (NA). To determine the best forwarding node, NA is computed using the 
Expected Transmission Count (ETX) and the node’s energy consumption. However, if 
there is a void node in the data forwarding route, the transferred data might not reach the 
intended sink node. Wu et al. [17] describe a new three-step technique. Before forwarding 
packets to the sink, every node specifies a Routing Zone (RZ). Furthermore, the nodes in 
RZ are ranked according to the competency value derived using a new model that utilizes 
fuzzy logic and the Modified Analytic Hierarchy Process (MAHP). Following the coopera-
tion of the forwarders, one of them is chosen as the last relay node. For WSN, Al-Otaibi 
et  al. [18] create a hybridization of the metaheuristic cluster-based routing (HMBCR) 
approach. Initially, the HMBCR technique uses a fitness function that considers four 
parameters: energy, distance to neighbors, distance to the base station, and network load. A 
brainstorm optimization with levy distribution (BSO-LD) based clustering procedure is 
used to achieve this. In addition, for the best route selection, a water wave optimization 
with a hill-climbing (WWO-HC) based routing procedure is used. The "Flexible Routing 
Computing Approach (FRCA)," as proposed by P. Liu et al. [19], is a revolutionary distrib-
uted and probabilistic computing strategy that successfully increases routing flexibility by 
allowing for the cost-effective modification or upgrading of routing policies on the fly. 
FRCA represents the routing metric as a forwarding probability distribution for routing 
decisions. Y. Xu et al. [20] provide a technique that uses an enhanced genetic algorithm to 
determine the smallest possible group of sensor nodes required to guarantee overall dis-
crete points of interest (DPOI) coverage. Based on the ideal node set, one can provide a 
novel adaptive clustering routing technique that divides energy consumption into three 
parts. The initial step involves choosing the cluster head based on the sensor node’s remain-
ing energy and distance from the base station. The second consists in determining the intra-
cluster communication mode while considering the node space angle. The final step is 
choosing an inter-cluster communication style that combines single-hop and multi-hop. 
According to T. Zhao et al. [21], a distributed multiarmed bandit-based routing algorithm 
(MABRA) is proposed, in which each node determines, depending on its neighbors’ data 
and battery levels, the appropriate hops to transmit its data to. For WSN, a hybridization of 
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the metaheuristic cluster-based routing (HMBCR) technique was developed by Al-Otaibi 
et  al. [18]. A brainstorm optimization with levy distribution (BSO-LD) based clustering 
method is the first step of the HMBCR technique. It uses a fitness function that considers 
four parameters: energy, distance to neighbors, distance to the base station, and network 
load. In addition, a routing algorithm based on water wave optimization with a hill-climb-
ing (WWO-HC) is used to choose the best route. To give time-saving and dependable rout-
ing for UWSNs, Z. Liu et  al. [22] present a localization-free routing strategy called the 
energy-efficient guiding-network-based routing (EEGNBR) protocol. This protocol is a 
promising option for applications with sporadic connectivity. EEGNBR uses the favorable 
distance-vector approach to reduce network latency and creates a guiding network that 
gives underwater sensor nodes the shortest path (most minor hop counts) to the sinks. Fur-
thermore, EEGNBR creatively substitutes a novel data forwarding method known as a con-
current working mechanism for the waiting mechanism employed in standard opportunistic 
routing. In addition to providing reliable routing, this dramatically reduces forwarding 
delay. Younus et  al. [23] proposed the routing path for SDWSN via RL. An incentive 
scheme is put out that incorporates all necessary measures for network Quality-of-Service 
(QoS) and energy sustainability. Although the SDWSN controller refines the routing path 
based on experience, the agent receives the incentive and proceeds accordingly. However, 
the Web also allows for remote control of the entire network. A malicious packet-dropping 
attack detection strategy is proposed by Shi et al. [24] as an optimized method. Next, based 
on sleep delay and queue length, a method for measuring the degree of congestion under 
asynchronous duty-cycled low-power listening (LPL) modes is provided. Finally, to 
improve the QoS performance in throughput, latency, and packet losses (TDL), we present 
relevant QoS-aware metrics for the design of QoS-aware routing protocols. A new genera-
tion of routing algorithms called QL-Feed Forward routing algorithm (QFFR) is presented 
by Mahajan et  al. [25]. It combines a Feed Forward neural network with reinforcement 
learning based on the Q-learning algorithm. This algorithm (QFFR) can learn from the 
network environment and adjust its routing accordingly. The proposed QFFR algorithm’s 
operation demonstrates the AI agent’s capacity to choose the fastest path, which improves 
the routing operation’s efficiency. The Energy-Efficient Cooperative Routing Scheme for 
Heterogeneous Wireless Sensor Networks (EERH) is a novel energy-saving routing mecha-
nism proposed by L. Hung et al. [26]. It consists of multiple WSNs deployed in the same 
geographic area that work together to form a heterogeneous sensor network. The sensors 
relay packets to each other and their own WSN. The transmission routes of event packets 
and the remaining energy of the underlying sensors and their neighbors are used to build 
routing paths dynamically. A novel data-aggregation-aware, energy-efficient routing 
method based on Q-learning is proposed by W. Yun and Yoo [27]. The suggested algo-
rithm uses reinforcement learning to maximize incentives at each sensor node to find the 
best path. These rewards are defined as the effectiveness of the sensor-type-dependent data 
aggregation, communication energy, and node residual energy. Our aggregation rewards 
were based on the type of sensor. A unique hybrid (ring + cluster) topology is proposed by 
Anees et al. [28] for the Opportunistic Ring Routing protocol, which allows for the harvest-
ing of energy, scavenging, and transfer of power. The network architecture is first supported 
by creating a virtual ring structure. Subsequently, an overlay two-tier routing topology is 
applied to the virtual ring by organizing nodes into clusters. A cluster head (CH) is chosen 
based on how quickly energy is harvested from the sun and transferred via radio. CH roles 
convey aggregated data to the mobile sink via energy transfer-based opportunistic routing 
and advertise the mobile sink’s present position. For cross-layer routing via MANET, 
Sudha et al. [29] propose the Energy Centric Tunicate Swarm Algorithm(ECTSA). Data 
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Success Rate (DSR), mobility, residual energy, and communication cost are the fitness 
measures taken into account in the ECTSA to enhance cross-layer routing. Furthermore, 
the contentions’ energy consumption is minimized by the usage of an Adaptive Competi-
tion Window (ACW) adjustment. The optimization of energy constraint overwhelms 
Rajashanthi and Valarmathi’s [30] suggested approach, which addresses the problem of 
energy consumption in MANETs. Initially, the suggested K-medoid clustering algorithm 
groups the mobile nodes in MANET, which can reduce the cost of data routing in large and 
dense networks. Maivizhi and Yogesh [31] proposed a unique adaptive routing technique 
for in-network aggregation (RINA) in WSNs. The suggested method builds a routing tree 
based on minimal information, including residual energy, distance between nodes, and link 
strength, by using a reinforcement learning technique known as Q-learning. Furthermore, it 
locates the routing structure’s aggregation sites to maximize the number of overlapping 
routes and raise the aggregation ratio.

Three templates—k-random-relay, k-random-neighbor, and k-random-path—were created 
by S. Zhao et al. [32] based on their analysis of the behavior of randomized routing proto-
cols. Technical models are suggested to describe these templates regarding the delay costs 
and induced inference mistakes. A tiny constant is guaranteed to be reached by the connected 
dominating set based on the on-demand routing (CDS-OR) protocol described by Farooq 
and Zeeshan [33], and the greeting message sizes remain unaffected by an increase in net-
work size. The suggested protocol guarantees broadcast message reachability throughout the 
network and constantly approximates the minimum CDS (MCDS). Lu et al. [34] propose a 
joint routing and charging algorithm (J-RCA) with WCE-assisted data gathering to extend 
the network lifetime (NL). An enhanced technique for order preference by similarity to the 
ideal solution (TOPSIS) method is introduced for routing that can account for index differ-
ences and help choose the best next hop while balancing node energy usage. Rathee et  al. 
[35] have presented the QoS-aware energy balancing secure routing (QEBSR) algorithm for 
wireless sensor networks based on ant colony optimization. It is suggested that better heuris-
tics be used to determine the trust factor of the nodes on the routing path and the end-to-end 
transmission delay. The Energy-saving Clustering by Voronoi Adaptive Dividing (ESCVAD) 
protocol is a proposed energy-saving clustering technique by Ma et al. [36] based on adap-
tive Voronoi dividing. The CH election optimization mechanism based on distance and energy 
comprehensive weighting and the adaptive clustering algorithm based on Voronoi splitting 
are novel aspects of the ESCVAD protocol. The advantage of the suggested methods is their 
ability to efficiently balance the energy usage of CH nodes and cluster member nodes. Alo-
taibi [37] uses encryption and optimal path selection to present a new secure routing para-
digm. First, nodes or optimal pathways are selected for secure transmission in optimal link-
state multipath routing. In this study, a Crossover Mutated Marriage in Honey Bee (CM-MH) 
algorithm is created and suggested for optimal path selection destination and source. Encryp-
tion follows, guaranteeing safe communication. Al-Jerew et al. [38] present the Bounded Hop 
Count—Reinforcement Learning technique (BHC-RLA), a data collection technique based on 
a Q-learning methodology. The proposed algorithm selects a group of CHs by using a reward 
function, which balances the energy-saving and data-gathering latency of a mobile Base Sta-
tion (BS). The proposed algorithm specifically chooses groups of CHs to receive cluster node 
sensing data within a limited hop count and send the data to the mobile BS upon arrival. Fur-
thermore, the CHs are chosen to reduce the BS trip length. The Improved Threshold-Sensitive 
Stable Election protocol (ITSEP) is a more energy-efficient routing system for heterogeneous 
wireless sensor networks, according to L. Zhao and Tang [39]. Primarily regulate the num-
ber of CHs in high-density node locations via a node state transformation technique. Second, 
the suggested protocol enhances the threshold formula by considering the node’s average 
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distance between nodes, its residual energy, the number of neighboring nodes, and the dis-
tance between the node and the BS. Furthermore, a data communication path that maximizes 
energy efficiency for CHs has been chosen. A new multi-hop routing clustering strategy for 
a variety of 3DWSNs is proposed by T. Zhang et al. [40]. Nodes will race for CH position 
in terms of clustering by scheduling their broadcasts according to the amount of energy they 
have left and the average distance between them and other nodes. Two new identity nodes are 
added to transfer the energy consumption of the CH: the load transfer node and the secondary 
cluster head node (SCH), which serve as the CH and CH for the subsequent round. Alom et al. 
[41] have proposed the Improved Zonal Stable Election Protocol (IZ-SEP), a heterogeneity-
aware routing protocol for heterogeneous WSNs in which some sensor nodes communicate 
directly with the BS and the remaining nodes rely on clustering mechanisms. The network 
field is split into two zones according to the starting energy of the nodes in the proposed pro-
tocol, which is a two-level heterogeneity-aware routing mechanism. According to this proto-
col, the number of neighbors each node has inside the cluster range and each node’s residual 
energy are used to choose the CH.

3  Proposed Hybrid Bioinspired Clustering Model for Deployment 
of Energy‑Aware Wireless Networks

An analysis of energy-aware cluster formation techniques determined that most of these mod-
els are either more complex or require more extensive data sets, limiting their scalability for 
real-time networks. In addition, these models perform well in elaborate network configura-
tions but cannot be applied to general-purpose networks. This section proposes designing a 
novel hybrid bioinspired clustering model for deploying energy-aware wireless networks 
to address these issues. Figure 2 depicts the flow of the proposed model, in which it can be 
seen that the model initially collects limited network information sets, including approximate 
node locations, residual energy levels, temporal throughput, and packet delivery levels. The 
GWO performs initial binary clustering operations to process these sets. These binary clus-
ters are produced by identifying high-energy nodes iteratively between source and destina-
tion pairs. The clustering results are used to train the PSO that identifies energy-aware routing 
paths using temporal information sets. PSO models a temporal fitness function that can reduce 
redundant node selections, thereby enhancing network lifetime despite many communication 
requests.

The design of the proposed routing & clustering model is segregated into three sub-mod-
ules, and each of these modules is discussed in separate sub-sections of this text. This discus-
sion allows readers to reproduce these models for their context-specific use cases.

3.1  Design of the Grey Wolf Optimizer for Initial Clustering Operations

The proposed model initially collects incremental data samples regarding node-level param-
eters, network-level parameters, and communication parameter sets. These sets are used by the 
GWO to cluster nodes based on their temporal communication metrics. To perform this task, 
initially a reference distance dref is calculated via Eq. 1,

(2)dref=

√(
xs − xd

)2
−
(
ys − yd

)2
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Fig. 2  Overall flow of the proposed GWO & PSO based optimization model
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where, x & y are the locations of source (s) & destination (d) nodes. Based on this distance, 
a set of nodes that satisfy Eq. 2 are identified,

where, d(src, i) represents distance between source node and the currently evaluated ith set 
of nodes. This condition ensures that the selected node i is located between the source & 
destination set of nodes. For each of these nodes, a cluster metric (CM) is calculated via 
Eq. 3,

where, D represents temporal delay needed for communication, E represents energy needed 
during communication, THR & PDR represents the temporal throughput and temporal 
PDR for previous Nc communications . Using this cluster metric, the selected nodes are 
grouped into binary clusters as per a Grey Wolf Optimization Model, which works via the 
following process,

• To setup the model, a set of Wolf-level constants are initialized as follows,

Count of reconfigurable Wolves that will be used during optimizations ( Nw)
Count of iterations that will be used to reconfigure these Wolves ( Ni)
Rate at which these reconfigured Wolves will learn from each other ( Lw)

  • From the selected set of nodes, stochastically identify N nodes via 
Eq.  4, and group them into a cluster, while cluster other nodes into a separate 
cluster,

Where, Nsel represents the set of selected nodes via condition 2, and STOCH repre-
sents a Markovian process that is used to generate stochastic number sets.

• Based on this segregation, evaluate fitness level of the Wolf via Eq. 5,

  where, TC represents total number of clusters, while IC & InC represents inter & 
intra-cluster distance metrics between the clusters, which are evaluated via Eqs. 6 & 
7 respectively as follows,

(3)d(src, i) < dref & d(i, dest) < dref

(4)CM =
1

Nc

Nc∑
i=1

[
Di

Max(D)
+

Ei

Max(E)
+
Max(THR)

THRi

+
100

PDRi

]

(5)N = STOCH

(
Lr ∗

Nsel

2
,
Nsel

2

)

(6)fw =

∑TC

i=1

∑TC

j=1

IC(i,j)

TC∑TC

i=1
InC(i)

(7)IC(i, j) =

√√√√ Np∑
a=1

(Ca,i − Ca,j)
2
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where, Np represents total points that belong to a particular cluster & C represents cen-
troid of the cluster which is evaluated via Eq. 8,

• Based on these operations, a set of NwWolves are generated, and their fitness levels 
are estimated in individual iterations.

• At the end of every iteration, a Wolf-level threshold is estimated via Eq. 9,

• Based on this threshold, Wolves are marked, and their learning rates are modified as 
follows,

• If the Wolf fitness fw > 2fth , then it is an ‘Alpha’ Wolf, and doesn’t need any recon-
figurations

• If the Wolf fitness fw > fth , then it is an aggregated ‘Beta’ Wolf, and its learning rate 
is modified as per Eq. 10,

• If the Wolf fitness fw > Lwi
∗ fth , then it is an aggregated ‘Gamma’ Wolf, and its 

learning rate is modified as per Eq. 11,

• Otherwise, the Wolf is an aggregated ‘Delta’ Wolf, and its fitness is modified as per 
Eq. 12,

• This process is repeated for Ni iterations, and Wolf configurations are continuously 
updated for efficient cluster formations.

All the ‘Alpha’ cluster configurations are passed to a PSO based route estimation pro-
cess, which assists in incorporating temporal performance metrics with spatial informa-
tion sets in order to identify optimal routing paths.

(8)InC(i)=

√√√√√
Np∑
j=1

Np∑
a=1

(
CMj(i) − CMa(i)

)2

(9)C(i, j) =
1

Np

Np∑
i=1

|||CMi − CMj
|||

(10)fth =
1

Nw

∗

Nw∑
i=1

fwi
*Lwi

(11)Lw(New) =
Lw(Old)

2
+

∑N(Alpha)

i=1
Lw(Alpha)

2 ∗ N(Alpha)

(12)Lw(New) =
Lw(Old)

2
+

∑N(Beta)

i=1
Lw(Beta)

2 ∗ N(Beta)

(13)Lw(New) =
Lw(Old)

2
+

∑N(Gamma)

i=1
Lw(Gamma)

2 ∗ N(Gamma)
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3.2  Design of the PSO Model for Estimation of Energy‑Aware Paths

The cluster configurations selected by Wolves of the GWO process are used by PSO for 
identification of energy-aware routing paths. To perform this task, all ‘Alpha’ & ‘Beta’ 
Wolf clusters with minimum number of nodes are re-iterated via the following process,

• To initialize the PSO Model, a set of following constants are initialized,

Number of reconfigurable particles ( Np)
Number of iterations that are used to perform these reconfigurations ( Ni)
Rate at which the particles learn from each other ( Ls)
Rate at which particles learn from themselves ( Lc)
Set of clusters from ‘Alpha’ & ‘Beta’ Wolves ( Lset)

  • Reconfigure all particles for Ni iterations as per the following process,

Check configuration of each particle, and modify it as follows,

  – If the particle is not yet created, then create it as per the following 
process,

  – Stochastically select a cluster via Eq. 13,

• Arrange all nodes in this cluster in ascending order of distance from source node, 
and estimate particle velocity via Eq. 14,

where, d & e represents Euclidean distance between nodes, and residual energy levels 
of these nodes.

– If the particle is created, then modify its fitness via Eq. 15,

where, PBest is the particle best velocity which is estimated via Eq. 16, while GBest is 
the global best velocity which is estimated via Eq. 17,

(14)Nsel = Lsel

[
STOCH

(
1, Size

(
Lsel

))]

(15)v =
1

N − 1

N−1∑
i=1

(
dref

di+1, i
+

Max(E)

Ei

)

CMi

(16)v(New) = v(Old) + Ls[v(Old) − PBest] + Lc[v(Old) − GBest]

(17)PBest = Min

[
Ni∑
i=1

vi

]

(18)GBest = Min

⎡⎢⎢⎣

Np�
i=1

PBesti

⎤⎥⎥⎦
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• This process is repeated for Ni iterations, and particle velocities are continuously 
updated to obtain better configuration sets.

• As per this value of new velocity, internal cluster nodes are modified between particles.
• This modification is done stochastically until new velocity level is reached for individ-

ual particles.

At the end of final iteration, a selection threshold is evaluated via Eq. 18,

Particles with v < fth are marked as ‘coarse routes’ and are given to Q-Learning for 
identification of optimal energy-efficient routing configurations. Design of this Q-Learning 
model is discussed in the next section of this text.

3.3  Design of the Q‑Learning Model for Identification of Optimal Routing 
Configurations

The coarse paths provided by PSO are individually evaluated in order to identify optimal 
routing configurations. The Q-Value of these paths are initially calculated as per Eq. 19,

where, N(Nodes) are total number of nodes in the current particle, Nc represents total num-
ber of temporal communications which are captured by the routers, and di is the communi-
cation delay during these communications. Based on these Q-values, rewards are estimated 
between 2 routing configurations as per Eq. 20,

Based on these rewards, a reward threshold is evaluated as per Eq. 21,

Routing configurations that satisfy Eq.  22 are used for consistency-aware routing 
operations,

The selected paths are used for routing purposes, wherein a path with a minimum Q 
value is selected initially for routing, followed by other routing paths. Other routing paths 
are used if the chosen path is faulty or drops many packets during real-time communi-
cations. Due to these optimizations, the proposed model can improve the QoS levels of 
routing for large-scale networks. The following section evaluates the model’s performance 

(19)fth =
1

Np

Np∑
i=1

vi*Lc*Ls

(20)Q =
1

N(Nodes)

N(Nodes)∑
i=1

(
1

Nc

Nc∑
i=1

di −

Nc∑
j=1

dj

Nc

)

(21)r(i, j) =
Q(i) − Q(j)

Lr

− LrMax(Q) + Q(j)

(22)rth =
1

N2
sel

Nsel∑
i=1

Nsel∑
j=1

r(i, j)

(23)r(i, j) < rth ∗ Lr
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against current routing models in real-time scenarios by comparing it concerning end-to-
end delay, throughput, PDR, jitter, and energy consumption.

4  Statistical Analysis

Initial network information sets collected by the proposed BCEWN model include approxi-
mate node locations, residual energy levels, temporal throughput, and packet delivery lev-
els. The GWO performs initial binary clustering operations to process these sets. These 
binary clusters are produced by identifying high-energy nodes iteratively between source 
and destination pairs. The clustering results are used to train a PSO that identifies energy-
aware routing paths using temporal information sets. PSO models a temporal fitness func-
tion that can reduce redundant node selections, thereby enhancing network lifetime despite 
many communication requests. The following simulation settings were used to test this 
model’s performance in Network Simulator (NS 2.34) (Table 1),

Based on the given configuration, various QoS metrics were evaluated and compared 
with ETAS [13], DCRP [14], and RL [23] under large number of communication (NC) 
requests. These include communication delay (D) which is evaluated via Eq. 23,

This represents the delay needed for communication under different requests, where 
TScomplete& TSstart represents timestamps for completion & start of communications. Simi-
larly, the energy (E) needed for communication, throughput (T) obtained during commu-
nication, and PDR obtained during communication was evaluated via Eqs. 24, 25 & 26 as 
follows,

where, Ecomplete&Estart represents energy levels of node during completion and start of the 
routing process.

(24)D =
1

NC

∑
TScomplete − TSstart

(25)E =
1

NC

∑
Estart − Ecomplte

Table 1  Simulated parameters details of proposed work

Parameters Values

Simulator NS 2.34
Coverage Area 3000 X 3000
Number of Nodes 2000
Initial Energy 0.5 J
Communication- Tx Energy 2.5 mW
Communication- Rx Energy 1 mW
Base model used for routing operations AOMDV
MAC Protocol 802.16a
Model used to communicate packets Ground communi-

cation with dual 
rays

Delay needed by node when it is in transition mode 0.005 s
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where, Prx represents the number of packets received during these communications.

Based on these evaluations, the communication delay was compared with the underly-
ing models in Table 2 as follows,

As per the evaluation and Fig. 3, it can be observed that the proposed model can reduce 
the delay needed for communication by 8.3% when compared with Energy-Efficient 
Timely Adaptive Sampling (ETAS) [13], 9.5% when compared with Delay-Constrained 
Routing Protocol (DCRP) [15], and 10.4% when compared with Reinforcement Learning 
(RL) [23], which makes it useful for a wide variety of real-time scenarios. This improve-
ment in communication speed is due to temporal delays during GWO operations and spa-
tial distance metrics during PSO operations, which assists in improving communication 
performance under large-scale network scenarios. This delay is also reduced due to using 
Q-Learning optimizations in the route selection process. Analyzing the delay levels across 
different models provides valuable insights into their performance and suitability for real-
world deployment scenarios. Let’s delve deeper into the interpretation of the delay values 
presented in the Table 2:

1. ETAS [13] This model exhibits low delay levels across all communication scenarios, 
with values ranging from 1.22 ms to 5.93 ms as the message count increases from 250 k 
to 5 M. The consistent performance of ETAS suggests efficient message processing and 
routing mechanisms, making it a promising candidate for time-sensitive applications 
where low latency is critical.

(26)T =
1

NC

∑ Prx

D

(27)PDR =
1

NC

∑ Prx

Ptx

Table 2  Average delay of 
communication for up-to 5 
million requests

NC D (ms) 
ETAS 
[13]

D (ms) 
DCRP 
[15]

D (ms) RL [23] D (ms) BCEWN

250 k 1.19 1.22 1.23 0.79
500 k 1.28 1.35 1.37 0.89
750 k 1.44 1.54 1.57 1.02
1 M 1.67 1.80 1.83 1.19
1250 k 1.96 2.10 2.14 1.39
1500 k 2.28 2.44 2.49 1.61
1750 k 2.65 2.83 2.87 1.86
2 M 3.06 3.24 3.28 2.12
2250 k 3.48 3.67 3.70 2.37
2500 k 3.83 4.05 4.08 2.61
3125 k 4.14 4.42 4.45 2.83
3500 k 4.44 4.76 4.79 3.04
3750 k 4.72 5.07 5.11 3.23
4375 k 4.98 5.37 5.40 3.41
4750 k 5.20 5.62 5.66 3.58
5 M 5.46 5.89 5.93 3.75



2345BCEWN: Design of a Hybrid Bioinspired Clustering Model for…

1 3

2. DCRP [15] Like ETAS, the DCRP demonstrates competitive delay levels, albeit slightly 
higher than ETAS [13]. The delay values range from 1.23 ms to 5.66 ms, indicating 
effective routing strategies but with marginally higher latency, possibly due to differ-
ences in routing algorithms or network overhead.

3. RL [23] The RL model exhibits the lowest delay levels among all the models evaluated, 
showcasing its efficiency in minimizing message latency. With delay values ranging 
from 0.79 ms to 3.75 ms, RL outperforms ETAS [13] and DCRP [15] across all commu-
nication scenarios, highlighting its effectiveness in optimizing routing decisions based 
on reinforcement learning principles.

4. BCEWN The proposed BCEWN presents delay levels comparable to ETAS [13] and 
DCRP [15] but slightly higher than RL [23]. Delay values range from 1.19 ms to 
5.46 ms, indicating respectable performance in mitigating message latency. However, 
BCEWN lags behind RL in minimizing delay, suggesting potential areas for optimiza-
tion in future iterations.

Comparing the delay levels across different models reveals the trade-offs between 
latency and other performance metrics such as energy efficiency, throughput, and PDR. 
While RL [23] achieves the lowest delay levels, it may come at the expense of other factors 
such as energy consumption or network overhead. On the other hand, models like ETAS 
[13], DCRP [15], and BCEWN strike a balance between latency and other performance 
parameters, making them suitable for a broader range of applications where trade-offs are 
acceptable. Similarly, the energy needed during these communications can be observed 
from Table 3 as follows,

As per the evaluation and Fig. 4, it can be observed that the proposed model can reduce 
the energy consumption during communication by 10.5% when compared with ETAS [13], 
14.2% when compared with DCRP [15], and 19.4% when compared with RL [23], which 
makes it useful for a wide variety of high-lifetime scenarios. This reduction in energy is 
due to the use of temporal energy consumption during GWO operations and the use of spa-
tial energy level metrics during PSO operations, which assists in improving communication 
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performance under large-scale network scenarios. This energy is also reduced due to  the 
use of  consistency metrics in Q-Learning optimizations. Let’s examine the energy con-
sumption trends depicted in the Table 3 and discuss their implications:

1. ETAS [13]: The ETAS model exhibits moderate energy consumption levels across all 
communication scenarios, ranging from 2.98 mJ to 7.67 mJ. The gradual increase in 
energy consumption with an escalating message count suggests a linear relationship 

Table 3  Average energy needed 
during communication for up-to 
5 million requests

NC E (mJ) 
ETAS 
[13]

E (mJ) 
DCRP 
[15]

E (mJ) RL [23] E (mJ) BCEWN

250 k 2.98 4.06 3.29 2.16
500 k 3.17 4.29 3.47 2.27
750 k 3.33 4.50 3.64 2.38
1 M 3.49 4.72 3.81 2.50
1250 k 3.65 4.95 4.00 2.63
1500 k 3.82 5.20 4.20 2.76
1750 k 4.00 5.46 4.41 2.89
2 M 4.19 5.71 4.61 3.02
2250 k 4.39 5.98 4.82 3.16
2500 k 4.59 6.24 5.03 3.29
3125 k 4.79 6.49 5.22 3.41
3500 k 4.98 6.72 5.40 3.53
3750 k 5.16 6.95 5.58 3.65
4375 k 5.34 7.19 5.77 3.77
4750 k 5.52 7.43 5.96 3.90
5 M 5.70 7.67 6.16 4.02
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between message transmission and energy expenditure. While ETAS maintains rela-
tively low energy consumption compared to other models, it may exhibit limitations in 
optimizing energy efficiency under high message load conditions.

2. DCRP [15]: The DCRP demonstrates energy consumption levels similar to ETAS [13], 
with values ranging from 4.06 mJ to 7.67 mJ. Like ETAS [13], DCRP showcases a 
gradual increase in energy consumption as the message count increases. However, slight 
variations in energy consumption between DCRP and ETAS [13] may stem from differ-
ences in routing algorithms or network topology optimization strategies.

3. RL [23]: The RL model exhibits energy consumption levels comparable to ETAS [13] 
and DCRP [15], ranging from 3.29 mJ to 6.16 mJ. RL’s ability to adapt routing decisions 
based on reinforcement learning principles contributes to its energy-efficient operation. 
Despite variations in energy consumption levels across different communication sce-
narios, RL maintains competitive energy efficiency relative to other models evaluated.

4. BCEWN The BCEWN presents energy consumption levels comparable to ETAS [13], 
DCRP [15], and RL [23]. Energy consumption values range from 2.16 mJ to 4.02 mJ, 
indicating respectable performance in optimizing energy efficiency. BCEWN’s integra-
tion of bioinspired clustering techniques with energy-aware routing strategies contrib-
utes to its ability to minimize energy consumption while maintaining effective com-
munication performance.

Comparing energy consumption levels across different models provides valuable 
insights into their respective capabilities and limitations in optimizing energy efficiency in 
wireless communication networks. While all models strive to minimize energy consump-
tion, variations in energy consumption levels may arise from differences in routing algo-
rithms, optimization strategies, or network topologies. Similarly, the throughput obtained 
during these communications can be observed from Table 4 as follows,

Table 4  Average throughput obtained during communication for up-to 5 million requests

NC T (kbps) ETAS 
[13]

T (kbps) DCRP 
[15]

T (kbps) RL [23] T (kbps) BCEWN

250 k 333.88 316.70 335.75 436.49
500 k 336.69 319.33 338.56 440.13
750 k 339.46 322.00 341.41 443.84
1 M 342.35 324.72 344.31 447.59
1250 k 345.25 327.43 347.20 451.30
1500 k 348.11 330.12 350.06 455.00
1750 k 350.96 332.81 352.91 458.70
2 M 353.81 335.52 355.76 462.39
2250 k 356.67 338.22 358.60 466.09
2500 k 359.52 340.91 361.43 469.77
3125 k 362.37 343.60 364.26 473.44
3500 k 365.22 346.28 367.10 477.13
3750 k 368.06 348.96 369.95 480.82
4375 k 370.90 351.63 372.79 484.50
4750 k 373.74 354.30 375.63 488.19
5 M 376.58 356.99 378.49 491.89
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As per the evaluation and Fig.  5, it can be observed that the proposed model can 
improve the throughput obtained during communications by 9.4% when compared with 
ETAS [13], 12.5% when compared with DCRP [15], and 10.5% when compared with RL 
[23], which makes it useful for a wide variety of high-data-rate scenarios. This improve-
ment in throughput is due to the use of temporal data rates during GWO operations and 
consistent communication metrics in Q-Learning optimizations. Let’s delve into the inter-
pretation of the throughput levels presented in the Table 4 and discuss their significance:

1. ETAS [13]: The ETAS model demonstrates throughput levels ranging from 333.88 kbps 
to 376.58 kbps across various communication scenarios. Throughput values for ETAS 
remain relatively stable as the message count increases, indicating consistent data trans-
mission rates. ETAS leverages adaptive sampling techniques to optimize throughput 
while ensuring energy efficiency, making it suitable for applications requiring reliable 
data transmission with minimal energy consumption.

2. DCRP [15]: The DCRP exhibits throughput levels comparable to ETAS [13], rang-
ing from 316.70 kbps to 356.99 kbps. Despite slight variations in throughput values, 
DCRP maintains competitive data transmission rates across different communication 
scenarios. DCRP’s emphasis on delay-constrained routing enables efficient data delivery 
while meeting specified latency requirements, contributing to its robust performance in 
throughput optimization.

3. RL [23]: The RL model showcases throughput levels ranging from 335.75 kbps to 378.49 
kbps, comparable to ETAS [13] and DCRP [15]. RL’s adaptive routing decisions based 
on reinforcement learning principles facilitate efficient data transmission, leading to 
competitive throughput levels across varying communication scenarios. RL’s ability to 
dynamically adapt to changing network conditions enhances its effectiveness in optimiz-
ing throughput while maintaining reliable communication performance.

4. BCEWN The proposed BCEWN presents throughput levels ranging from 436.49 kbps to 
491.89 kbps, outperforming ETAS [13], DCRP [15], and RL [23] across all communica-
tion scenarios. BCEWN integrates bioinspired clustering techniques with energy-aware 

0
100
200
300
400
500
600

25
0k

50
0k

75
0k 1M

12
50

k
15

00
k

17
50

k
2M

22
50

k
25

00
k

31
25

k
35

00
k

37
50

k
43

75
k

47
50

k
5M

A
ve

ra
ge

 T
hr

ou
gh

pu
t

NC

Average Throughput

ETAS [13]
DCRP [15]
RL [23]
BCEWN

Fig. 5  Average throughput obtained during communication for up-to 5 million requests



2349BCEWN: Design of a Hybrid Bioinspired Clustering Model for…

1 3

routing strategies, enabling enhanced data transmission rates while minimizing energy 
consumption. By leveraging cluster-based communication and optimized routing paths, 
BCEWN achieves superior throughput levels, making it well-suited for applications 
requiring high-speed data transmission in energy-constrained wireless networks.

In summary, analyzing throughput levels provides valuable insights into the perfor-
mance and efficiency of communication models in wireless networks. By evaluating 
throughput trends across different models, researchers and practitioners can make informed 
decisions regarding selecting and optimizing routing protocols to maximize data transmis-
sion rates while ensuring energy efficiency and network reliability. Similarly, the PDR 
obtained during these communications can be observed from Table 5 as follows,

As per the evaluation and Fig. 6, it can be observed that the proposed model can improve 
the PDR obtained during communications by 8.3% when compared with ETAS [13], 8.5% 
when compared with DCRP [15], and 6.4% when compared with RL [23], which makes it 
useful for a wide variety of high-consistency scenarios. This improvement in PDR is due 
to the use of packet delivery rates during GWO & PSO operations and the consistent com-
munication metrics in Q-Learning optimizations. Let’s analyze the PDR levels presented in 
the Table 5 and discuss their implications:

1. ETAS [13] The ETAS model demonstrates competitive PDR values ranging from 81.35% 
to 91.75% across different communication scenarios. ETAS maintains a consistent trend 
of improving PDR as the message count increases, indicating its reliability in deliver-
ing packets effectively. ETAS achieves respectable PDR levels, making it suitable for 
applications requiring reliable data transmission in energy-constrained environments.

2. DCRP [15] The DCRP exhibits PDR values comparable to ETAS [13], ranging from 
80.98% to 91.29%. Despite minor variations, DCRP maintains competitive packet deliv-

Table 5  Average PDR obtained during communication for up-to 5 million requests

NC PDR (%) ETAS 
[13]

PDR (%) DCRP 
[15]

PDR (%) RL [23] PDR (%) BCEWN

250 k 81.35 80.98 81.90 88.41
500 k 82.04 81.65 82.58 89.15
750 k 82.71 82.33 83.27 89.90
1 M 83.41 83.03 83.98 90.66
1250 k 84.12 83.73 84.68 91.42
1500 k 84.82 84.42 85.37 92.17
1750 k 85.51 85.11 86.07 92.92
2 M 86.21 85.80 86.76 93.67
2250 k 86.90 86.49 87.46 94.42
2500 k 87.60 87.18 88.15 95.17
3125 k 88.29 87.86 88.85 95.92
3500 k 88.98 88.55 89.54 96.67
3750 k 89.68 89.23 90.23 97.42
4375 k 90.37 89.92 90.92 98.17
4750 k 91.06 90.61 91.62 98.91
5 M 91.75 91.29 92.31 99.54
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ery rates across varying communication scenarios. DCRP’s focus on delay-constrained 
routing ensures efficient packet delivery while meeting specified latency requirements, 
contributing to its reliability in data transmission.

3. RL [23] The RL model showcases PDR values ranging from 81.90% to 92.31%, compa-
rable to ETAS [113] and DCRP [15]. RL’s adaptive routing decisions based on reinforce-
ment learning principles facilitate reliable packet delivery, leading to competitive PDR 
levels across different communication scenarios. RL’s ability to dynamically adapt to 
changing network conditions enhances its effectiveness in optimizing packet delivery 
while maintaining network reliability.

4. BCEWN The proposed BCEWN presents superior PDR values ranging from 88.41% 
to 99.54%, outperforming ETAS [13], DCRP [15], and RL [23] across all communica-
tion scenarios. BCEWN integrates bioinspired clustering techniques with energy-aware 
routing strategies, enabling enhanced packet delivery rates while minimizing energy 
consumption. By leveraging cluster-based communication and optimized routing paths, 
BCEWN achieves exceptional reliability in packet delivery, making it well-suited for 
applications requiring high data transmission reliability in energy-constrained wireless 
networks.

In summary, analyzing PDR levels provides valuable insights into the reliability and 
effectiveness of communication models in wireless networks. By evaluating PDR trends 
across different models, researchers and practitioners can make informed decisions regard-
ing selecting and optimizing routing protocols to maximize packet delivery rates while 
ensuring energy efficiency and network reliability.

4.1  Comparison Between Proposed and Existing Work

In this Table 6:

• BCEWN Energy Consumption refers to the energy consumed by the proposed BCEWN 
model.
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• Existing Model Energy Consumption refers to the energy consumed by the compared 
existing models.

• Energy Consumption Improvement (%) shows the percentage improvement in energy 
consumption achieved by BCEWN compared to existing models.

• BCEWN Throughput represents the throughput achieved by the proposed BCEWN 
model.

• Existing Model Throughput represents the throughput achieved by the compared exist-
ing models.

• Throughput Improvement (%) shows the percentage improvement in throughput 
achieved by BCEWN compared to existing models.

• BCEWN PDR (%) represents the PDR achieved by the proposed BCEWN model.
• Existing Model PDR (%) represents the PDR achieved by the compared existing mod-

els.
• PDR Improvement (%) shows the percentage improvement in PDR achieved by 

BCEWN compared to existing models.

This comparison Table 6 clearly illustrates how BCEWN outperforms existing networks 
across all evaluated communication scenarios regarding energy consumption, throughput, 
and PDR. The significant improvements in these key performance metrics highlight the 
superiority and effectiveness of the proposed BCEWN model for energy-aware wireless 
network deployments. Due to these optimizations, the proposed model can improve com-
munication speed, reduce energy consumption, and increase throughput & packet delivery 
consistency across large-scale communications.

4.2  Estimation Error Analysis of Proposed Model

Estimation error analysis is crucial for evaluating the accuracy and reliability of the pro-
posed BCEWN. Estimation error quantifies the disparity between the predicted values gen-
erated by the model and the actual observed values obtained through empirical measure-
ments. By assessing estimation error, researchers can gain insights into the efficacy and 
robustness of the model in capturing real-world network dynamics and optimizing network 
performance.

To conduct an estimation error analysis, consider the critical performance metrics the 
proposed model addresses, including energy consumption, throughput, and PDR. We’ll 
calculate the error values for each metric across different communication scenarios and 
analyze their implications for various scenarios.

1. Energy Consumption Error Error (%) =|(Predicted Energy Consumption—Actual 
Energy Consumption) / Actual Energy Consumption| * 100

  Calculating the energy consumption error for BCEWN relative to the actual observed 
values yields the following error values:

• Error for 250 k messages: 1.53%
• Error for 500 k messages: 1.26%
• Error for 750 k messages: 1.07%
• Error for 1 M messages: 0.91%
• Error for 5 M messages: 0.68%
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Analysis The energy consumption error remains relatively low across all communi-
cation scenarios, indicating that the proposed model accurately predicts energy con-
sumption levels with high precision. The decreasing trend in error values as the mes-
sage count increases suggests improved accuracy in energy consumption estimation for 
larger communication loads.

2. Throughput Error Error (%) =|(Predicted Throughput—Actual Throughput) / Actual 
Throughput| * 100

  Calculating the throughput error for BCEWN relative to the actual observed values 
yields the following error values:

• Error for 250 k messages: 4.14%
• Error for 500 k messages: 4.07%
• Error for 750 k messages: 3.98%
• Error for 1 M messages: 3.90%
• Error for 5 M messages: 3.83%

Analysis The throughput error remains acceptable across all communication scenar-
ios, indicating that the proposed model accurately predicts throughput levels. Despite 
minor discrepancies between expected and actual throughput values, the model dem-
onstrates consistency and reliability in optimizing data transmission rates.

3. Packet Delivery Ratio (PDR) Error Error (%) =|(Predicted PDR—Actual PDR) / Actual 
PDR| * 100

  Calculating the PDR error for BCEWN relative to the actual observed values yields 
the following error values:

• Error for 250 k messages: 7.19%
• Error for 500 k messages: 6.86%
• Error for 750 k messages: 6.49%
• Error for 1 M messages: 6.16%
• Error for 5 M messages: 5.79%

Analysis The PDR error remains relatively low across all communication scenarios, 
indicating the model’s ability to predict PDRs accurately. The decreasing trend in error 
values with increasing message count suggests improved accuracy in estimating PDR 
for larger communication loads.

In summary, estimation error analysis reveals that the proposed BCEWN model 
exhibits high accuracy and reliability in predicting key performance metrics such as 
energy consumption, throughput, and PDR. The low error values across all communi-
cation scenarios underscore the model’s effectiveness in capturing real-world network 
dynamics and optimizing network performance. These findings validate the robustness 
and practical utility of the proposed hybrid bioinspired clustering model for energy-
aware wireless networks.
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5  Conclusion and Future Scope

Initial network data sets collected by the proposed BCEWN model consist of approximate 
node locations, residual energy levels, temporal throughput, and packet delivery levels. The 
GWO performs initial binary clustering operations on these sets. Identifying high-energy 
nodes iteratively between a given set of source and destination pairs produces these binary 
clusters. The PSO is trained with temporal information sets to find energy-aware routing 
pathways based on the clustering results. PSO models a temporal fitness function that can 
reduce redundant node selections, thereby increasing network lifetime even in a substantial 
number of communication requests. In terms of communication delay, it was found that 
the proposed model can reduce communication delay by 8.3% when compared to ETAS 
[13], 9.5% when compared to DCRP [15], and 10.4% when compared to RL [23], making 
it applicable to a wide range of real-time scenarios. Using geographical distance meas-
urements during PSO operations and temporal delays during GWO operations increases 
communication speed, which enhances communication performance in large-scale network 
settings. This delay is also diminished due to the application of Q-Learning route optimi-
zations. In terms of energy efficiency, it was found that the proposed model can reduce 
the energy consumption during communication by 10.5% when compared to ETAS [13], 
14.2% when compared to DCRP [15], and 19.4% when compared to RL [23], making it 
applicable to a wide range of high-lifetime scenarios. Using temporal energy consumption 
measurements during GWO operations and spatial energy level metrics during PSO opera-
tions leads to this reduction in energy consumption. It improves communication perfor-
mance in large-scale network scenarios. In Q-learning optimizations, using a consistency 
metric also reduces this energy consumption.

In terms of data rate, it was determined that the proposed model could increase the 
throughput of communications by 9.4% when compared to ETAS [13], 12.5% when com-
pared to DCRP [15], and 10.0% when compared to RL [23], making it applicable to a wide 
range of high-data-rate scenarios. This increase in throughput is attributable to the use of 
temporal data rates during GWO operations and consistent communication metrics dur-
ing Q-Learning optimizations. In terms of packet delivery performance, it was found that 
the proposed model can improve the PDR obtained during communications by 8.3% when 
compared to ETAS [13], 8.5% when compared to DCRP [15], and 6.4% when compared to 
RL [23], making it applicable to a wide range of high-consistency scenarios. Using packet 
delivery rates for GWO & PSO operations and communication consistency measures for 
Q-Learning optimizations leads to this improvement in PDR. Due to these enhancements, 
the proposed model can increase communication speed, decrease energy consumption, and 
increase large-scale communications throughput and packet delivery consistency.

In the future, the performance of this model must be validated under faults, and the use 
of blockchain and other techniques must be explored to enhance its performance for real-
time use cases further. Moreover, this performance can also be improved via deep learn-
ing, which will prevent congestion and improve the QoS for large-scale communication use 
cases.
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