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Abstract

Federated Learning (FL) is an emerging distributed machine learning paradigm designed
to resolve the conflict between data sharing and privacy. It allows each client device to
train shared models locally and perform global model aggregation on cloud servers without
users having to share their data. However, there are still many security risks and malicious
attacks that could breach the data privacy and confidentiality in the process of local train-
ing and information interaction. This paper investigates the security and the privacy chal-
lenges faced by FL and the corresponding defense methods. First, existing works about
the FL-related surveys are studied; second, the basic concepts, the algorithm principle and
the scenario classification of FL are introduced; next, examples are provided to illustrate
the relevant attacks and defense knowledge of FL; then, the aggressive behaviors in FL
are classified from four perspectives: the poisoning attack, the inference attack, the model
attack and the adversarial attack, and the sub-aggressive behaviors are also com bed out;
subsequently, the defense methods are divided according to the two directions of attack
behaviors and privacy-protection technologies, and the application of different defense
methods is investigated. Eventually, the future research directions on both attack problems
and defense strategies in FL systems are discussed.

Keywords Federated learning - Privacy preservation - Security - Attack-and-defense
strategies - Survey

1 Introduction

The growing prevalence of smart devices and the Internet of Things (IoT) is leading to
an unprecedented growth in the volumes of data generated every day. The International
Data Corporation (IDC) anticipates that billions of IoT devices will generate 79ZB of
data by 2025 [1]. Nowadays, the data collectors have many more approaches to col-
lect user’s data than ever before. For example, application providers can require that the
users can enjoy the convenience of the internet applications only if they share their data
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with the application providers. This leads to “the data follows the application, and indi-
vidual data ownership is not in their own hands” [2]. As a result, the enterprises manage
and control the application data and monopolize them, which poses a great challenge to
the protection of users’ privacy. Recently, more and more users have realized the value
of their data and are worried that third parties may share their information. In order to
avoid the disclosure of sensitive information, countries around the world have enacted
related laws to preserve the data privacy of citizens. Europe’s General Data Protection
Regulation (GDPR), California’s California Consumer Privacy Law (CCPA), and Chi-
na’s Cyber Security Law and Data Security Law prohibit centralized remote processing
of sensitive data collected in distributed mode [3, 4]. However, this also makes it dif-
ficult to access users’ necessary private information for the valid users in many legal
application fields such as medical treatment and education.

As a new distributed machine learning paradigm, federated learning (FL) can be used
to solve the problem mentioned above. To prevent the servers from accessing the cli-
ents’ sensitive data directly, FL lets the client devices store the data locally, and trains
the global model by aggregating the local models iteratively, which are trained locally
on the client devices. During the training procedure, the client devices only need to
upload the gradient and the weight parameters to the central server [5].

However, although FL has become an effective scheme to resolve user privacy prob-
lems in machine learning, recent studies demonstrate that there are still loopholes in
FL protocols, and attackers can launch many kinds of attacks, such as poisoning attack,
inference attack, model attack, etc., to damage the trained models by leveraging these
loopholes. For example, combined with advanced attack techniques of Generative
adversarial networks (GANs), a class representation of global data distribution of all
clients can be constructed, and it distinguishes between client-specific attacks (i.e., user-
level privacy breaches), so this stronger privacy threat can precisely recover private data
from specific clients [6]. In addition to this, sensitive data of participants may be leaked
to untrusted servers through uploaded gradient vectors [7], and an opponent can also
manipulate the shared model with a model poisoning attack. Besides, the attacker may
masquerade as an honest data provider and inferences the attributes of sensitive training
data on the target client by observing the update of the target shared model [8].

To make people who are interested in FL security better know its recent research
development, in this survey, we collect, classify, introduce and discuss more than one
hundred of FL-security-related papers which are published in recent years, and make
a comprehensive and systematic study on them. In summary, the contributions mainly
include the following points:

e In our work, both the survey and the non-survey papers related to the privacy and
the security of FL are studied, and the similarities and the differences between our
work and the related surveys are discussed.

e We systematically analyzes the threats on the security and the privacy of FL and the
corresponding defense methods proposed by the researchers, and makes a compre-
hensive comparison among them.

e The aggressive behaviors in FL-related application are classified and discussed, and
suggestions for dealing with such behaviors as well as future research directions are
provided. Meanwhile, we identify a set of criteria for future solutions that will serve
as a reference for scholars and developers studying ways to improve security and pri-
vacy in future FL systems.
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The rest of this paper is arranged as follows: Sect. 2 makes a detailed research of the exist-
ing survey works on the security and the privacy of FL, compares our survey with them,
and highlights the unique contributions of this survey; Sect. 3 elaborates on the relevant
knowledge of FL and makes a comprehensive analysis of three scenarios of FL; Sect. 4
briefly introduces the threats to the security and privacy protection of FL, explains the vari-
ous threats to the security and privacy protection of FL by examples, and provides corre-
sponding solutions; Sect. 5 first generalizes the classification of attack methods in security
challenges with graphs, and then explains each attack method with pictures and texts; in
Sect. 6, the corresponding security defense methods and privacy protection technologies
are proposed for four kinds of attack methods (poisoning attack, inference attack, model
attack and adversarial attack). Section 7 predicts possible attack patterns and defense strat-
egies for FL in the future, and provides a set of criteria for solutions. Section 8 concludes
with a summary and a future outlook.

2 Comparison Between Our Work and the Existing Federated Learning
Surveys

Recently, researchers have proposed some FL privacy-and-security related investigation
articles. In [9], the authors classify possible attacks and threats during training for FL, list
the attack methods of each category, and introduce the attack principles of the correspond-
ing attacks. They summarized specific defense measures against these attacks and threats
and analyzed their principles. In [10], the authors describe the development of machine
learning and the inevitability of the emergence of FL, and give the definition and clas-
sification of FL. Aiming at of the privacy protection problems of FL, common privacy
protection technologies are summarized. In addition, the existing mainstream open source
frameworks of FL are introduced and compared, and the application scenarios of FL are
given. In [11], the authors introduce the training processes of Horizontal Federated Learn-
ing (HFL) and Vertical Federated Learning (VFL), and explore the threats to these pro-
cesses and the reason why they are prone to be attacked, so as to classify and summarize
the existing attack methods, such as the poisoning attack, the adversarial attack and the
model inversion attack. Aiming at several methods of attack in both scenarios, several cor-
responding defense measures are introduced, such as gradient sparsity, malicious detec-
tion, secret sample alignment, label protection, Verifiable Secret Sharing (VSS) and dis-
turbance sharing. They highlighted the training processes and defenses against threats in
both the HFL and VFL. In [12], the authors discuss the classification of FL. and analyze
its advantages and disadvantages. The hidden danger of FL is pointed out and the current
main defense measures are introduced. In [13], the authors introduce the basic concepts
and threat models of FL. Three types of attacks launched by internal malicious entities
are summarized and security and privacy vulnerabilities of the FL architecture are investi-
gated. Then, the most advanced defense schemes are studied from the aspects of Differen-
tial Privacy (DP), Homomorphic Encryption (HE), and Secure Multi-party Computation
(SMCQ). In [14], the authors analyze the possible security problems of FL, focus on the
threat of poisoning attack, adversarial attack and privacy disclosure in detail, summarize
targeted defense measures and put forward corresponding solutions.

Most of the existing investigations on the privacy and security of FL only combine
the basic knowledge of FL with attack methods and solutions, without considering that
the solution should still follow some application criteria. In this paper, the theoretical

@ Springer



2204 X. Ma, M. Yan

knowledge and related applications of FL are presented in the form of sentences combined
with tables, and the problems and solutions in the application are also explained. More
importantly, a series of criteria should be followed when developing defense strategies are
proposed. Combining the above three parts to form a systematic study of FL privacy and
security sequential architecture, which is not present in the existing articles. If the relevant
staff can consider and meet as many criteria as possible when formulating the scheme to
protect the privacy and security of the system, then the system is undoubtedly robust.

Table 1 summarizes the main similarities and differences between our survey and exist-
ing relevant FL surveys. Table 2 shows the differences between our survey and the existing
relevant FL surveys (where “\/ ” means “include” and “X” means “not include”).

Compared with the existing investigation articles on FL, this paper mainly focuses
on the security and privacy issues of FL, and comprehensively analyzes FL from several
aspects, such as attack methods and defense schemes. For privacy and security challenges
in FL, suggestions for solving security and privacy issues and future research directions
are provided, so as to provide researchers with new solutions to privacy and security of
FL. The survey collected most of the relevant literature on privacy and security in FL. The
content of the survey is rich and comprehensive. Our investigation on the security and the
privacy challenges facing FL is very detailed, and the classification scheme presented is
also very comprehensive.

3 Concept and Classification of Federated Learning

In this section, we first explain the concept and the algorithm principle of FL, then it intro-
duces the classification of FL scenarios, and introduces the principles and the implementa-
tion processes of FL in different scenarios, such as HFL, VFL, and FTL.

3.1 Basic Concept and Algorithm Principle

FL can be regarded as a decentralized and collaborative machine learning method for pri-
vacy protection. The model training is completed in multiple iterations by multiple clients
collaborating [16]. The concept of FL was first proposed by H.Brendan Mcmahan et al in
2016. It is mainly used to solve the privacy problem caused by centralized model train-
ing of data stored in multiple terminals (such as mobile phones) [17]. Google is the first
company to introduce the FL system, which is mainly applied in the input method improve-
ment and other scenarios. For example, after users have used relevant words several times,
Google’s Gboard system can suggest words and emoticons to them when they input words
[18-20]. Different from the traditional recommendation system, this system relies on the
mobile device itself to a large extent without gaining user privacy. The framework for FL is
shown in Fig. 1.

FL is a distributed training model performed by a group of devices that share local
model updates with a central server whose job is to aggregate these updates to build a
global machine learning model. A common aggregation model known as the Federated
Averaging (FedAvg) [21], allows the servers to aggregate local random gradients from dif-
ferent devices using iterative model averaging methods. Equation 1 [21] shows the frame-
work of federated averaging.
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Parameter Sever

Client 1

Client 2 Client 3

Fig.1 The framework of FL

K

.
W = ) —wh (1)

=

In Equation (1), w,,, represents the update of global model weight (i.e., aggregation model
weight update), n represents the total amount of data of K clients, where ZK n, =n, w rep-
resents model parameter.

Observations from participants in FL, the FL scenarios consists of a set of participants
consisting of a central server (also known as a parameter server) and K clients, each with its
own local dataset D,. During the learning process, the clients agree on the common goals
and model structure, and train model M, in the total dataset D = D; UD, U -+ U Dx.
At the beginning of the FL training iteration, a subset of clients C C K is selected to receive
the current global state of the shared model based on model weights. After receiving the
global state, each client performs local training on its own dataset according to the shared
model parameters, and sends the model update obtained after training (i.e. the weights
learned locally by the client using the local dataset) to the central server. The server applies
updates to the current global model to generate a new model. Equation 2 shows the global
model update mechanism.

1 i
G =G+ . Z AL, 2)
-
=y
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In Equation (2), G, represents the global model parameter of the server side in the ¢ th
iteration, k, represents the number of clients selected in this round, and ALi . fepresents the
local model update parameter received by the central server from the clients.

After several iterations of the above process, the global model reaches a certain level of
accuracy determined by the central server, and FL is complete. Equation 3 represents the
target function of the central server.

K
TEW), ) = Y L Fy(0) 3)
k=1

In Equation (3), K represents the total number of client devices participating in training,
n, is the data volume of the & th client, and F(w) is the local objective function of the k th
device. Equation 4 shows the local objective function of the & th device.

1
Fw) = e Zfi(w) 4)

ieD,

In Equation (4), D, is the local dataset of the k th client, and f;(w) = a(x;,y;, w) is the loss
function generated by the model with parameter w to the instance (x;,y;) in dataset D,.

The average loss function of the local client is obtained by dividing the sum of the loss
functions generated by all instances in D, by the total data volume of the client.

In summary, the FL scenariomainly consists of two phases, namely local update and
global aggregation. The local update phase refers to the calculation of gradients by mini-
mizing the loss function of all training data in these devices [22]. Global aggregation
involves the following steps: the server collects updated model parameters from different
client devices, aggregates them, and then sends the aggregated parameters back to the cli-
ents for use in the next training iteration.

3.2 Federated Learning Classification

The feature and sample ID space of the data parties may not be identical, and we classify
FL into HFL, VFL, and FTL based on how data are distributed among various parties in
the feature and sample ID space [9, 23]. Let the sample ID space of the i th data D, be
x;, the feature space y;, and the label I;. The expressions of the three scenarios of FL are
shown in Table 3 [9].

3.2.1 Horizontal Federated Learning
In HFL, datasets of different participants have the same feature space, but they rarely

intersect in the sample ID space. HFL is distributed machine learning that divides the
dataset horizontally (i.e. the user dimension) under the condition that the user features

Table 3 Classification of

N . . Classifications Expressions
federated learning scenarios

Horizontal Federated Learning X; =X,y = y_,-,]i #* IfVD,-,Dj,i #J
Vertical Federated Learning xX; # X, Vi #* yj,Ii = IjVDl-,Dj,i #]
Federated Transfer Learning X #F X,y F YLy VD, Dy i #
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of the two datasets overlap more while users overlap less, and HFL takes out the parts
with the same feature but not exactly the same users for training [24, 25]. For example,
“Hey Siri” and “OK Google” in wake-up word recognition [26] are typical applications
of horizontal segmentation, because each user speaks the same sentence in a different
voice. The schematic diagram of HFL is shown in Fig. 2.

The HFL training process consists of the following steps:

(D Initialization: Initializes the federated model parameter w and distributes it to the
clients (w; = w, = w, = w).

@ Local training: the client calculates the corresponding output value yﬁm = X,w and
error value L, of data records. Equation 5 shows the local gradient of the client.

Aw, = —
Wy 3%, )

In Equation (5), k represents the k th client.

(3 Gradient aggregation: The parameter server uses the FedAvg [27] algorithm to
aggregate the shared gradients of the clients, and the aggregation gradient can be repre-
sented as Eq. 6.

K
1
Aw= 2 ; Aw, (6)
@ Global parameter update: Parameter server updates global parameters, and Eq. 7 shows
the global parameter update.
W1 =W, +nAw (7)

In Equation (7), w, represents the global parameter of the n th iteration, and # represents
the learning rate.

Features

Sample ID Data from B [Labels

Data from A

-

Horizontal
Federated Learning

Fig.2 Schematic diagram of horizontal federated learning
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3.2.2 Vertical Federated Learning

In VFL, datasets of different participants have feature space with different attributes,
but have the same or similar sample ID space. VFL is distributed machine learning that
divides the datasets vertically (i.e. feature dimension) under the condition that the users
of two datasets overlap more while user features overlap less, and VFL takes out the
parts with the same user but not exactly the same user features for training [28]. For
example, the collaboration between different companies can often be viewed as a verti-
cal segmentation situation. VFL usually uses entity alignment techniques [29, 30] to
collect overlapping samples of all parties. The schematic diagram of VFL is shown in
Fig. 3.

The VFL training process consists of the following steps:

(D Initialization: There is sample alignment with the same identifier between clients,
and the parameter server initializes the federated model parameters for distribution to
clients (w; = w, = wg = w).

@ Local training: The active party uses Eq. 8 to summarize the output value and
error value of data records with the same identifier.

K
yf,,e = ZXka ®)
k=1

The intermediate result AH, is transmitted to the passive party so that both sides can obtain
the gradient according to Eq. 9.

6H
Aw, = AH, » 5X, )

In Equation (9), k represents the k th client and H represents the excitation function [31].
(3 Gradient aggregation: The parameter server receives shared gradient information
from the clients and gathers them.

Features

Data from A Data from B

Vertical Federated Learning

Fig.3 Schematic diagram of vertical federated learning
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(@ Global parameter updating: The parameter server uses the shared gradients of par-
ticipants to update the corresponding global parameter to obtain global parameter w, as
shown in Eq. 10.

k
n+1

wh = wh 4 nAw, (10

3.2.3 Federated Transfer Learning

In Federated Transfer Learning (FTL), datasets of different participants have feature
space of different attributes, and there is little intersection in the sample ID space [32].
FTL is the combination of FL and transfer learning, which does not divide the data and
uses transfer learning to overcome the data or label shortage under the circumstance
that the users and user features overlap less in the two datasets [33]. Take the cancer
diagnosis system as an example. A group of hospitals want to establish a FL. system for
cancer diagnosis, but each hospital has different patients and different physical examina-
tion results. In this case, federated transfer learning is usually adopted. The schematic
diagram of FTL is shown in Fig. 4.

The FTL training process [34] consists of the following steps:

(D Initialization: Build server model fs using Eq. 11 and the dataset.

arg mé‘n L= ; 0. f5(X) (1)

In Equation (11), fs represents the server model to be learned, o(x, *) represents the loss
function of the model (such as cross-entropy loss of the classification task), ® represents all
parameters to be learned (namely weight and deviation), and {Xi, yi}?zl is the sample from
server data with the size of n.

@ Local training: fs is distributed to all clients and the model of user u is trained by
learning objective function Eq. 12.

Features

ederated Transfer Learning
—

Data from B [Labels

Sample ID Data from A

-

Fig.4 Schematic diagram of federated transfer learning
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ntt

arg min L,= ; oy, [, (X)) (12)

2

(@ Gradient aggregation: After the training of all user models f, based on the shared cloud
model is completed, Homomorphic Encryption is used to update them to the server, and
Eq. 13 is used for model aggregation.

K
/ 1
fon =+ ;f,,k(w) (13)

@ Global parameter update: The server distributes the aggregation model as the updated
cloud model f; to all clients, and then transfers learning for each client to get their person-
alized model f,.

The above four steps are repeated when more users emerge continuously.

3.3 The Advantages of Federated Learning

As a product of the development of machine learning technology, FL. has some advantages.

(D User privacy protection: The data of the clients participating in FL is not shared. The
data is stored in the local environment to ensure user data security.

() Data flexibility: During the FL process, the client can determine if it needs to quit
without affecting the normal running of the FL.

(3 Model training that allows large-scale data: FL is based on a global data learning
model stored in tens of millions of remote client devices.

4 Security and Privacy Threats

In a FL scenario, attacks can be initiated not only by untrusted servers [7, 35-39], but also
by malicious clients [4, 8, 37, 39—41]. In general, we think of parameter servers as honest
and curious, and their attacks are considered passive attacks. This means that these serv-
ers usually serve strictly according to established learning protocols, but they also try to
extract sensitive user information from the model update process. Attacks from malicious
clients are called active attacks, in which they attempt to recover sensitive information
about other users from aggregated global model parameters. These two attacks have the
effect of destroying data privacy. Tables 4 and 5 respectively list some security and privacy
threats encountered by FL and the corresponding solutions.

5 Security Challenges

This section divides the security challenges existing in FL into four components: Poisoning
Attack, Inference Attack, Model Attack and Adversarial Attack. First, each attack method
is classified by fine granularity, and its schematic diagram is drawn. Next, typical attack
methods are selected to elaborate, and the attack principle is explained. Then, each method
is illustrated by example. Finally, all attack methods are compared, and a summary table of
attack methods is listed.
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The classification of security challenges is shown in Fig. 5. In the attack methods, some
sub-methods can be attributed to different superior attack methods, so there is a phenom-
enon of repeated occurrence of some attack methods in the classification diagram.

5.1 Poisoning Attack

Poisoning attack refers to the fact that attackers manipulate model predictions with training
sets during training or retraining, so that the trained models can satisfy the expectation of
attackers and destroy models [62]. The methods of manipulating training datasets mainly
include contaminating source data, adding malicious samples to training datasets, tamper-
ing with some labels in training datasets, deleting some samples in training datasets, etc.
[63]. Based on the difference of the attackers’ targets, the poisoning attack can be divided
into data poisoning attack and model poisoning attack. The schematic diagram of poison-
ing attack is shown in Fig. 6.

5.1.1 Data Poisoning Attack

Data poisoning attack refers to the fact that attackers contaminate samples in training sets,
resulting in low quality of training data, which reduces the quality of models and damages
the availability of data and models. According to whether the data label is tampered or
not, it can be classified into clean label poisoning attack and dirty label poisoning attack.
Clean label poisoning attack is designed to add malicious data to a training dataset. A typi-
cal example of a dirty label poisoning attack is the label flipping attack [64], in which the

Security challenges
Inference attack ————————  Poisoning attack
Client-side generative adversarial network attack Model poisoning attack
Server-side generative adversarial network attacks Target attack
Membership inference attack Untargeted (Byzantine) attack
Attribute inference attack Data poisoning attack

Feature inference attack Dirty label poisoning attack

Label inference attack Clean label poisoning attack
Black-box attack Data back door poisoning attack

White-box attack Trojan neural network attack

Adversarial attack ——  Model attack

Target attack

Untargeted (Byzantine) attack

Black-box attack

White-box attack

Fig.5 Classification of security challenges

@ Springer

Model extraction attack

Model inversion attack

Member inference attack

Attribute inference attack

Byzantine attack

Back door attack



Research Progress on Security and Privacy of Federated Learning:... 2217

Parameter Sever

Client 1

Client 2 Client 3

Fig.6 Schematic diagram of poisoning attack

labels of one class of clean training samples are flipped to another while the features of
the data remain unchanged. Traditional dirty label poisoning attacks just reverse the train-
ing sample labels in the target class [65]. Some recent literatures have proposed optimized
data poisoning attacks [66—68]. For example, mature attackers could inject some elaborate
fake malicious data samples (such as label error), destroy the probability distribution of
the original training data, and reduce the precision of classification or clustering of the
learning model. This kind of attack has been proven in many applications, including hand-
written number recognition [64] and PDF malware detection [69]. Another common way
of attack is data backdoor poisoning attack [63—70]. By modifying the individual features
or small regions of the original training dataset as a backdoor, the attacker can embed it
into the model. If the input contains the backdoor features (e.g., a stamp on an image), the
model will behave according to the goal of the attacker, while poisoning model in a clean
input data on the performance is not affected. Trojan neural network attack also belongs to
data poisoning attack [11]. In addition to this, the Trojan neural network and target model
are packaged together, and data is input into the Trojan neural network and target model at
the same time, and the output is integrated, so as to realize the distribution of Trojan net-
work. It is worth noting that any malicious client can carry out the data poisoning attack,
and the attack intensity depends on the degree of attacker’s participation in the attack and
the amount of contaminated training data. That is, data poisoning attack is less effective in
the environment with fewer attackers [71].

5.1.2 Model Poisoning Attack
Model poisoning attack means that attackers disrupt FL by sending incorrect parameters or

destroying models during global clustering. Based on whether the attackers focus on a spe-
cific goal, the model poisoning attack can be divided into two categories: target attack and
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non-target (Byzantine) attack. The target attack refers to an attacker’s attack on a specific
type of object, while the non-target attack is the attack without distinguishing samples,
which is a kind of generalized attack. The authors of [72] study the local model poisoning
attack against Byzantine robust FL, whose goal is to destroy the integrity and confidential-
ity of the model by destroying the integrity of the learning process at the training stage.
The authors of [62] propose an optimization-based FL poisoning attack model, which is
sufficiently covert and persistent to bypass specific defense methods and avoid catastrophic
forgetting. Unlike data poisoning attack, model poisoning attack requires more sophisti-
cated techniques and better computing resources to send data to the server, and its com-
bined effect is stronger than data poisoning attack [73].

5.2 Inference Attack

Inference attack refers to the attacker obtaining infer able information through various
means of attack, and then deducing the desired information by using the information,
which can be the input features and attribute labels of members, etc. According to the dif-
ferent inference information, inference attack can be divided into the membership inference
attack, the attribute inference attack, the feature inference attack, and the label inference
attack. Inference attacks can be divided into the white-box attacks [74] and the black-box
attacks [75, 76] according to whether the attacked model is known or not. White-box attack
is carried out when the attacker knows the model. That is, the attacker can get the pre-
diction output of any input and the intermediate calculation result of hidden layer [74].
The black-box attack is carried out when the attacker only knows the input and output of
the model while the parameters of the model are unknown. It is more difficult and less
effective than the white-box attack. In addition to that, GAN-based attacks [77, 78] also
belong to inference attacks, including the client-side GAN attacks and the server-side GAN
attacks. Server-side GAN attack is to calculate the privacy infor mation of user training
samples by using periodically exchanged model parameters [79]. Different from the server-
side GAN attack, the client-side GAN attack only has aggregation generated global model
parameters, and the key of its reconstruction data sample lies in how to obtain the model
updates of other users in each round of communication [74]. A schematic diagram of infer-
ence attack is shown in Fig. 7.

5.3 Model Attack

Model attack refers to the attack that changes the global model by tampering with the local
model of the attacked clients. Typical model attack methods include the model extraction
attack and the model inversion attack. A schematic diagram of the model attack is shown
in Fig. 8.

5.3.1 Model Extraction Attack

Model extraction attack refers to that the attacker continuously sends data to the target
model, expecting to recover the target model locally, and predicts the parameters and
functions of the model through the response information obtained, so as to generate an
accurate model or similar model to realize the model extraction [12]. The target of the
attacker is to steal the model and damage the confidentiality of the model. The accurate
model refers to an alternative model constructed by the attacker with similar predictive
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Parameter Sever

Listen for the
update gradient

Deduce useful

information from
updated

parameters

Client 2 Client 3

Fig. 7 Schematic diagram of inference attack

Parameter Sever

.~ Leakage of information
. about model updates

Client 1

Client K

Fig.8 Schematic diagram of model attack

performance. If the accurate model is stolen, it can generate adversarial samples, so
model extraction attacks pose a great threat to the target model. The authors of [80]
carry out an attack on BigML and Amazon’s online services, extracting an almost iden-
tical model and proving that the same attack is equally applicable in multiple scenarios.
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5.3.2 Model Inversion Attack

Model inversion attack refers to an attacker who, without knowing the training data,
obtains the data information of the target model from the prediction results of the com-
pleted training model, so as to obtain the user’s private data. The information inferred on
the training set from the model inversion attack may be whether a member is included
in the training set or some statistical features of the training set. Model inversion attacks
can be divided into member inference attacks and attribute inference attacks according
to the two kinds of training set information. Under a model inversion attack, a genera-
tor that can not have direct access to P but can access to a machine learning model of
P and training set Q can recover some variables in training set P [81]. For example, the
authors of [82] propose a new class of model inversion attack for face recognition sys-
tem, which utilize the confidence values displayed in the prediction to recover recogniz-
able images of people’s faces under the condition of only giving the name and accessing
the machine learning model.

5.4 Adversarial Attack

Adpversarial attack refers to a maliciously constructed adversarial samples submitted to a
trained model that produces incorrect predictions in a state of high confidence. It is also
known as an evasion attack [63]. Adversarial samples are the incorrect samples classified
by the classification model after slight perturbations are added to the original samples. One
characteristic of adversarial samples is that it only causes model classification errors and
can be calibrated to the correct samples. In terms of attack environment, adversarial attack
can be divided into the black-box attack and the white-box attack, and can also be divided
into the target attack and the non-target attack according to attack purpose. Adversarial
attacks can cause powerful damage to the system in the domains of speech and text rec-
ognition. Similarly, in the domain of malware detection, malware developers can also use
adversarial attack to add some special statements to their software to evade detection by
anti-virus software.

In conclusion, the attack methods of some security challenges confronted by FL are
described in detail above. Table 6 comprehensively summarizes the attack methods
encountered by FL.

6 Threat Countermeasures

This section puts forward corresponding solutions to the security and privacy threats facing
FL, which are divided into two categories: security defense method and privacy protec-
tion technology. Firstly, the security defense method is decomposed into four sub-methods,
namely the poisoning attack defense, the inference attack defense, the model attack defense
and the adversarial attack defense. Then the privacy protection technology is also decom-
posed into four sub-technologies, namely the DP technology, the SMC technology, the HE
technology and the VSS. The concepts behind each approach and technique are explained
below and how they address the security and the privacy challenges of FL. Figure 9 shows
the classification of methods for security and the privacy challenges in FL.
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Poisoning attack defense

Inference attack defense

—  Security defense method
Model attack defense

Adversarial attack defense

Threat countermeasures —

Differential Privacy

Homomorphic Encryption

Secure Multi-party Computation

~——  Privacy protection technology

Verifiable Secret Sharing

Fig.9 Classification of methods for security and the privacy challenges in federated learning

6.1 Security Defense Method

In view of the multiple security threats to FL and combined with solutions proposed in the
existing literature, the security defense methods are divided into four categories, namely,
poisoning attack defense, inference attack defense, model attack defense and adversarial
attack defense. The following sections will analyze four types of security defense methods
in detail and discuss their applications.

6.1.1 Poisoning Attack Defense

Poisoning attack defense in FL can be considered from the following aspects: (1) From the
data itself, to ensure the authenticity and reliability of data sources; (2) From the point of
view of the attacker, sufficient security detection should be conducted to ensure that data
and model parameters are not tampered with. In [4], the authors propose DFedForest, a FL
system based on local forest algorithm that shares decision trees through blockchain. The
system utilizes blockchain technology to ensure mutual trust among participants, register
references to local model addresses in a distributed manner, and prevent malicious par-
ticipants from compromising the accuracy of the model. In [8], the authors adopt a fully
decentralized peer-to-peer (P2P) multi-party FL approach (Bicotti), which uses blockchain
and cryptography primitives to guarantee privacy between peer clients and protect the pro-
cess of FL. They propose poof-of-federation (PoF),a layer-1 blockchain consensus protocol
that combines the state-of-the-art technology in FL defense to prevent clients from over-
stepping the system to compromise data integrity and model parameters without sufficient
permission. The results show that Bicotti is able to resist the poisoning attacks in previous
work. When there are 30% or less attackers in the system, the method can protect individual
client updates and maintain the performance of the global model. In [37], in order to avoid
model poisoning caused by malicious nodes and privacy disclosure caused by malicious
servers, the authors propose a decentralized FL framework based on blockchain, that is, a
Blockchain-based FL framework with Committee consensus based on blockchain(BFLC).
In the absence of a centralized server, the framework utilizes a blockchain for global model
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storage and local model update exchange. In order to implement the proposed BFLC, an
innovative committee consensus mechanism is designed, which can effectively reduce the
amount of consensus calculation and malicious attacks. In [43], the authors in response to
the IoTs in the system anomaly detection, the introduction of blockchain authorsization
scattered and asynchronous federated study framework, the framework to ensure the data
integrity, to prevent a single point of failure. The generative adversarial network-driven DP
algorithm is designed to protect the privacy of the local model parameters, prevent poison-
ing attacks to some extent, and improve the model accuracy. In [56], in order to prevent
raw data leakage, DP is applied to each federated edge node, and blockchain technology
is used to aggregate updated model parameters, adding carefully selected noise to protect
privacy, striking a balance between privacy protection and model accuracy. In [83], the
authors propose a secure FL framework (SFAC) for UAV-assisted MCS to deal with the
security and privacy threats for UAV-assisted crowdsensing with FL. First, a blockchain-
based collaborative learning architecture is introduced for UAVs to promote efficient data
transmission and model training of UAVs in MCS. Next, they use blockchain technology to
replace the central server, a decentralized FL. mechanism is designed to securely exchange
local model updates, and drone contributions in collaborative training are recorded to
securely exchange local model updates and validate contributions without a central server.
Then, a privacy protection algorithm is designed to protect the privacy of the updated local
model by applying local difference privacy. The algorithm has ideal learning accuracy. In
the absence of actual knowledge of network parameters, the interactions between UAVs
(i.e., data owners) and task publishers are formulated as finite Markov decision processes
(MDPs), put forward a kind of based on a two-tier reinforcement learning (RL) of the
incentive mechanism to promote the high-quality model sharing of unmanned aerial vehi-
cle (UAV). It turns out that using the disturbance on the device enables the aggregation
precision and strict privacy protection required by UAVs. In addition, compared with exist-
ing schemes, SFAC can effectively incentivize high-quality local model sharing, enabling
optimal strategies and better practicability for participants.

6.1.2 Inference Attack Defense

An Inference attack requires the attacker to obtain the part of a FL user level above, and
to perform inference effectively to attack is successful. Then avoid performing effective
inference can be a defense against a way, it is need to strengthen the privacy protection
mechanisms, HE and DP and some other privacy protection technologies obtained a good
application here. For example, DP adopts a specific random algorithm to add appropriate
noise to the data to blur the data, so that even if the attacker gets the interactive data also
cannot deduce the original data effectively and reduce the risk of information disclosure. In
[7], the authors propose a privacy-enhanced FL scheme to protect gradients on untrusted
servers. Local gradients of participants are encrypted using the Paillier HE system. The
encrypted gradients can be further used for secure aggregation on the server-side, so that
untrusted servers can only know the updated and aggregated statistics of all participants,
while the private information of each user is well protected. In [36], the authors combine
HE with DP and propose an efficient FL protocol based on stochastic gradient descent. The
user adds noisy data to each local gradient and then encrypts it for optical performance
and security, preventing attackers from inferring the user’s privacy from local output (such
as gradients). In [50], in order to prevent attackers from identifying the data used to com-
pute gradients, the authors integrate DNN and control algorithm into FL, forming a new
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DNN (DgstNN). The goal of DgstNN is to minimize the classification error and maximize
the normalized distance between the gradient of the original data and the gradient of the
digested image. The loss function related to classification error is represented as classi-
fication loss, and the loss function related to normalized distance is represented as dis-
tance loss. Increasing the distance loss changes the gradient of the digested image so that
it is different from the gradient of the original image, thus preventing the opponent from
obtaining the gradient information of the original data. Minimizing distance loss can trans-
form digested images into images that humans and other learning models cannot recog-
nize. Even if an attack successfully recreates an image from a gradient, the result will be a
digested image that loses the visual features of the original image. In [51], the authors hold
that although DP can guarantee the privacy protection theoretically by noise processing of
the exchanged update vector and prevent inference attacks. However, the added noise is
proportional to the size of the model, and the quality of the model will become worse with
the addition of noise. Therefore, the authors propose the compressed sensing extended FL,
which includes two schemes: the first scheme FL-CS, which uses compressed sensing to
reduce communication bandwidth. The second scheme, FL-CS-DP, combines compressed
sensing and DP to protect user information. The results show that this scheme can not only
prevent users from inference attacks to reveal privacy, but also prevent the model accuracy
from decreasing. In [60], the authors design a security matrix decomposition framework in
FL environment, called dFedMF. First, they design a user-level distributed matrix decom-
position framework, when each user only uploads gradient information, not original pref-
erence data to the server, the model can be learned. Then they use the HE strengthens the
distributed matrix decomposition framework, as long as the HE system can guarantee that
ciphertext is indistinguishable for choose plaintext attack, there will not be any informa-
tion to the server. The results verify the feasibility of dFedMF, the system is safe for honest
but curious servers, and there is no loss of accuracy. In [84], the authors propose secure
learning, a general design of private FL system, which is an efficient and secure aggrega-
tion system that prevents powerful inference attacks by denying access to individual model
updates and hiding local models from aggregators. In [85], a new partition defense model
(PAMPAS) based on user devices and trusted edge servers is designed to resist the attacks
from GANS.

6.1.3 Model Attack Defense

Since the object of model attack is model, it is important to prevent model parameters and
hyperparameters from being stolen and other model information from being leaked. The
security aggregation algorithm and DP technology are effective defense methods, which
can not only effectively defend against inference attack, but also against model attack. In
[42], in order to resist model extraction attacks and model inversion attacks, the authors
design a FL application model supporting blockchain, based on which a data protection
aggregation scheme is formulated. Distributed K-means clustering based on DP and HE,
distributed random forest algorithm based on DP and distributed AdaBoost based on HE
are presented to realize multiple protection in data sharing and model sharing. In [45], the
authors propose a FL system called BlockFlow, which introduces the DP technology and a
new model contribution auditing mechanism to protect the data of a single agent, and uses
Ethereum smart contract to encourage good behavior. The results show that the system can
effectively prevent attackers from obtaining the information of the training dataset from
the model. In [47], the authors propose a privacy-protecting data publishing framework,
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FedGP, for federated generative privacy in a FL environment. The main idea is to train
the GANSs on the client to generate artificial data that can replace the real data of the cli-
ent. These generated samples can be used to evaluate and train machine learning models.
Since some clients may not have enough data to train a GAN locally, a federated GAN
model is trained. In this way, user data is always retained on the device. In addition, a
federated GAN will generate samples from a common cross-user distribution rather than
from a single user, increasing overall privacy. The generator components of the GAN are
trained by the FedAvg algorithm to extract private manual data samples and assess the risk
of information disclosure. By running a model inversion attack to assess the protection
provided, training using a federated GAN was demonstrated to reduce information leakage
(for example, face detection in recovered images was reduced from 25.5% to 1.2%). FedGP
can generate high-quality marker data and significantly reduce the vulnerability of learning
models to model inversion attacks. In [86], in order to deal with model inversion attack, the
authors propose a PSI protocol based on VFL, which adopts a hybrid encryption algorithm
(a method combining the symmetric secret key encryption). This protocol achieves a cer-
tain security goal, as long as the number of arbitrary malicious clients collusion is less than
a threshold, malicious clients and servers cannot obtain private information of any honest
clients, thus achieving the goal of protecting client privacy. In [87], the authors put forward
two methods to test whether the model parameters were damaged. One is to detect numeri-
cal differences between the parameters used. Comparing the i th parameter provided by
each participant, when there is a large gap between the values of the parameters provided
by one participant and those provided by other participants, determine this parameter to
be an exception. Another method is that the server performs the corresponding process-
ing using W = Wg; +f(6;) according to the parameter 6; uploaded by the client, and then
calculates W; = Wi + f(A) by using the parameters uploaded by other clients. Where
A= {(SJU =1,2,---,nj# i},fis the specific function designed. If the difference between
W, and W, exceeds a certain set value, it is inferred that the model update parameter is
abnormal.

6.1.4 Adversarial Attack Defense

According to the attack mode of adversarial attack, it can be observed that maliciously con-
structed adversarial samples submitted to the trained model will cause model classification
errors. According to its attack principle, it can be inferred that adversarial training for the
model can enhance the robustness of the model. The so-called adversarial training is to use the
training set containing adversarial samples and real samples for the training of FL. model, and
in the training process, the model learns the features of adversarial samples, so as to achieve
the role of defense. Another method is to detect the adversarial samples of malicious con-
structs. As long as the difference between the malicious adversarial samples and the normal
samples can be found, the adversarial sample can be detected and the adversarial attack can
be prevented. Preventing overfitting of the model is also a way to resist adversarial attacks. If
the degree of overfitting is too high, the generalization ability of the model will be weakened
and the possibility of successful adversarial attack will be increased. In [88], the authors find
that using small batch training data can effectively estimate the characteristics of test samples:
The estimated local intrinsic dimensionality (LID) of adversarial examples is significantly
higher than that of normal data examples, and this difference becomes more pronounced in
deeper layers of DNNs. In the experiment, five most advanced attack methods are used to
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generate adversarial examples, whose LID features can be easily distinguished from those of
normal examples, and the performance of the provided baseline classifier based on LID out-
performs several state-of-the-art detection measures by large margins in five attacks of three
benchmark datasets. The experiment proves that the detector based on simple LID is robust to
the normal attack based on low confidence optimization. In [89], the authors find that the neu-
ral network obtained by using regularized input gradients is robust to adversarial examples,
which improves the robustness of adversarial disturbances and prevents model overfitting. In
[90], the authors propose a new defense approach based on actual observations that is eas-
ily integrated into the model and can reinforce the common weakness of the deep network,
smoothing the decision function, without knowing the type of attack used to make adversarial
examples. When the model uses the proposed defense, the disturbance required for misclas-
sification is much greater, making the attack detectable, and the detection more stable and less
likely to be fooled by the adversarial samples. Experiments show that this method is effective
against multiple attacks, which brings almost no cost to the training process, and maintains the
predictive performance of the original model against clean samples, which is performed better
than the most advanced defense methods. In [91], the authors introduce a defense mechanism
called defensive distillation to reduce the effectiveness of adversarial samples. They investi-
gate the extensibility and robustness conferred by the use of defensive distillation when train-
ing DNNGs. It shows that defensive distillation can reduce the effectiveness of sample genera-
tion from 95% to less than 0.5% on the DNN studied. This tremendous achievement can be
explained by the fact that distillation results in a 1030-fold reduction in the gradient used for
the creation of adversarial samples.
To sum up, the security challenge defense of FL is summarized, as shown in Table 7.

6.2 Privacy Protection Technology

Numerous technologies have been proposed to address privacy-related issues in FL at the pre-
sent time. Commonly used privacy protection technology can be divided into four categories,
namely the DP, the SMC, the HE and the VSS technology. Each technique is explained in
detail below and the approach proposed under each technique is discussed.

6.2.1 Differential Privacy

DP technology is mainly used to add random noise to datasets so that attackers cannot infer
sensitive information about users even if they know the results posted by users. And accord-
ingly, the addition of noise will also cause the quality loss of statistical data, resulting in the
decline of the accuracy of the learning model. However, compared with the privacy protec-
tion ability of DP technology, its loss is insignificant. Even so, when dealing with the privacy
threat of FL, DP is generally combined with other technologies to ensure user privacy security
and avoid a decrease in model accuracy. DP can be used in cases where an attack steals private
data from one party during training, or attempts to reconstruct the training set based on the
generated gradient. A model calculation is considered differential private if the output is inde-
pendent of a particular data point of the input data.

DP technology [92] can be expressed as the following algorithm: a random algorithm
M : D — R satisfies (g, 6) -differential privacy, if and only if, for any adjacent dataset d with
only one data difference, d € D and any output S C R, satisfies Eq. 14.

PriM(d) € S] < e PriM(d) € S| + 6 (14)
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In Equation (14), M(d) and M(d) respectively represent the output of algorithm M on data-
sets d and d'. Pr is the output probability of the algorithm. ¢ is the privacy budget, which is
used to control the privacy protection level. The smaller € is, the stronger the privacy pro-
tection capability is. 6 is another privacy budget, representing the probability that the toler-
able privacy budget exceeds €. If 6 is equal to 0, M is said to satisfy € -differential privacy.

In [42], the authors design distributed K-means clustering based on DP and HE, distrib-
uted random forest based on DP and distributed AdaBoost based on HE, realizing multiple
protection in data sharing and model sharing. In [43], the authors design an improved GAN
model named DP-GAN, which has one more perceptron: DP identifier compared with tra-
ditional GAN. Differential noise is generated by two games running at the same time: the
game between the classic generator and the discriminator and the game between the dis-
criminator and the DP identifier. The data generated by the improved GAN model can meet
the requirements of data protection and approximate the original data to the best degree. In
[46], in order to make DP play a better role in FL, the FL. model has better practicability
and privacy protection ability. The authors propose a method combining local gradient per-
turbation, security aggregation and zero-concentrated DP (zCDP). First, in order to protect
shared model updates, each client is required to perturb its gradient in each local iteration
to ensure that shared model updates before aggregation are differential private. Because of
the combination of periodic averaging and client sampling, gradient perturbation produces
some noise to model updates and results in low model utility. Therefore, a secure aggrega-
tion protocol with low communication overhead is integrated to reduce the increased noise,
while zCDP is used to tightly capture the end-to-end privacy loss, which can add less noise
with the same DP guarantee. In [59], the authors make a theoretical analysis of the perfor-
mance of FL algorithm based on DP, and study the convergence performance of FL with
noise disturbance at the inherent privacy level. They propose a new framework based on
DP that adds artificial noise to the client parameters before aggregation, i.e., noising before
model aggregation FL. (NbAFL). By adapting to different artificial noise variances, NbAFL
can satisfy DP under different protection levels. Then, the theoretical convergence bound
of the loss function of the FL. model after NbAFL training is established, which proves
that there is a tradeoff between convergence performance and privacy protection level: the
better the convergence performance, the lower the protection level. In [93], the authors pro-
pose a differentially private asynchronous FL scheme (DP-AFL) to solve the privacy prob-
lem of mobile edge computing (MFC) in Urban Informatics. In order to protect the privacy
of the updated local model, this scheme will incorporate local DP into the gradient descent
local training process, and then add it to FL.

6.2.2 Homomorphic Encryption

HE generally encrypts the gradient uploaded by the user during FL [94]. The gradient after
HE is a bunch of random numbers, and the attacker cannot deduce any valuable informa-
tion from the random numbers without the key.

HE allows users to perform operations directly on the ciphertext, and the results
obtained from the operations are still ciphertext. The results obtained after decryption are
consistent with the results of the original data (plaintext) directly performing various cal-
culations [95]. The HE scheme satisfies Eq. 15.

Dec(kg, Enc(k,, ml)QEnc(kp, m,)) = m omn, (15)
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In Equation (15), m, and m, are plaintext, kg is a private key and k,, is a public key. Enc(x, *)
is an encryption operation, Dec(x, *) is a decryption operation, o is an operation in plain-
text field, <) is an operation in ciphertext field.

According to the types and times of ciphertext operations supported, HE can be divided
into: Partially HE (PHE), Somewhat HE (SHE) and Fully HE (FHE) [96].

PHE only supports addition and multiplication, and the number of operations is not
limited, so it can be divided into Additive HE (AHE) and Multiplicative HE (MHE). For
example, the Paillier scheme belongs to AHE, and the EI-Gamal scheme belongs to MHE.
SHE supports only a limited number of addition and multiplication operations. FHE sup-
ports arbitrary operation on ciphertext and the number of operations is unlimited.

In [35], in order to solve the problem of no correlation between data caused by "iso-
lated data island" and data and data features cannot be shared with other data, the authors
construct a FL system based on distributed encryption matrix decomposition. Firstly,
a framework based on user distributed matrix decomposition is established. In order to
increase data privacy protection, HE is added to perform FL based on distributed matrix
decomposition. The scheme allows each user to encrypt gradients as they transmit their
local gradients, avoiding gradients being acquired or maliciously tampered with during
transmission. Because the process does not need a third encryption service provider, it also
avoids data leakage caused by third parties. For normal HE schemes, the server is set up
to hold the key, which can lead to a serious problem, i.e. if the server does not aggregate
before decrypting, the server has access to the user’s updates. To solve this problem, in
[38], the authors propose a privacy-protected federated extreme gradient boosting scheme
(FEDXGB), which is a federated extreme gradient boosting (XGBoost) scheme support-
ing forced aggregation for moving crowd perception. A new secure gradient aggregation
algorithm for FL is designed, which combines the advantages of HE and VSS. Specifi-
cally, through a combination of HE and VSS, FEDXGB ensures that the central server does
not get the correct decryption results before performing aggregation, while being robust
against user loss. The results show that FEDXGB keeps the high performance of XGBoost
with less than 1% accuracy loss. FEDXGB makes the performance loss of trained XGBoost
negligible, reduces about 23.9% running time and 33.3% communication cost in gradient
aggregation, and reduces the computing and communication cost of secure aggregation.

6.2.3 Secure Multi-party Computation

SMC technology can reduce the possibility of information leakage by integrating model
gradient updates. SMC in each random encryption when using, do not reuse the encrypted
data, need operation on encrypted data directly, don’t need to restore the original data,
determine the participants before each calculation. In the place where input is not shared,
multiple participants aggregate the data by using encryption techniques such as the HE, the
secret sharing protocols, and the oblivious transfer protocol. These methods only protect
the privacy of training data in the learning process, but cannot prevent inference attacks on
the result model [97].

The formal description of SMC is as follows: Assuming that there are m participants
P,,P,,---, P, and they have their own dataset d,,d,, -+, d,,, how to safely calculate a con-
vention function y = (d,.,d,, -+, d,,) without trusting a third party, and at the same time,
each participant is required not to get any input information from other participants except
the calculation result [98]. SMC has the characteristics of input independence, computa-
tional correctness, and decentralization. The basic cryptographic protocols of SMC include
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Oblivious Transfer (OT) protocol, Garbled Circuits (GC) and Secret Sharing (SS) protocol,
Goldreich-Micali-Wigderson protocol (GMW) protocol, etc.

In [99], the authors argue that the use of DP in the presence of a large number of clients
leads to a decrease in model accuracy. In order to solve this problem, a method of integrat-
ing SMC into DP is proposed. The results show that this method reduces the impact of
noise injection when the number of customers increases, while maintaining some robust-
ness. In [100], the authors propose a SMC protocol for a FL framework called security
aggregation. Security aggregation utilizes a variety of encryption techniques to prevent the
parameter server from acquiring the original client’s local updates. The proposed protocol
would protect the FL framework from honest but curious attackers and disclose the sum
of model parameter updates to the server only after a certain number of updates have been
made. The protocol consists of four rounds of operations, each round of which the server
collects messages from all clients and computes a separate response to those messages to
send to each client. In the first two rounds (preparation stage), secret sharing is initiated.
In the third round (submit stage), each client submits encrypted mask model updates to
the server, which stacks them up. In the final round (the final stage), the clients expose the
encryption secret, enabling the server to expose the aggregated model updates.

6.2.4 Verifiable Secret Sharing

VSS is used to protect important information on clients and prevent information loss, dam-
age, and tampering. In FL, attack may monitor user and task publishers communications
to intercept the gradient information or honest and curious task publishers get user’s local
gradient. VSS uses encrypted sharing to process gradient information uploaded by users to
ensure that malicious servers cannot obtain gradient information, reach the role of defense.

VSS includes three parts: client, distributor and secret. The idea is to split secret infor-
mation into n fragments in an appropriate way, and each fragment after splitting is managed
by n different clients. A threshold ¢ is set, and the secret information cannot be recovered
when the attacker has any less than 7 fragments. The secret message can be recovered only
when the number of fragments is equal to or greater than 7 [101]. A typical VSS scheme is
constructed based on a polynomial method, which can be divided into two steps: generat-
ing and distributing the key and decrypting the key. Equation 16 shows the expression of
the key generation method.

t—1

yi=K+ Zaixj mod p (16)

i=1

In Equation (16), K is the secret, 7 is the threshold of SS, g; is the coefficient of the polyno-
mial, and modulus p is set for safe calculation (making decryption difficult).

Then solve the linear equations according to the key provided by ¢ participants, and
solve the polynomial coefficients and secret K.

In [100], the authors design a secure aggregation scheme based on Shamir secret shar-
ing to ensure that learning models update parameters securely in the face of honest but
curious servers, while controlling the complexity of secret sharing protocols and keeping
computing and communication costs low in large datasets. In [102], the authors propose a
VFL algorithm based on logistic regression. After the server realizes secret sample align-
ment, the intermediate results are calculated according to the aligned samples. Then the
server generates public and private key pairs, encrypts approximate losses and intermedi-
ate results, and obtains the encryption gradient through local training. Since the server is
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honest but curious, random masks need to be generated to prevent the server from infering
the user’s private information based on the original gradient. With the help of the third
party, this method ensures privacy security by means of encryption method, and reduces
the cost of encryption calculation by approximate loss function.

In summary, the technologies to address FL privacy challenges are summarized, as
shown in Table 8.

7 Future Research Direction

In this section, we will discuss some future research directions, classified according to
corresponding high-level challenges, which will be useful for future work and research.
Based on the classifications and solutions discussed above, we identify a set of criteria for
future solutions that will serve as a reference for scholars and developers studying ways to
improve security and privacy in future FL systems.

7.1 Suggestions for Security Challenges

In the environment of FL, most security solutions only consider attacks executed in a sin-
gle direction, ignoring more complex attack scenarios. From this perspective, an attacker
can formulate a joint attack plan and consider more complex attack scenarios to counter
the existing security defense mechanism. For example, an attack can involve multiple cli-
ent devices to execute, multiple attack methods attack the specified target synchronously,
malicious clients collude with servers (such as sharing private keys) to attack other honest
users. Security solutions tailored to a single attack cannot easily adapt to collusive attacks.
The security analysis of the security matrix decomposition proposed in [60] shows that
using a typical HFL security definition, assuming honest clients and honest but curious
servers, such a security definition is weak. Malicious clients may collude with the server to
attack other users, revealing the privacy of honest users, and may cause backdoor attacks,
causing security problems.

In order to design efficient and safe security defense schemes, several defense criteria
are drawn up below. When dealing with security challenges of FL, defense schemes can be
designed based on the following criteria, as shown in Table 9.

7.2 Suggestions for Security Challenges

The privacy protection scheme in FL is designed to be universal for client devices and
data samples in all scenarios. However, in practice, data samples in different situations and
even data samples on a single device are often different, so the universal privacy protection
scheme cannot achieve the expected effect in practice. Therefore, special privacy protec-
tion schemes can be designed to protect customer privacy in specific situations, which can
be combined with universal privacy protection schemes. Privacy protection for FL. should
also consider the loss to FL systems when using a range of encryption methods, especially
DP. From the perspective of security challenge, the attacker’s attack on FL system not
only causes security risks but also risks of privacy disclosure. In addition, software and
hardware, which have nothing to do with the FL system itself, should also be taken into
account.
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Table 9 Summary of technologies that address federated learning privacy challenges

Sequence Number Criteria

Criteria 1 Consider a security definition that assumes the server is honest but curious and has a
small number of malicious clients

Criteria 2 Ensure that customers are using their data honestly and not falsifying data to participate
in local model training

Criteria 3 Consider the collusion of multiple malicious clients and the collusion of servers with
malicious clients to disrupt the training model

Criteria 4 Consider the performance loss of the model caused by participants getting off at any
time during model training

Criteria 5 Focus on adaptive attackers who evade detection by adaptive limiting malicious attacks
and reducing attack effects

Criteria 6 Consider the impact on the accuracy of the global model for FL when implementing
the formulated security solution

Criteria 7 Consider customer privacy breaches when implementing a security solution, such as in
the process of accessing customer training data to determine if a customer is engaged
in suspicious behavior

Criteria 8 Consider the trade-offs of security solutions in system security, privacy protection, and
model effectiveness

In order to design efficient and safe privacy defense schemes, several defense criteria
are drawn up below. When dealing with privacy challenges of FL, defense schemes can be
designed based on the following criteria, as shown in Table 10.

In addressing the security and the privacy challenges of FL, in addition to consider-
ing traditional defense approaches and implementing the above defense criteria, integrating
other technologies with FL to propose more FL architecture is an attractive defense solu-
tion. For example, blockchain can provide high security for FL training through immutable

Table 10 Summary of technologies that address federated learning privacy challenges

Sequence Number Criteria

Criteria 1 Considering the problem that DP noise injection reduces the model accuracy

Criteria 2 Consider the trade-off between encryption schemes and communication efficiency

Criteria 3 When active and passive attacks are performing additional local computing, consider
privacy and communication problems caused by them

Criteria 4 Consider the quality of the participants and the possibility of privacy leakage caused by
communication patterns between the parties

Criteria 5 Develop an adaptive privacy protection scheme to ensure a certain degree of privacy
protection

Criteria 6 Consider the privacy issues caused by the security of hardware and software itself

Criteria 7 Considering active and passive inference attack, because most research only considers

how to counter passive inference attack

Criteria 8 Design a hybrid privacy protection scheme, combine the advantages of different
privacy protection technologies, and find the trade-offs between the advantages and
disadvantages brought by them

Criteria 9 Consider switching from designing a universal privacy protection scheme to a design-
specific privacy protection scheme
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block ledgers. By utilizing blockchain, FL can execute a decentralized data ledger where
each device can act as a client with equal rights, eliminating the need for a central server
[103] and reducing the risk of a single point of failure. In particular, the integration of FL
and blockchain creates a new paradigm called FLchain that guarantees the safety of learn-
ing updated information in the form of immutable blocks through the use of blockchain
[104]. In FLchain, an adversary can attempt to manipulate the training output by training
the local model with forged data of the design and replacing the global model before updat-
ing the transmission. By adjusting the difficulty level of blockchain mining, the likelihood
of poisoning attacks on training data can be reduced without degrading training perfor-
mance [105]. Driven by the unique advantages of blockchain, another blockchain-based FL
architecture called PriModChain is introduced in [106]. DP is applied to locally generated
models with artificial noise to reduce the possibility of identifying personal records. By
using smart contracts, communication between the central authorsity and distributed users
exchanging global ML models is secured, which facilitates update validation protocol and
provides transparency for FL updates. This function forcibly performs unbiased and error-
cost data operations to enhance the security and reliability of FL processes under external
data threats. In addition, the use of blockchain introduces additional delays associated with
block mining, which creates new challenges for FL systems as FL customers need to wait
for the mining process to complete before receiving model updates and executing the next
round of training [107].

8 Conclusion

The distributed learning mode of FL makes it unnecessary for users to upload original data
to the server. The proposed learning mode alleviates the inevitable privacy security prob-
lems in the era of big data and becomes an indispensable technology to protect privacy.
Since FL is the product of machine learning, its system still has inherent security problems
and derived privacy problems. This paper expounds the security and privacy threats of FL
from the angle of attack and defense. First, a detailed investigation of the existing survey of
security and privacy protection of FL is carried out, and our survey is compared with exist-
ing related surveys to highlight the unique contribution of our survey. Secondly, it intro-
duces the related knowledge of FL and makes a comprehensive analysis of three scenarios
of FL. Later, it illustrates various specific threats to the security and privacy protection of
FL in the form of tables, and gives the corresponding solutions. Then it classifies the secu-
rity challenges according to the collected related threats of FL and illustrates the classifica-
tion by combining pictures and examples. Next, security defense methods and privacy pro-
tection technologies are proposed to address the challenges of FL. Finally, by considering
the drawbacks in existing attack and defense methods, we make some suggestions on how
to propose much more excellent privacy protection and secure schemes in FL, and develop
a set of criteria against malicious attacks and privacy leakage, hoping it can be useful for
the relevant researchers and developers when planning their own defense schemes.
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