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Abstract
Technological developments in semiconductors have created previously unheard-of 
chances for creativity, but they have also increased the danger of hardware Trojans, which 
are malevolent modifications introduced into integrated circuits (ICs) during the design 
or production phases. This research review addresses the changing landscape of threats 
and responses by examining the most recent advancements and trends in hardware trojan 
detection and prevention approaches. Proactive protections against Trojan insertion 
and dissemination include methods like cryptographic primitives, trust verification 
protocols, and hardware obfuscation. The field of detection approaches has expanded to 
include a multi-layered approach that integrates emerging technologies like artificial 
intelligence and machine learning with more established methods like testing and design-
time analysis. Furthermore, it is possible to improve resistance to Trojan assaults while 
reducing performance overhead by incorporating hardware security features like physically 
unclonable functions and secure compartments directly into the IC architecture. Moreover, 
various prevention algorithms, detecting challenges and effects of the HT in recent 
applications are summarized with its solutions.

Keywords Hardware Trojan · Trust of the circuit · Formal verification · Trojan detection · 
Split manufacturing · Hardware Trojan prevention

1 Introduction

Electronic devices have gained popularity among all users due to the latest developments in 
chip technology, social networking, and security measures. In addition to their usefulness 
for information sharing, these electronic devices have certain disadvantages. Nevertheless, 
they are nevertheless crucial in modern life. Internal memory on most modern devices is 
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quite substantial. Passwords, account numbers, pin numbers, banking information, and 
other user files can be stored on it. When HTs are inserted into the device, it becomes 
easy to share this sensitive information with others [1]. HT is defined as a destructive 
modification that causes the circuit to perform wrongly. Because the hardware Trojan is 
deployed at the device’s most basic level, it poses a serious threat as long as the device is 
in use. Malware or dubious software that is installed on hardware is typically referred to 
be HT. The circuits’ behavior can be altered by this type of HT [2]. Additionally, it can be 
infused throughout the fabrication and design phases.

HT modifies the functionality of an affected IC by bypassing the IC’s hardware or 
software security protections. Modifications to the IC can have several unintended 
consequences, including the loss of important and sensitive information, DoS attacks, and 
undetected service degradation that leads to system failure. Backdoor access to a system 
can also be provided by hardware Trojans, in which high-level software collaborates 
with the hardware Trojan to gain access to and disable highly secure systems [3]. Circuit 
functionality can be changed through the HT structure. When HT is activated, it results in 
erroneous activity (by changing the 1 to 0). Trigger circuits are typically used to mimic the 
HT activation process. Payload is the result of alterations, such as (i) DoS attacks.: HT will 
make the circuit, no longer capable to function correctly, so it does not process the function 
properly (ii) Reduce reliability: hackers can implement HT codes or programs in the system 
to reduce the reliability and degrade the system performance and HT consumes high power 
and if it is battery application, it will quickly discharging and stop the circuit operation, 
(iii) changing the function: Trojans changes, insert and remove the original circuit function 
[4]. In rocket launching towards a specific target, it can change and set the wrong target 
destination. And it leads to improper operation of the circuit. (iv) Leakage of information: 
mainly HT designed for revealing the secret key or text through primary output signals.

Broadly, a trojan is groped into hardware and software Trojans. HT resides in the 
hardware components of the IC; during the process, it will be activated and once the IC 
is manufactured, HT cannot be eliminated [5]. The Software Trojan (ST) is a malware 
program that uses malicious code to gain special access to the operating system, with the 
potential to steal data or harm the host computer (for example, erasing or destroying data). 
ST Attacks can usually be cured by running counterattacks, Trojan horse programs, and 
monitoring and deleting Trojans [6]. The hardware Trojan is to inject into the IC before 
manufacturing. In ST, it is almost impossible to remove hardware Trojans after the chip is 
manufactured, it can be very difficult to Remedy in on-site operation. In ST firmware attack 
is a major role here some of the firmware-based HTs are discussed [7]. Hackers can easily 
inject malware into the firmware of the system to steal sensitive data or take control of the 
entire controller. Several forms of firmware attacks could occur, including the following:

(a) Maliciously designed input: An attacker could leverage buffer overflows to implant 
malware using this method. (b) Privilege escalation: An attacker uses System Management 
Mode (SMM) code injection to bypass security functions, (c) Data tampering: occurs when 
an attacker alters UEFI variables (Secure Boot, Configuration, etc.). (d) unauthorized 
access to sensitive information: contents of the System Management Random Access 
Memory (SMRAM) were revealed, (e) Data leakage: SMM-based malware; "secrets" 
stored in memory. (f). Denial of Service: The system is "bricked" due to serial peripheral 
interface (SPI) flash corruption.

To protect against data spillage caused by hardware Trojans, [8] devised a hardware iso-
lation-based security method shown in Table 1. The secure application processor allowed 
them to catch stolen secret information in a safe isolated environment, which they were able 
to do, preventing data leakage from a hacked system. They demonstrated low overhead and 
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effectiveness of the suggested method. The Xilinx-FPGA ZYNQ: 7000 SoC incorporates 
both the information leak hardware Trojan and hardware isolating protection. The bound-
ary-scan technique was used to examine connections between different chips that support 
the JTAG (Joint Test Action Group) interface. Interconnecting the device through JTAG 
signal lines creates a boundary scan path inside the board. The multifunctional memory 
cell is the boundary scan cell (Figs. 1 and 2).

Deyati et al. [9]., devised an approach for detecting that works in conjunction with the 
existing pipeline scan chain testing system or JTAG boundary scan. Regarding both area 
and power, incorporating a Trojan approach for detecting into the scan chain has fewer 
effects. To detect the propagation of pulses through logic gates, a high-resolution current 
sensing technique was proposed. A single sensor can detect pulses in a variety of locations. 
To use end-to-end solutions for hardware Trojans, with reduced area overhead, the full 
concept of pulse-based Trojan detection was already incorporated further into the JTAG 
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Fig. 1  Structure of hardware trojan
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boundary scan technique. Different approaches for detecting by using JTAG boundary 
scan testing. HT can be applied at the system level in integrated circuits (ICs), including 
tiny latency defect and transition error testing [10, 11]. Boundary-scan testing methods 
are beneficial for sensitive data nets that cannot be checked using in-circuit test devices or 
probe pads; the boundary scan testing methods are useful. For example, to evaluate if there 
is an open issue on a trace connecting two integrated circuits with boundary scan (BS) 
capabilities, BS testing can be conducted. The PCI-Express device specification specifies a 
boundary scan implementation for devices that comply, which could be employed to assure 
that any connected compliance devices are authenticated and reliable [12].

Furthermore, although external JTAG connection to the gadget is prohibited prior 
to deployment, the microprocessor or microcontroller may include self-verification 
operated methods that rely on such BS monitoring to ascertain whether field tampering 
is acknowledged [13, 14]. In recent applications, hardware Trojans have caused major 
effects. Recently Dong et al. [15], discussed smart gadgets, robotics, and self-driving cars 
that rely on SoC devices in the internet of things (IoT) simply cannot function without the 
use of sensors to detect sense operations. They will also endanger particular equipment 
on the linked network if they have holes in their HT security. Especially chips on radars 
that monitor the atmosphere with comparable flaws cause the same degradation [16, 17]. 
To get the authorization to modify the data. To gain unauthorized access to memory, an 
HT assault on the printed circuit boards (PCB), the JTAG interface, and the data bus are 
all that is required [18]. On network on chip (NoC), there existed a type of HT capable 
of delivering bandwidth denial of service (DoS) attacks. Communication was hindered, 
application performance was reduced, and system reliability was harmed as a result of this 
attack [19].

In a wireless network, HTs: Indeed, following more than a decade of investigation, 
digital IC defense and preservation technologies have advanced and proven to be successful 
[20]. Electronic gadgets are highly dependent on wireless connection technologies, these 
provide HTs additional chances to launch attacks and put up fresh barriers. HTs mitigation 
in internet connections will be a crucial task in the future. HTs in wireless encryption 
circuits were examined by Jin et al. [21]. To provide an instruction or disclose information, 
the HT must add format to the signal before it can be communicated. Advanced 
statistical analysis of several parameters of operation (amplitude, frequency, phase, etc.) 
was combined by the author, statistical techniques to find Malware in the test circuitry 
efficiently. A successful assault is impossible to carry out because the attacker has no idea 
what the designer would look at. Created a simulation of two different classification of HTs 
found in RF pulse generators as well as power amplifiers. The keys in the wireless network 
will be revealed by these HTs. On the output/input of both HTs are P-MOS transistors. 
Transistor P-MOS is activated once the key bit is set to 0, and deactivated whenever the 
key bit is set to 1. The HTs don’t interfere with the regular circuit’s functionality and only 
slightly alter the original circuit. He et al., worked on a memristor-oriented HT for the HT 
catcher technology was created with the help of artificial intelligence (AI)-chip, which is 
related to side-channel analysis, and decreases feature calculation memory overhead by at 
least a quarter [22]. This paper deals with various HT Detection methods like pre-silicon, 
post-silicon-based detection, formal verification, and optical detection. Also, discussed 
the HT prevention techniques like hardware obfuscation, physically unclonable function, 
split manufacturing, and trust of design. In prevention technique, utilization of layout 
filling effectively achieved in SCA-based hardware (design) obfuscation is discussed. 
Moreover, various prevention algorithms, detecting challenges and effects of the HT in the 
recent application are summarized with its solutions. The rest of the paper is organized, as 
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follows. Section 2, discussed classifications of trojan detection techniques, and their metrics 
are summarized from the literature. In Sect.  3, expands various prevention measures for 
HT. Section 4. Suggested the different HT prevention algorithms. Section 5 highlights the 
challenges and future scopes, and it concludes in Sect. 6.

2  Classifications of Trojan Detection Techniques

Among various HT classifications, only the primary varieties of formal verification, 
optical detection, post-silicon-based HT detection, and pre-silicon-based HT detection are 
examined.

2.1  Pre‑silicon HT Identification

The pre-silicon identification is the process of identifying HTs that are placed in by IP 
cores or inserted by EDA tools [23], in pre-silicon identification, netlist, domain, RTL 
code, and other objects are employed. Generally, hardware hackers introduce Trojans into 
the design to add to their undesired behavior. And updating firmware-based can’t elim-
inate Trojans. This technique depends mainly on rare activating nets, process variation, 
and noises. This technique is divided into two types. (i) Monitoring the runtime activity 
method and (ii) Auxiliary method. Figure 3 shows the important two categories under pre-
silicon HT identification.

2.1.1  Method for Observing Runtime Activities

It can monitor anomalous behavior and operate during run-time activity; it is a non-
destructive method. matching the response to the conventional golden circuit. If the 
authentication is done during test time, identify the HT at all times (logic testing and 
side-channel testing are two examples). Examine the style, device structure, and objects 
on a regular basis when doing this procedure. This straightforward idea makes it easy to 
recognize the HT’s activity. The process-oriented HT will be identified in its entirety using 
the IC. Furthermore, the identifying answer is not one-time. For all kinds of HT activities, 
the disadvantage is a little complicated [5, 24]. Khalid et al. proposed using the traditional 
checking approach to identify the HT. It increases the test time overhead by five to thirty 
times while consuming less space [25].

Pre-silicon
Nature

Method for observing 

runtime activities

Additional/ auxiliary 

method

Fig. 3  Classification of Pre-silicon based HT
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Machine Learning (ML) focused detection is one method that could be able to get 
beyond these restrictions. In comparison to formal inspection techniques, machine 
learning (ML) algorithms could be trained to identify patterns linked to hardware Trojans, 
potentially providing a more effective and scalable solution. A large number of known HT 
cases are analyzed so that ML models can be trained to spot minute changes in hardware 
performance that might point to the existence of a Trojan. In comparison to formal 
checking techniques, ML-based detection systems may be more flexible to various HT 
activities, scalable, and possibly less resource-intensive. Furthermore, ML models are able 
to updated and trained on a regular basis to accommodate new dangers related to HT.

A multi-scale detection model was put into practice by Pengcheng Ma et  al. for 
automated feature extraction. Two methods are offered by the MHT text model to balance 
computation requirements and accuracy. The MHTtext model exhibits excellent stability, 
flexibility, and accuracy overall, the findings for the standard netlists, where one of the 
TextCNN’s stability efficiency index coefficients scores first with a total rating of 71.21 in 
all comparing classifiers, and the average accuracy (ACC) in the entire strategy is as high 
as 99.26% [26].

K. Hasegawa et  al. developed a maximum single output sub-module and algorithm 
for partition oriented identification of HT and diagnosis technique for gate-level netlists 
(GLNs) based on ML and graph theory (GT). Increased HT diagnostic accuracy by the use 
of the breadth-first comparison (BFC) implant node search technique. The Junjie Wang 
team conducted studies on HT identification and diagnosis using Trust-Hub examples, with 
the assistance of the previously indicated methodologies. According to the experimental 
data, the TNR exceeded 37%, the F1 values over 97%, and the TPR exceeded 95%. With 
this approach, the TNR for GLHTs is increased to 25%, the TPR for GLHT diagnosis is 
continuously higher than 93%, and the TNR is 100% [27]. In order to prevent unwanted 
access by third parties in the system-on-chip and network-on-chip, Hussain et al. introduced 
a designer authentication technique [28]. Bao et  al. [29] explained their method of 
in-network on the chip level, the HT has injected a tag in a packet in the transmission part, 
and the receiving part of the packet is verified with the standard reference with the original 
tag. In case it’s modified. It is considered like Trojan affected packet. The temperature of 
the IC is monitored by an extended Kalman filter-based identifies the thermal effects.

2.1.2  Auxiliary Method

By using this strategy, side-channel and logical testing methods become more accurate. 
The output response is contrasted with the circuits that are HT-affected and HT-not-
affected [30]. Salmani et  al., introduced a virtual scanning-based triggering approach. 
Initially, HT identification is tough during the probability of rare activation [31]. According 
to Zhang et al., there is a high likelihood of transition and a high probability of activating 
when dealing with the virtual scanning idea. With a shorter activation period, this method 
provides superior identification. HT in the design domain is identified using the recently 
suggested hardware trustworthiness and verification paradigm [32]. In most cases, HT is 
activated by input triggers and is not susceptible to triggering input signals. In this case, 
the HT is identified by evaluating the modules as part of the verification procedure [33]. 
Utilizing electron microscopy scanning, Courbon et  al. proposed a method for detecting 
a single layer in a chip. Here, the conventional version of the circuit is compared, and 
it is then determined which has been altered in terms of location, routing, area, or any 
other way, as well as any additions or changes to the internal circuit design. Here, contrast 
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the images based on SEM with the HT. This one has the benefit of precisely identifying 
the HT, but it also has the disadvantage of being more expensive [34]. The important 
parameters are reviewed in Table  1. Table  2 suggests in order identifying HT based on 
good detection, smaller area, powerhead, and external factor influence, pre-silicon (run 
time monitoring) is preferable.

2.2  Post‑silicon HT Identification

Conventional pre-silicon detection techniques have a number of flaws. Because many pre-
silicon detection techniques require prior Trojan knowledge used to identify Trojans with 
a specific structure or intent. Formal verification and functional simulation can only dis-
cover Trojans with precise behavior. There are substantial limits to logic testing and other 
post-silicon detection approaches that require the Trojan to be activated for detection. It 
is challenging to turn on the malware in physical detection because there aren’t any Tro-
jan triggering events. Post-silicon detection is the identification of HTs inserted during 
the manufacturing and assembly phases. Post-silicon identification is utilized for identify 
actual IC produced by untrustworthy manufacturers [38], Fig. 4 depicts the three types of 
post-silicon HT detection; there are method of side channel processes, logical testing, and 
reverse engineering.

Side-channel process-based Trojan identification is a popular post-silicon method [34].

2.2.1  Side Channel Techniques

In side-channel signal analysis, the HT affected in the chip (or) IC can modify the char-
acteristics of power consumption. Trojan’s partial activation can be incredibly useful for 
power analysis. Side-channel Trojan identification focuses on observing the Trojan effects 
in the physical side-channel parameters like leakage current. Switching current, tempera-
ture, path delay, timing information, electromagnetic emission (EM), and power consump-
tion are shown in Fig. 5.

Due to process variation, detection is extremely challenging to identify the Trojans. 
Through side-channel assessment, various side-channel analysis parameters, including 
voltage (V), temperature (T), and path latency (Pd), are compared between our experimen-
tal IC and the standard IC [1]. It is susceptible to noise from processes. Very easy to cre-
ate test patterns and highly appropriate for large Trojans; nevertheless, ultra-small Trojan 
identification is more challenging and has more fault coverage [5]. It is figuring out if HT 
has an impact on the experimental IC or not. Discussed the side-channel signal analysis 
approach and conclude the hardware overhead and circuit design remain unchanged [39]. 
Additionally, a frequent term in VLSI is "side-channel assessment signal identification," 
which also refers to a different method of inspecting the design in terms of side-channel 
signal parameter features. By comparing the delay of an experimental circuit with a com-
mon reference circuit model, the result can be obtained with ease. The easiest and fastest 
way to program or code is to use a path delay-based strategy. A novel side-channel sig-
nal assessment identification method that relies on the path delay has been proposed [40]. 
This idea combines the design and latch structure. Moreover, the latch structure makes it 
simple to see every scenario in which an HT could be inserted. Furthermore, this method 
compensates for the inferior performance of side-channel signal analysis by eliminating 
the impacts of noise. Proposed the location of HT based on thermal imaging analysis [41]. 
In cases where the gate count is fewer than 20, it is typically utilized to determine the HT. 
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Here, the thermal variations of the HT in the redundancy thermal map define the activity 
factor. Side-channel identification via electromagnetic means is extremely precise if the 
gate count falls between ten and one hundred.

2.2.2  Logical Testing Techniques

Logical testing is employed to create any number of test vector data in order for stimulate 
the hardware Trojan under unexpected activation situations [1]. Although it is challenging 
to create test patterns and resistant to process noise, logical testing is appropriate for 
ultra-small Trojans. For larger Trojans, however, fault coverage is reduced and Trojan 
identification is challenging but straightforward to distinguish [5].

Logical testing combined with side-channel approaches can improve fault coverage. 
Due to the modest number of test patterns utilized, this method may work well for 
smaller circuits but may not scale well for bigger ones, which could allow Trojans to 
evade detection. In order to remedy this, scientists should concentrate on creating more 
thorough test patterns that encompass a larger spectrum of plausible Trojan behaviors. 
This might be accomplished by integrating machine learning techniques to produce tests 
that are more effective and diverse. Increasing fault coverage in hardware Trojan detection 
entails a number of techniques meant to improve the system’s detection capabilities. Utilize 
a variety of test vectors in your testing to cover as many potential Trojan behaviors and 
activation scenarios as feasible.Functional and structural tests ought to be incorporated into 
these vectors in order to identify anomalies at various abstraction levels. Furthermore, by 

Logical testing 
techniques

Post-silicon 
Nature

Method of 
side channel 

processes

Reverse 
engineering

Fig. 4  Classification of Post-silicon based HT
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Temperature Switching 
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learning from previous occurrences and especially adapting to new attack vectors, improved 
stochastic testing, Security-Oriented testing, side-channel analysis, formal verification, 
runtime monitoring, and machine learning can improve the detection capabilities.

With the use of sophisticated testing approaches, Huang et al. presented a novel way to 
improve fault coverage in hardware Trojan detection. Suggested combining transition delay 
fault testing with path delay testing to enhance Trojan detection capability. Comparing 
experimental results to conventional scan-based testing methods, a set of benchmark 
circuits showed an average 15% improvement in fault coverage [42].

A machine learning-assisted method was introduced by Maitreyi Ashok et al. to increase 
fault coverage in hardware Trojan detection. A convolutional neural network (CNN) was 
taught to identify patterns in circuit responses that suggested Trojan activities. When 
compared to conventional testing methods, experimental results on a variety of Trojan-
infected circuits demonstrate an average 25% improvement in fault coverage [43].

Hardware Trojan detection can potentially be improved by using side channel analysis 
techniques like power and electromagnetic emission monitoring. In order to identify 
Trojans, J. He et  al. suggested a novel method that combines power analysis with 
electromagnetic emission analysis. An average improvement of 18% in fault coverage was 
shown in experimental results conducted on real-world circuits [44].

The method was used by Hicks et al. by contrasting the experimental outcomes with the 
typical original model outcomes of the simulated measurements. HT is clearly identifiable 
in the event that the experimental technique affects the results from the IC [45]. Zheng 
et al. [46] are concerned with the creation of test vectors for activating Trojan circuits and 
observing harmful payload issues at the major outputs. As per reference, this presents 
probability signatures -HT identification that is appropriate for the test vectors’ structural 
and functional features. The probability signature-based experimental circuit is compared 
to the original probability signature circuit to inject HT. So this technique can easily find 
out all HT in the contaminated circuit, even though it needs some standard reference 
model (example: golden netlist sample). Bazzazi et  al., introduced logical testing-based 
approaches, in terms of primary circuits to secondary circuits, each of the secondary 
circuits has some specific node values. To get the node with a larger similarity response by 
output nodes. These kinds of related nodes are used to test nodes whose relation matches 
the value and obtained values are the difference among the HT affected and not affected 
circuits [47]. A statistically scalable test generation technique has been proposed, this 
method is flexible and it overcomes noise and process fluctuation issues. It has the ability to 
produce excellent test patterns that can produce extremely similar activities in any type of 
HT instance. It produced effective test patterns using side-channel nature HT identification. 
In general combination of side-channel techniques and this logical testing can give better 
coverage. It is not suitable for large circuits, because only a few and more effective test 
patterns only used, so there are possible chances to escape the Trojans. The fault coverage 
is low for manufacturing tests [48].

M. Priyatharishini. et  al. suggests, the compressive sensing method for recognizing 
HT for all test patterns that may be obtained using the proposed technique [49]. The logic 
testing method compares the logic values at the nodes in the golden circuit to the logic 
values in the Trojan IC circuit. Tables 3 and 4 compare the logic values of Trojan-infected 
and golden circuits. When a combinational form of Trojan is introduced in the minimal 
transition probability node, the logic in the nets changes, disclosing the presence of the 
Trojan module.

Tables 3 and 4 show the comparison of primary output for the various input pattern 
with internal nodes for the reference and trojan affected C17 benchmark circuits. Results 
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clearly show that in trojan affected C17 benchmark circuits primary output changes for 
the input pattern of 7 and 14.

Popat et  al. [50] introduced the True Positive Rate (TPR) metrics, which are used 
to validate the effectiveness of compressive sensing in identifying Hardware Trojans. 
The circuit under test is applied to a probability of detection (PD) test. The TPR value 
represents the number of Trojan nets that are harmful nets, whereas the false negative 
(FN) value indicates the number of the Trojan net that is mistakenly recognized as 
normal nets in binary classification.

Generally speaking, the logical testing method has certain drawbacks, such as false 
positives and false negatives, a high level of complexity at the large scale, vulnerability 
to evasion, and limited scalability and scope. Nevertheless, this technique is particularly 
useful for detecting Trojans in digital circuits where their behavior can be precisely 
determined by logical operations. It is possible to identify aberrant behavior suggestive 
of the presence of a Trojan by examining the circuit’s responses to different inputs. This 
process also allows for functioning circuit certification. Because of its dual function, 
designers can guarantee that the circuit operates correctly and is secure from Trojan 
intrusion.

Deep learning accelerators (DLAs) are now essential parts of hardware for artificial 
intelligence. Nonetheless, a serious security concern arises from their susceptibility to 
hardware Trojans. A logic testing-based method for identifying Trojans in DLAs was 
presented by Govindan, V et  al. They present new methods for creating test patterns 
and examining answers to find malevolent changes in the accelerator’s behavior. Their 
approach is effective in detecting Trojans with 95% accuracy and only 2% area overhead, as 
demonstrated by experimental findings [51]

A key INV/BUFF concept, which generates a better design than XOR/XNOR with 
less overhead, was proposed for use by Naveenkumar et  al. The proposed technique can 
greatly improve logical locking without sacrificing security. Furthermore, in contrast to the 

Table 3  In Logic Testing, the 
output function is compared to a 
golden reference

S.No Input pattern C17 benchmark-golden reference

Internal nodes Primary 
output

N6 N7 N8 N9 N10 N11

1 1 1 1 1 0 0 1
2 7 1 0 1 1 0 0
3 14 1 0 1 1 0 0

Table 4  In Logic Testing, 
a comparison of the output 
function with a gold standard is 
made

S.No Input pattern C17 benchmark-trojan affected

Internal nodes Primary 
output

N6 N7 N8 N9 N10 N11

1 1 1 1 1 0 0 1
2 7 1 1 1 1 0 1
3 14 1 1 1 1 1 1
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XOR-based technique, it reduces overheads by 2.76 percent, 12.92 percent, and 12.7% for 
space, power, and time, respectively [52].

Although neuromorphic computing systems have a lot of potential uses, their security 
and functioning can be jeopardized by Trojan attacks. A logic testing-based method for 
Trojan identification in neuromorphic computer systems was developed by M. Grailoo 
et al. In order to identify possible Trojans, they provide methods for creating test patterns 
and examining neural network responses. Experiments conducted on cutting-edge 
neuromorphic devices show that their approach is 97% accurate for detecting Trojans 
with an acceptable false positive rate of 1.5% [53]. The goal of Naveenkumar et al. [52] 
was to combat SAT assaults, counterfeiting, and piracy. Created the obfuscation method 
for the Anti-Sat circuit block to provide security against SAT assaults. Through iterations, 
they created a structural obfuscation for the C17 benchmark that was anti-sat based. The 
recommended XOR/XNOR logic locking anti-sat with structural obfuscation idea improves 
security from an iteration standpoint, according to experimental results. Furthermore, the 
findings verified that, computationally speaking, the SAT attack is not possible, and that 
the number of SAT attack iterations required to reveal a correct key in a circuit with an 
Anti-Sat Block is proportionate to the key size.

Although quantum computing presents previously unheard-of levels of computational 
power, it also poses new security risks, such as the possibility of hardware Trojans. The 
use of logic testing techniques for Trojan detection in quantum circuits was studied by C. 
Chu et al. They presented new methods for modifying conventional logic testing strategies 
for use in the context of quantum computing. Tests carried out in the lab revealed that the 
technique was 92% accurate at identifying Trojans in quantum circuits while having no 
negative effects on the performance of quantum gates [54].

In hardware the integrity of integrated circuits is seriously threatened by trojans. A 
machine learning-assisted logic testing method for Trojan identification in hardware 
security was presented by F. Khalid and colleagues. They make use of machine learning 
techniques to improve logic testing’s efficacy in detecting Trojans. Combining machine 
learning techniques with conventional logic testing results in increased efficiency and 
accuracy. The approach’s efficiency in detecting Trojans with 96% accuracy and decreasing 
false positives to less than 1% was proved by experimental findings [55].

2.2.3  Reverse Engineering

Reverse engineering (RE) aims to investigate an IC’s internal physical structure. Using 
delayering and a scanning electron microscope, RE is used to obtain layer-by-layer pic-
tures. Discovering the transistor, gates, and routing circuits using the template matching 
method. Here, the experimental image is compared to the original, conventional reference 
image using the classic layout model as its foundation. This type of visual examination is 
carried out under a microscope [1]. In general, detection rates can be identified through 
reverse engineering, which yields far greater rates. Additionally, HT can be directly 
observed in the structure itself. Additional type assessment can be performed to examine 
the HT. An HT identification concept is proposed and relies on a physical inspection at the 
circuit level. First, it contrasts the image of the experimental circuit with that of a standard 
image circuit. Destructive pictures derived from reverse engineering were also recovered 
[56]. The parameters investigated in post-silicon identification techniques are displayed in 
Table 5. Due to its resistance to interference and overhead caused by process fluctuation, 
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the logical testing parameter suggested by this table, which relies on probability signature 
analysis, is efficient.

2.3  Formal Verification and Optical Detection

This technique is generally affected by computation complexity and also poor automation 
tools [2]. To avoid this issue, the proposed proof-carrying hardware (PCH) approach is 
used [60]. This proof-carrying hardware assures the trust of the device [53, 61–63]. PCH is 
a method for ensuring hardware’s trustworthiness proposed the Proof-carrying code (PCC) 
is a type of proof-carrying code that was the inspiration for the PCH (Proof-Carrying 
Hardware) approach [64]. Unreliable software designers use the PCC method to validate 
their code. Software vendors develop safety policies and safety proofs that software clients 
submit for certification. Next, the provider provides the customer with a PCC binary file 
including official documentation attesting to the security features of the program. Using a 
proof checker to quickly verify the PCC binary file, the customer can be confident that the 
software code is safe. Because of the effectiveness of this strategy in lowering verification 
time at the client end, it has been adopted in a variety of applications.

Despite its benefits, the PCC technique necessitated a vast and reliable computing 
infrastructure (TCB). To get over this limitation of PCC, foundational PCC (FPCC) 
is a conceptual structure that makes use of foundation logic to describe the practical 
semantics underlying various assembly language instructions [65, 66]. Drzevitzky et  al. 
[53] suggested a basic Proof-Carrying Hardware (PCH) for dynamically reconfigurable 
machines based on the PCC architecture. The main concept of reconfigurable platforms 
is to perform runtime combinational equivalences testing to compare the conceptual 
design and the design execution. Despite its name, PCH is a combinational equivalence 
verification method based on an SAT solver, with the difference that the resolution proof 
traces are treated as functional equivalence proofs. The imposed safety policy has no 
bearing on the security of property in this framework. Rather, as a safety precaution, IP 
users and bitstream providers reached an agreement to utilize the propositional calculus 
to construct and verify proofs, the conjunctive normal form to describe combinational 
processes, and the same bitstream formats.

In general, formal verification assures that the intellectual property (IP) core is the 
same as its specifications. On hardware, and IP cores, author Yier Jin et  al. developed 
a novel proof-carrying hardware (PCH) system [2, 60]. Also, for IP trustworthiness 
assessment, offer a formal protection strategy based on SAT solvers. Depending on the 
PCH framework, a new trustworthy IP gathering and delivery protocol is proposed [60]. 
The set of security attributes is the most significant component of the PCH framework 
defined in [62]. A comprehensive set of attributes will improve core IPs trustworthiness by 
identifying wrong logic if it exists. There are three different methods of verification based 
on it will be processed.

(i) Property verification: here, each of the requirements is mentioned as an assertion in 
the test bench is verified.
(ii) Equivalence verification: checking the equivalence of the register transfer level 
(RTL) code gate-level netlist and GDSll file.
(iii) Model verification: it represents the system model. Ex: C, C +  + , HDL, and 
Verilog) and verify the desired behaviors and their properties. During verification, one 
of the statements is false; the circuit is assumed as unsecured.
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RT-level code security is also verified using a SAT solver, in addition to proof-
carrying approaches [67]. For example, we provided a four-step approach for filtering 
and locating suspect logic in third-party IPs. First, signals that were simple to identify 
were eliminated by employing functional vectors created by the successive Automatic 
Test Pattern Generation process (ATPG). The following step involved identifying hard-
to-excite and/or spread signals using the full-scan N-detect ATPG. In the third phase, 
the suspicious netlist, which included the signals that were triggered strangely, was 
compared to the netlist of the circuit displaying correct behavior using the SAT solver in 
order to reduce the number of suspected signals and identify the genuine gates associated 
with the Trojan. Clusters of unverifiable gates in the circuit were found to employ the 
region separation method on the suspicious signals list during the penultimate step 
of the investigation. Zhang, X. et al. proposed a a multi-phase approach that included 
sequential ATPG use, redundant circuit reduction, equivalency analysis, code coverage 
analysis, and assertion-based verification for the identification of questionable signals 
[16]. This approach’s efficiency in detecting Trojan signals measured between 67.7% 
and 100%, as proven on an RS232 circuit. Furthermore, side-channel signal analysis 
and optical detection are quite comparable methods. This establishes whether HT-based 
signals produced by the IC during the procedure are present in the design, such as heat 
and light. The Picoseconds Imaging Circuit Analysis (PICA) tool is used in this method. 
Which is adaptable to observed circuit change [58]. Here, light emission is an optical 
signal based on the verification process that is running. Whenever the light emission 
density and emission change at the time, it is assumed, that it may be untrusted. Finally, 
screening the HT is concerned with detecting light changes in the emission map.

3  HT Prevention Techniques

In HT prevention is mainly focused on avoiding the attacks from inserting the Trojan 
inside of the design. Some of the HT prevention methods are shown in Fig. 6, Hardware 
(design) obfuscation and layout filling; split manufacturing concept; trust in the design, 
and locking method.

Hardware Trojan 
Prevention 
Techniques

Hardware (Design) 
Obfuscation and layout 

filling Method

Split 
manufacturing 

Method

Trust of Design 
and Logic Locking 

Method

Physical 
unclonable functions 

(PUF)

Fig. 6  Classification of Prevention of HT
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3.1  Hardware (Design) Obfuscation and Layout Filling Method

Hardware obfuscation is the method of making a design more difficult to understand. 
Hardware obfuscation is a convenient way to protect unencrypted IPs from attackers. 
Changing the logic or functionality of a circuit in a controllable method through hardware 
obfuscation. Hardware obfuscation allows for the design to be successfully hidden and 
disabled while still allowing for structural testing and static/dynamic parameter analysis 
[68, 69]. Because of its ease, obfuscation is a popular security solution and a developing 
study issue. Great range in recent years, obfuscation strategies, and obfuscation attacks 
have been presented.

Chen Dong et al. approached, the new design with a circuit modification of a new one with 
the same function or behavior as the original circuit. It is much harder for hackers as obtaining 
reverse engineering, due to a lack of grasp of the internal logic. Generally, design obfuscation is 
used to add to the circuit layout that has no meaningful behavior or functionality of the existing 
design. These additional circuits are mainly used to prevent attacks from third-party access [1].
In a Layout filling technique, a functional design is added to the layout of the chip. It is named 
OBISA and stands for obfuscated self-built authentication [70]. This circuit combines the stand-
ard model to cause misunderstanding. So this confusion is based on eliminating the filing space 
and identification of own. Generally, the BISA (Built-in self-Authentication) technique involves 
putting a circuit in every vacant place that can easily test itself. Normally, HT has restrictions 
on space-filling or space living [1]. This filling concept adequately utilizes the empty cell in the 
design. Injecting the design identified or eliminated the empty spaces to restrict the injection 
space of the HT. Moreover, with additional layouts created, an adversary can’t implant the HT, 
because it prevents attacks from others.

3.2  Physical‑Unclonable Functions (PUF)

Physical-Unclonable functions (PUF) are a hardware-specific security technique that provides 
secure functionality for encrypted communication between embedded devices. Due to changes 
in the production process, The PUF’s physical configuration is taken into easy to create but dif-
ficult or impossible to replicate. However, a vast analytics community feels that hardware nature 
PUF has cleared the path for its use in delivering reliable safety. This PUF leverages device mis-
matches caused by the process variation to create a unique identity and the response of each 
chip [71]. Hardware area protection is orthogonal to the strengthening of safety fundamentals, 
which have been studied because they are less expensive and have more accuracy than software 
programs. The physically unclonable function (PUF) is the main prototype, which employs a tool 
that does not recognize the created by technique alterations to generate unique identities for every 
chip as well as consistent risk response pairings. We can evaluate the PUF design using a variety 
of metrics.

(i) Randomness: It indicates the response to input test patterns. (ii) Uniqueness: 
specifies identity indication. (iii) Enhanced Security: Measure the security checks to 
see whether they will affect or not affect the circuit [72]. Various attack types were 
enhanced, including device knowledge and equipment modeling, and we were able to 
break that physically unclonable function design based on the physically unclonable 
function response. Many strategies were proposed in order to improve the measurement 
of error-correcting algorithms. Various reviews explored the evaluations of physically 
unclonable functions [53].
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Figure 7 shows the various types of PUFs, Non-silicon PUF type includes all PUF 
types that aren’t silicon PUFs and are made from non-electronic components due to 
their inherent mismatch. Here are several non-silicon PUF examples that rely on mis-
matches created by physical systems rather than electrical discrepancies. Pappu, R. et al. 
introduced the major non-silicon PUF named Optical PUF (O-PUF), this is founded on 
the response (scattering) that a laser beaming on a transparent epoxy wafer loaded with 
bubbles produces [73]. Silicon PUFs look for and exploit IC incompatibilities to create 
a pattern or function that may be used to identify electronic circuits [74].

The same circuit die is usually used to make silicon PUFs, with designs differing based on 
mismatch capabilities, demands, architecture, and challenge-response pair (CRP) performing 
techniques. There are two types of silicon PUFs: delay and memory-based PUFs. Utilizing the 
propagation delay of the circuit paths and the speed at which the microelectronic circuitry tran-
sition their results to 0 or 1 are the main objectives of delay-based PUF [75]. Further delay 
PUFs are divided into two categories. Arbiter PUF (A-PUF) and ring oscillator PUF (RO-
PUF). The A-PUF is one of the first proposed designs that rely on circuit path delay, as stated 
by Lee et al. [76]. Considering that the A-PUF mechanism is linear, Lee et al. investigated the 
creation of a timing module that may mimic it in the event of a security attack. To change the 
module parameters, the attacker will require, a significant number of CRPs will be required by 
the attacker. The number of CRPs obtaining such a large quantity of CRPs is difficult because 
CRPs are normally kept in a very secure location. According to, the output of a PUF circuit can 
be adjusted by adding XOR to output bits or applying feed-forward circuits (FFCs) to an A-PUF 
design making it non-linear. Suh and Devadas proposed RO-PUF that is dependent on produc-
tion changes in oscillator frequencies [71]. Due to the general fabrication process, the frequency 
parameter mismatches between identical RO-PUF. Mismatches are inevitable in the manufac-
turing process, resulting in random PUF values.

Focusing on the memory aspect is the memory-based PUF model if its mismatches that 
result in a random value at the start-up stage. In contrast to latency based PUFs, which call 
for specific designs for various PUF types, these PUFs have relied on memory cells and 
this are frequently found in FPGAs. The signature and identification for these circuits can 

PUF

Silicon
PUF

Delay based 
PUF

Non silicon 
PUF

Arbiter
PUF

Ring 
oscillator PUF

Memory based 
PUF

Optical 
PUF

Butterfly
PUF

SRAM
PUF

Fig. 7  Various types of PUFs
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be generated using the memory chip in the circuit [77]. Butterfly PUF (B-PUF) is based on 
bistable elements. It’s more suited to creating hidden keys. Because the length of all elec-
trical paths will be the same, the manufacturing process is accurate. It will take some time 
to settle down.

SRAM-PUF:
(Holcomb, D.E. et  al., were the first to introduce the Static Random Access Memory 

(SRAM)-PUF or (S-PUF), which gets its randomness from the startup state. Once the 
SRAM cell is activated, one of the stable states is selected based on the manufacturing 
process variances of its components [77, 78]. It can also be utilized for randomization 
because it is unpredictable.

SRAM cells are classed as follows based on these differences:

(i) Cells that have a strong tendency to power up as 0 or 1.
(ii) Cells with no strong tendency to power up as 0 or 1.
(iii) Cells with a strong inclination to power up as 0 or 1;

Designers do not need to build specific hardware because many electronic systems 
already use SRAM as a rapid memory. The major portion of cells is more likely to start up 
in state 1 than in state 2. As a result, Inter Hamming distance (Inter-HD) has a percentage 
of 27.62%. It also revealed Intra-HD within 4%. SRAM PUFs were first established [79]. 
Vijayakumar et al. [80] designed SRAM PUFs made up of cross-coupled inverters linked 
by access transistors and often settle into a "0" or "1" state consistently due to inherent 
manufacturing variances. Cambou et al. and Helfmeier et al. explained, that as the SRAM 
was turned on, its initial values for the cells were also used to establish a unique fingerprint. 
When SRAMs transition states, they emit energy that can be recognized by using a signal 
analyzer to verify the wavelength of the laser. Once this side-channel data is exposed, an 
attacker will have enough information about the device to replicate it [81, 82].

In order to leak information, M. A. Bokor Siddik and S. H. Alam introduced a novel 
approach using a new type of HT based on physical unclonable function (PUF). The 
purpose of this effort is to increase awareness of the advanced form of HT while analyzing 
and assessing the effectiveness of the PUF-based HT. They used a full-custom design flow 
to reduce the size of the HT while maintaining its layout. With only 749 FETs needed and 
an area of 10.6437 mm2, this lightweight solution shows a high barrier to detection by 
traditional testing and inspection techniques. Furthermore, the suggested PUF-based HT’s 
signature is physically encrypted, preventing unauthorized HT activation even in the event 
that the trojan was discovered. The authors ran physical tests on an FPGA and simulations 
using Tanner EDA to evaluate the viability of our PUF-based HT. [83].

The architecture of the XOR arbiter PUF (XORAPUF) with the 3 characteristics 
of uniformity, uniqueness, and reliability was proven by Naveenkumar et  al. The field 
programmable gate array (FPGA) version of the XORAPUF, according to experiments, 
obtains an inter-chip hamming distance (HD) that is closer to 50% with good uniqueness 
and uniformity of 48.74% and 49.88%, respectively. Additionally, the planned PUF’s 
reliability is tuned to 99.20%. After comparing these outcomes with those of other 
traditional PUF, they deduced that the XORAPUF circuit produced superior outcomes 
[84].

Reconfigurable interconnection networks, a vital component of FPGA-based 
CNN accelerators, are the target of a hardware Trojan created by Hou J. et  al. More 
specifically, when the hardware Trojan is activated, it modifies the data routes, leading 
to faulty connections in the arithmetic circuit and, ultimately, inaccurate convolutional 
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computations. In order to protect the reconfigurable interconnection network against 
hardware Trojan assaults, the author presents a novel detection technique based on 
physically unclonable functions (PUFs) to handle this problem. The experimental results 
show that the suggested hardware Trojan can significantly reduce the inference accuracy 
of common neural network architectures such as LeNet, AlexNet, and VGG by a range of 
8.93% to 86.20%, just by adding a small 0.27% hardware overhead to the accelerator. In a 
reconfigurable interconnection network, the implemented arbiter-PUF circuit on a Xilinx 
Zynq XC7Z100 platform successfully identifies the location and existence of hardware 
Trojans. This study demonstrates how reconfigurable CNN accelerators are susceptible to 
hardware Trojan attacks and offers a promising detection method to reduce any security 
threats. The results highlight how crucial it is to take hardware security issues into account 
when designing and implementing AI systems that use FPGA-based CNN accelerators 
[85].

3.3  Split Manufacturing Method

The split manufacturing concept secures the design (or) model by hiding important data 
from the foundry level itself [86]. And the fundamental goal of the split manufacturing 
process is to split the design into two different parts. Because the manufacturing before 
splitting the two different circuits, one is consisting of a transistor, and routing wires and 
another one is consisting of some other components with routing wires. And finally, it will 
be fabricated in various industries. So these parts are named as (FEOL) front end of the line 
and (BEOL) back end of the line. The bottom layer, where the transistor is built is named 
FEOL; the top layer, where the metal layer is built is named BEOL. When comparing split 
manufacturing with design for trust, split manufacturing always has a larger manufacturing 
cycle and high manufacturing cost with the design for trust [1]. In split manufacturing, 
unsecured fabrication parties do not interfere in the BEOL process. It hardly judges the 
location of injected HT on the device [24]. This approach is expensive, till now split 
manufacturing into Two-dimensional (2D) and Three-Dimensional (3D) levels [87]. 
Presented a manufacturing process standard model with a split manufacturing process with 
the complex integrated circuits [88]. The split manufacturing alone, Will does not assure 
the secured production of chips [89]. Xie et al. suggested two attacks in the physical design 
flow, known as Proximity type and SAT type in the 2.5 D split manufacturing process. 
These two attacks can be avoided by adding layout and functionality to the IC. It can 
prevent that kind of attack. This can prevent almost all hackers from interfering with the 
key data of the BEOL and FEOL signals [90].

3.4  Trust of Design Method

It is generally used by injecting/ adding some extra circuit design or obfuscation 
components. And also improving layout filling. The drawback is high extra overhead and 
high precision application; it is suitable for avoiding the HT. Dupuis et al., suggested two 
ideas to avoid the HT. The first one is Obfuscation; here the IC functionality and behavior 
are hidden. Moreover, the blurred images result from confusion in the circuit architecture, 
so hackers won’t be able to do it easily. The standard original circuit will not be affected 
by the HT [30]. The second concept is the locking mechanism; here the locking concept 
is injected into the original circuit to hide that circuit behavior. Presented ending piracy 
of integrated circuits (EPIC) techniques for securing the IC via locking mechanism with 



1167Hardware Trojans Detection and Prevention Techniques Review  

1 3

minimal overhead [91]. Rajendran et al., implemented the technique in this technique, each 
chip has specific unique identity numbers. Based on that unique number it is activated, so 
possibly injecting HT is difficult. Presented a logic encryption concept to avoid attacks 
from injecting the HT [92].

Logic locking is a measure to avoid piracy and counterfeiting of outsourced IC designs 
by deceitful foundries. To obscure the original functionality of an IC design, new key-con-
trolled logic gates (key-gates), key inputs, and on-chip memory are incorporated. Figure 8, 
represents the key gate that can be constructed using XOR/XNOR gates, to constitute the 
encoded circuit. Whenever the right key is supplied a locked IC performs its expected cor-
rect functions.

The worth of the right keys K1, K2, and K3 are 101. This technique is vulnerable to an 
attack from the satisfiability (SAT).

The two ways of logic encryption are Combinational encryption (i.e., modifying the 
netlist at the gate level) [69, 93] and sequential encryption (i.e. state transition graph 
alteration) [94]. In the first scenario, extra logic gates have been added to hide the 
design’s original function when the erroneous key is pressed. In the second scenario, the 
state transition has been changed such that the design can only reach a valid state and 
then use the correct input sequence. Roy. et al. [69] propose a combinational encryption 
scheme. It entails putting XOR/XNOR gates at random into the design. One input of each 
of these gates is connected to a newly added key input. A second strategy is described 
in improvement by ensuring that the outputs are not corrupted by incorrect keys [93]. 
The locations of the gates XOR/XNOR operations were intended to offer a 50% of the 
Hamming distance (HD) among the accurate and inaccurate values.

R. S. Chakraborty. et  al. Present an Obfuscation design approach that alters state 
transition processes to generate two functional modes: regular and obfuscated, the key 
(a particular input sequence) and the IC are both in obfuscated mode by default per-
mits it to switch to normal mode [94, 95]. In addition to preventing excess production, 
it assists in blocking HT injected by, for example, constructing some HTs harmless 
(individuals who work well in an obfuscated manner). Lookup table (LUT) s can also 
be used as key gates replaced by using XOR/XNOR gates [96]. The contents of the 
LUTs function as a secret key and, as a result, logical barriers. Data flows as antici-
pated within the architecture when LUT programming is done correctly. Later, strate-
gies it was presented on how to increase the effectiveness of locking systems using 
very large scale integration (VLSI) testing concepts, In other words, an invalid key 

Fig. 8  demonstrates an encrypted 
circuit with an XOR/XNOR key
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results in incorrect output. Rajendran et al., Yasin et al. and Chakraborty et al. Examining the 
most widely used logic locking methods and vulnerabilities in literature. Classifying current 
attacks and defenses to determine how the protection strategies are effective against various 
types of attacks. ‚ developing novel logic locking applications that go beyond just safeguarding 
functionality‚ outlining prospective research directions and summarizing current trends in the 
area of logic locking [97, 98].

Table 6 represents the various prevention measures based on the PUF and it men-
tions the attack levels and potential countermeasures also given.

Table  6 suggests (Merli et  al. [102] and Helfmeier et  al. [103]) SCA-based key genera-
tion parameter, the design obfuscation is better prevention of HT. Also, it proves that photon 
emission analysis can fully and linearly characterize the traditional arbiter PUF and its popu-
lar extended variant (i.e. feed-forward with XOR enhancement). Tajik et al. suggested, that the 
actual results of implementing a complicated programmable logic chip built by the arbiter PUF 
using the 60 nm process and machine learning methods are introduced. In addition, with this 
technology that there is no need for a PUF response, our physical delay extraction does not need 
to know the actual PUF response. The attack has a high level of severity, and countermeasures 
are to effectively characterize the relying on the arbiter PUF, the minimum amount of measure-
ments [99]. Rührmair et al. implemented dynamic and differential CMOS logic techniques, in 
this method the power side channel is noisier than the timing side channel, resulting in faster 
convergence. Potential countermeasures are to avoid repetitive measurements [100].

Merli et al. proposed a local electromagnetic attack, which can destroy the RO-PUF 
implementation of the previously proposed countermeasure protection, can identify 
attacks. It represents a prerequisite for local electromagnetic attacks on RO-PUF. To 
protect RO PUF equipment, it proposes measurement path randomization and stag-
gered placement and design confusion as countermeasures, while the latter does not 
require any additional resources [101]. Physical cloning is not the same as modeling 
to characterize PUF. The PUF protocol’s physical response is an invariant feature of 
the PUF protocol. Helfmeier et al. developed a physical clone of PUF with the same 
appearance were successfully made. In the arrays of high-density SRAM cells deter-
mining PUF response is difficult and physical cloning is a very successful method of 
production. Here the countermeasure is a design obfuscation, which is minimal in cost, 
has a lower PUF response density, and has a better distribution in SRAM [102].

Rührmair et al. introduce a new attack model against the Strong PUF protocol, including the 
"PUF reuse model" and "bad PUF model". These frameworks represent an attack strategy that 
is relevant and difficult to detect and is closely related to actual PUF usage scenarios. A poten-
tial countermeasure is to respond to erasable PUF [53, 103]. Countermeasures to our attacks. 
Zeitouni et al. and Gao et al. improved SRAM PUF resistance by constructively using rema-
nence attenuation. It is based on the attenuation of residual magnetism in SRAM memory and 
is used as a timing mechanism for clock-less devices with low power consumption. The key 
to prevention is the constant-time response readout and the confusion of the SRAM power-on 
state [104, 105].

4  Hardware Trojan Prevention Algorithm

To develop and test HT detection and prevention, different certified algorithms were cho-
sen for different encryption strategies. The various detection and prevention algorithms of 
HT are given below in Table 7. In Table 7 detection of HT algorithms are mixed-feature 
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GEP, (SVM) Support Vector Machine, (KNN) K-Nearest Neighbor, and Statistical features and 
distance learning methods. HT prevention algorithms include the assignment of decoys to tar-
get constants algorithm, partitioning algorithm, Key-based structural obfuscation, Hierarchical 
Contiguous Folding (HCF), Transformation algorithm, and Iterative Ranking Algorithm.

Mohri et al. and Sun et al. suggest statistical features and the distance learning method is 
better than the existing methods above three detection methods [108, 109]. And Sengupta 
et al. author suggested a PSO (particle swarm optimization)-based Obfuscation Technique 
(PSO-OT) system that provides the optimal option for key insertion positions and methods 
[117]. To frustrate the embedded field and also care for third-party IP cores, our PSO-OT 
achieves excellent hardware security and low area, power, and performance overheads so 
the key-driven is structurally obfuscated (or) Key-based structural obfuscation is a better 
prevention method compared to other existing prevention methods.

5  Challenges and Future Scope

Sun et al. proposed a detection approach to select the ideal test vector and do multiple sam-
pling for the chip’s side-channel signal only. Other circuit detection data categories, such 
as IC image-based detection and circuit physical characteristics-based detection are major 
challenges [111]. Yuan et al. sugsuggest the future, to boost the success rate of detection 
techniques, we need research in superior test-bench generation technology. This technique 
will become more advanced if the circuit scale is increased by a large order of magnitude. 
They tried to figure out the best technique for selecting elements from the P and Q sets so 
that the difference between them is as small as possible [121]. Becker et al. analyzed the 
HT in the semiconductor. It is put into existing transistors by altering the polarity of dop-
ing. This sort of HT does not necessitate any new circuit primitives, and the IC’s appear-
ance and functioning remain unchanged when the HT is turned off. When the infected cir-
cuit’s temperature reaches a particular high, the HT is executed [122]. The circuit’s polarity 
is deflected at that time, resulting in an anomaly in the IC’s function. Optical detection and 
side-channel analysis detection approaches are currently proving to be nearly hard to detect 
as HT. Logic testing is a method of comparing the test answer to the expected response 
based on simulation calculations. HTs have recognized if the IC’s responses changed dur-
ing the testing process [45]. The fundamental issue in a logic-testing-based VLSI approach 
is that it is computationally impossible to generate a comprehensive set of test vectors for 
detecting all possible HTs [5].

Process variation and noise issues are one of the major challenges with hardware Tro-
jans. It is prevented by present golden chip-free hardware based on the power side-channel 
technique for detecting Trojans. This technique adapts the original concept to combat the 
issue that a similar structure can readily be an adversary, has bypassed it, and is unable to 
cover the entire circuit. It took advantage of the fact that the number of logic gate toggles 
is related to physical power usage. For self-reference detection, it has two circuits with 
the same toggles for particular inputs. The adversary’s complexity in defeating this detec-
tion technique is theoretically guaranteed to be O (2(n/2) log2 (n/2). the author demon-
strates the ability to reduce process variation through simulation tests. Also, Yuan et  al. 
proposed solution become more sophisticated as the scale of the circuit is increased up 
to a higher order of magnitude. To solve this issue, use the proper procedure to minimize 
the difference between them while selecting entries from the P and Q sets [121, 122]. He 
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et al. suggested, a new technique for detecting HT based on electromagnetic side-channel spec-
trum modeling and analysis they used design data early in the life cycle of IC, and the result-
ing spectrum can be used as a gold standard, eliminating the requirement for produced golden 
chips [44]. Another noteworthy characteristic is that this approach is theoretically impervious to 
process fluctuation. The suggested method may efficiently detect Trojans even with extremely 
slight traces, according to experiments on selected advanced encryption standard benchmark 
circuits using FPGA have yielded promising results.

Sharma and Ranjan used machine learning to build a unique method to increase fault 
coverage in hardware Trojan detection. In order to find patterns suggestive of Trojan behav-
ior, they developed a kind of convolutional neural network (CNN) over a dataset of circuit 
responses, comprising timing and power consumption metrics. In comparison to conven-
tional testing methods, experimental results on a variety of Trojan-infected circuits dem-
onstrate an average improvement of 25% in fault coverage and a 40% reduction in mean 
time to detect (MTTD) [123]. Ashutosh Ghimire et al. employed a thorough methodology 
based on redundancy and diversity techniques to detect hardware Trojans. They seek to 
improve fault coverage by utilizing triple modular redundancy (TMR) and various redun-
dant designs, such as scan chain modification and clock gating. Comparing experimental 
assessments on different Trojan-infected circuits to non-redundant testing techniques, the 
average fault coverage is improved by 20%, and the mean time between failures (MTBF) is 
decreased by 30% [124].

Gor Piliposyan and Saqib Khursheed used real-time hardware Trojan identification 
through in-field testing and monitoring. They continuously evaluated circuit behavior by 
integrating runtime monitoring procedures, such as power analysis and electromagnetic 
emission analysis, with built-in self-test (BIST). According to experimental results in 
a simulated environment, the methodology reduces the false positive rate (FPR) by 25% 
while improving fault coverage on average by 30% when compared to offline testing 
methods [125]. Protecting Internet-of-Things (IoT) devices from hardware Trojans has 
become essential due to their rapid growth. A machine learning-based anomaly detection 
method for locating hardware Trojans in Internet of Things devices was recently proposed 
by Yu, S et  al. They used an SVM classifier to classify the features they extracted from 
measurements of power use. Using a dataset of 100 IoT devices, this technique achieves an 
average detection accuracy of 97.3% with a false positive rate of 2.1% [126].

Preventing the installation of hardware Trojans during the manufacturing procedure requires 
ensuring the security and integrity of a supply chain. M. S. U. I. Sami et al. suggested an authen-
tication system based on blockchain technology to protect the supply chain and stop unauthor-
ized changes to integrated circuits (ICs). A blockchain is used to record every step of the IC 
manufacturing process, giving rise to an unchangeable log of all transactions and changes. The 
simulated outcomes show that 100% of attempted hardware Trojan insertions are effectively 
detected and prevented by our method. The findings showed that the supply chain had 10 enti-
ties, a 100% detection and prevention rate, a 6-month simulation period, 5000 records on the 
blockchain, and a 15% cost reduction in supply chain management due to increased operational 
efficiency of 20% [127]. Hardware Integrated circuits (ICs) are vulnerable to security breaches 
due to trojans’ ability to introduce malicious features that jeopardize system integrity. Jingxin 
Zhong et al. used thermal signature analysis to create a revolutionary hardware Trojan detection 
technique. This method makes use of the fact that hardware Trojans’ changed behaviour might 
result in localized heating in integrated circuits. They find Trojans by employing infrared ther-
mography to analyze temperature fluctuations. Experimental results show an average detection 
accuracy of 96.4% with a false positive rate of 2.8% on a variety of benchmark circuits, 
including the ISCAS-85 and ISCAS-89 benchmarks [57].
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A deep learning-based method for hardware Trojan identification via thermal profiling 
was presented by Yan et  al. This technique analyzes thermal pictures of ICs using 
convolutional neural networks (CNNs) to find unusual temperature patterns that point 
to the presence of Trojans. They test on multiple benchmark circuits and show a 97.2% 
average detection accuracy and 1.5% false positive rate [128].

It is extremely difficult to predict when the HT will be triggered because the HT 
activation condition is always an uncommon event. Because there are so many different 
varieties of HT, it’s difficult to determine which technique will work best. One of the 
challenges with logical testing detection approaches is that they rely on golden references 
only to identify the HT.

6  Conclusion

In conclusion, the new paradigm in hardware trojan detection and prevention is represented 
by the confluence of obfuscation, PUFs, and AI. Stakeholders can protect vital electronic 
systems from trojan attacks and strengthen ICs by utilizing the beneficial relationships 
between these strategies. To ensure that these strategies are effective in the face of chang-
ing threats, more research and cooperation are necessary to further optimize and refine 
them. This paper deals with various HT detection methods like Pre-silicon, Post-silicon-
based detection, formal verification, physically unclonable function, and optical detection. 
Also, discussed the HT prevention techniques such as Hardware (design) obfuscation, split 
manufacturing, and trust of design. Evaluations show that Pre-silicon (run time monitor-
ing), which requires less space, power head, and outside interference, is more effective 
at HT detection. Logical testing utilizing probability signature inspection is effective in 
post-silicon detection because it is resistant to overhead and interference from process vari-
ations. In prevention technique, utilization of layout filling effectively achieved in SCA-
based hardware (design) obfuscation, it leads to better prevention of HT. Moreover, various 
prevention algorithms, detecting challenges and effects of the HT in the recent application 
are summarized with its solutions.
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