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Abstract
Sixth-generation (6G) wireless systems, when ultimately deployed, will comprise intelli-
gent wireless networks that provide high-accuracy localization services together with ubiq-
uitous communication. By bringing in a fresh set of traits and functionalities that allow 
location and communication to coexist while sharing resources, they provide the impetus 
for this change. By identifying the critical technological enablers that open up exciting 
new possibilities for combined localization and sensing applications, we concentrate on 
converged 6G communication, localisation, and sensing systems. 6G will advance toward 
even higher frequency ranges, broader bandwidths, and massive antenna arrays in terms 
of potential enabling technologies. Owing to the drawbacks of LiDAR, including its high 
price, short lifespan, and large volume, visual sensors—inexpensive and lightweight—
are garnering increased interest and developing into a hotspot for study. With the rapid 
advancements in deep learning (DL) and hardware computing capacity, new approaches 
and concepts for solving visual simultaneous localization and mapping (VSLAM) difficul-
ties have surfaced. We concentrate on the visual odometry (VO) application of DL and 
VSLAM integration. Most VO algorithms used today, such as those for motion estima-
tion, feature extraction, feature matching, local optimization, etc., are created using subpar 
pipelines. Using Convolution LSTM, a unique end-to-end design for monocular VO is pre-
sented in this research. It does not adopt any module in the traditional VO pipeline, instead 
inferring postures directly from a series of raw RGB photos (videos) because it has been 
trained and deployed end-to-end. It uses CNN to automatically train an adequate represen-
tation of features for the VO problem based on the Convolution LSTM, which is utilized to 
simulate sequential dynamics and relations implicitly. Comprehensive tests on the KITTI 
VO dataset demonstrate competitive performance compared to cutting-edge techniques. 
This confirms that the end-to-end DL approach can be a viable addition to conventional 
VO systems.
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1 Introduction

Robots navigating through an unfamiliar environment can accomplish self-localization 
and mapping thanks to a technology known as simultaneous localization and mapping 
(SLAM). Sonar and LiDAR sensors, which offer a high degree of accuracy but are 
heavy, expensive, and fragile, were a major component of SLAM in its early stages. 
On the other hand, visual sensors became an alternative since they are small, inexpen-
sive, and simple to use. To facilitate location and navigation in challenging real-world 
contexts, visual simultaneous localization and mapping, or VSLAM, can use visual sen-
sors that function similarly to human eyes to sense the surrounding environment and 
gather rich environmental information. VSLAM technology is important for several 
applications, such as military rovers, drones, unmanned vessels, intelligent robotics, 
autonomous cars, augmented reality (AR), and virtual reality (VR) [1]. Furthermore, 
the physical world and virtual cyberspace are interwoven thanks to recent advancements 
in AR and VR technology. In addition to maintaining the overlay virtual items’ geo-
metric coherence with the physical world, the 3D map rebuilt by VSLAM can include 
geometric details regarding the scene, enhancing the realism of the virtual environment. 
VSLAM technology is becoming increasingly in demand, driving the emergence of new 
techniques and technologies and making it a popular topic for research.

Throughout the past few decades, there has been a great interest in both the computer 
vision and robotics communities in visual odometry (VO), one of the most important 
approaches for posture estimation and robot localization [2]. It has been widely used 
as an addition to GPS, Inertial Navigation System (INS), wheel odometry, and other 
systems on various robots. Wireless networks are often lauded for their communica-
tion capabilities only, ignoring their innate benefits related to localization and sensing. 
With its enormous antenna array, high carrier frequency, and big bandwidth, the 5G NR 
access interface presents excellent prospects for precise localization and sensing systems 
in this area. Furthermore, 6G systems will carry on the trend of operating at increas-
ingly higher frequencies, such as those at the millimeter wave (mmWave) and THz1 
bands, and with even bigger bandwidths. The THz frequency range presents excellent 
prospects for frequency spectroscopy, high-definition imaging, and precise localization. 
The authors of [3] summarise wireless communications and the intended uses for 6G 
networks that operate above 100 GHz. They then discuss the potential of mmWave and 
THz-enabled localization and sensing solutions. Similarly, [4] discusses potential paths 
the cellular industry may take to develop future 6G systems.

With the emergence of 6G frameworks, the line between communication from locali-
zation is becoming more and more blurred, necessitating the development of seamless 
integration solutions. This convergence offers improved usefulness and efficiency, ena-
bling a wide range of applications ranging from augmented reality to driverless vehicles. 
Although very efficient, current localization technologies like LiDAR are constrained by 
a number of issues, including expensive operating expenses, large physical bulk, and 
comparatively limited operational lifetimes. Their scalability and general adoption are 
limited by these disadvantages, especially in consumer-grade applications. Because of 
their affordability, portability, and adaptability, visual sensors offer a viable substitute. 
Their potential has been greatly increased by developments in camera and image pro-
cessing, which makes them perfect for integration into mobile and ubiquitous comput-
ing environments. This research finds solution for,
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• How can the integration of deep learning with visual odometry be optimized to take 
full advantage of 6G capabilities?

• What are the specific advantages and challenges of using visual sensors over traditional 
localization technologies like LiDAR in the context of 6G?

• Can an end-to-end deep learning model effectively replace traditional multi-stage VO 
systems without compromising accuracy and reliability?

Deep Learning (DL) has shown encouraging results dominating numerous computer 
vision tasks. Unfortunately, this hasn’t arrived yet for the VO problem. Not much work has 
been done on VO—not even about 3D geometry issues. This is likely because most models 
that have been trained and DL architectures currently in use are primarily built to address 
recognition and classification tasks, which motivates deep convolutional neural networks 
(CNNs) for extracting high-level visual data from images. Understanding appearance rep-
resentation severely impedes the VO’s ability to become widely known and restricts its use 
in controlled situations. For this reason, the VO algorithms mostly rely on geometric prop-
erties rather than visual ones. Instead of processing a single image, an AV algorithm should 
ideally describe motion dynamics by looking at the changes and linkages in a sequence of 
images. This implies that sequential learning is required, which the CNNs cannot provide. 
To satisfy these needs, this paper contributes the following:

• This paper proposed a novel end-to-end monocular VO approach using convolution 
LSTM in 6G wireless communication systems.

• This study uses DL approaches to demonstrate the monocular VO problem in an end-
to-end way (directly determining the poses from the RGB images).

• The input from the captured video sequence or RGB image is preprocessed to remove 
the noise. Then, the new geometric features from the RGB images are mapped and 
extracted using Global channel attention and CNN methodologies.

• Long-short-term memory (LSTM) intuitively captures and automatically understands 
the sequential dependencies and complicated motion dynamics of an image series, 
which are important to the VO but cannot be openly or simply modelled by humans.

• The developed model is experimented with using the KITTI dataset, and the model’s 
efficiency is discussed.

The remainder of the paper is structured as follows: Sect. 2 reviews related work. Sec-
tion  3 describes the end-to-end monocular-VO method with preprocessing, feature map-
ping and extraction, and sequence modelling. Section 4 presents the experimental findings. 
Section 5 concludes.

2  Related Work

Author [5] provide a comprehensive overview of the various SLAM technologies imple-
mented for AV perception and localisation. The authors also offer a comprehensive review 
of various V SLAM schemes, their strengths and weaknesses, as well as the challenges 
of deployment of V SLAM and future research directions. Author [6] highlight important 
technological enablers for convergent 6G communication, localisation, and sensing sys-
tems, review their underlying difficulties and implementation concerns, and suggest possi-
ble solutions. We also review the fascinating new prospects for integrated localisation and 
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sensing applications, which will upend conventional design ideas and fundamentally alter 
how we live, interact with our surroundings, and conduct business. 6G will advance toward 
even higher frequency ranges, broader bandwidths, and huge antenna arrays in terms of 
potential enabling technologies. Consequently, this will allow for sensing systems with 
high Doppler, angle, and range resolutions and accurate localisation down to the centimetre 
level.

Author [7] examine the potential uses and applications of localization in upcoming 6G 
wireless systems and explore the effects of the key technological enablers. Next, system 
models considering line-of-sight (LOS) and non-LOS channels are offered for millimetre 
wave, terahertz, and visible light placement. Additionally, mathematical definitions and a 
review of localization key performance indicators are provided. A thorough analysis of the 
most advanced conventional and learning-based localisation approaches is also carried out. 
In addition, the design of the wireless system is taken into account, the localisation prob-
lem is stated, and their optimisation is looked at Author [1]. This research thoroughly anal-
yses deep learning-based VSLAM techniques. We describe the basic ideas and framework 
of VSLAM and briefly overview its development process. Next, we concentrate on the 
three parts of deep learning and VSLAM integration: mapping, loop closure detection, and 
visual odometry (VO). We provide a detailed summary and analysis of each algorithm’s 
strengths and weaknesses. Furthermore, we offer an overview of commonly utilised data-
sets and assessment metrics. Lastly, we review the unsolved issues and potential paths for 
merging deep learning and VSLAM.

Author [8] initially provide a detailed overview of the research findings on the subject 
of visual SLAM, divided into three categories: deep learning-enhanced SLAM, dynamic 
SLAM, and static SLAM. To sort out the fundamental technologies related to the use of 
5G ultra-dense system to offload complex computing tasks from visual SLAM systems 
to edge computing servers, the second section of the technology contrast between mobile 
edge computing and mobile cloud computing, along with the sections on 5G ultra-dense 
networking technology and MEC and UDN integration technology, are introduced. Author 
[9] present OTE-SLAM, an object-tracking augmented visual SLAM system that follows 
dynamic objects’ movements and the camera’s motion. Moreover, we jointly optimise the 
3D position of the item and the camera posture, allowing object tracking and visual SLAM 
to work together to both benefits. Experiment findings show that the suggested method 
enhances the SLAM system’s accuracy in difficult dynamic situations.

The Extended Kalman Filter (EKF) is a valuable tool, especially when tackling nonlin-
ear systems, as it linearizes them around the current estimate [10, 11]. Multisensor inte-
grated navigation refers to the fusion of data from multiple sensors to determine the posi-
tion, orientation, or trajectory of a vehicle or device [12, 13]. This process often involves 
specific metrics or measures to evaluate the effectiveness of privacy-preserving techniques 
[14, 15]. Accurate passenger counting holds significance across various applications like 
public transportation, ride-sharing services, and traffic management [16, 17].

Urban heat prediction is crucial for understanding and mitigating the effects of heat 
islands, areas with significantly higher temperatures due to human activities and infrastruc-
ture [18, 19]. Light field image depth estimation tasks involve estimating depth information 
captured in a scene [20, 21], particularly essential for applications like 3D reconstruction, 
autonomous driving, and augmented reality, where precise depth information is pivotal 
[22, 23].

Transformers represent a specific architecture widely used for sequence modeling 
tasks such as natural language processing or image recognition [24, 25]. Detecting 
glass surfaces finds utility in diverse applications such as robotics, augmented reality, or 
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autonomous driving, where accurate scene understanding is indispensable [26, 27]. IoT 
environments encompass various applications, including smart homes, industrial auto-
mation, healthcare, and smart cities [28, 29]. Image feature extraction plays a pivotal 
role in many computer vision tasks like object detection, classification, and segmenta-
tion [30, 31].

Adapting a traffic object detection model from one domain to another typically 
involves gradually refining the adaptation process from coarse adjustments to fine-tuned 
adjustments [32, 33]. A maximum reduction of 22% and 33% in absolute and relative 
trajectory inaccuracy is one of the enhancements.

3  Methodologies

This section provides a detailed description of the deep RCNN framework that real-
ises the monocular VO in an end-to-end manner. It is mainly made up of CNN-based 
feature extraction, GC-based feature mapping, and LSTM-based sequential modelling. 
The overview of the proposed architecture flow is shown in Fig. 1. The input monocu-
lar image sequence from the video clip is taken as input. Next, the input image is pre-
processed to remove noise, resize, and smooth it in the preprocessing stage. Then, the 
feature map is determined using the Global-CA method from the preprocessed image. 
The features from the feature map are extracted using CNN, and the model sequence 
learning is performed using LSTM. Each image pair estimates the pose at each time step 
t through the network. The process is repeated at each time step t + 1 and new poses are 
estimated.

Hard challenges are overcome by,

• Terahertz (THz) frequency ranges are anticipated to be used by 6G, which may enable 
more accurate localization with possibly centimeter-level precision. Massive MIMO 
(Multiple Input Multiple Output) technology, which can improve the capacity and 
dependability of wireless communications and location, is also made easier by these 
higher frequencies.

• In contrast to earlier generations, 6G seeks to lower latency and improve the effectiveness 
of both services by combining communication and location into a single framework.

Fig. 1  Overview of the proposed VO modelling system
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• Signals can be directed more precisely via beamforming, which enhances localization 
accuracy and lowers interference. This is especially useful in densely populated urban 
areas.

• With 6G, artificial intelligence (AI) and machine learning are predicted to play major roles 
in allowing the network to dynamically adapt to the surroundings and user needs.

3.1  Preprocessing

The input RGB image is preprocessed by subtracting the mean value of RGB values and resiz-
ing it with the new size as the multiple of 64. The partial volume effect is caused by variations 
in real-time applications that impact the input images. The Bias field detection and correction 
approach is utilised to get around this. The difference between the grey pixels of comparable 
tissues is known as the bias field and is seen as the picture multiplicative module. Recent stud-
ies on RGB images have shown that smoothing improves results compared to non-smooth-
ing methods. Therefore, this paper pretreated RGB images to improve feature extraction and 
sequencing results using the bias field reduction and smoothing procedure.

The noise N and bias B of the true images of x0 and xt is written as in Eq. (1)

Once the bias field is identified, it is corrected using N4ITK method [34]. To smooth the 
image, a Gaussian filter has been used with the kernel size of 5 × 5 as in Eq. (2)

where � denotes the standard deviation.

3.2  Feature Mapping Using G‑CA

Based on 1-dimensional Convolution via ECANet [35], the nonlocal neural network [36] 
underpins the GCA process. As illustrated in Fig. 2, given b × h × w from the backbone net-
work as feature tensor F. To obtain the 1 × b query as Qb and the key kb, applied the global-
average pooling (GAP) with spatial dimensions followed by the 1D convolution along the 
kernel size of k and sigmoid activation function. The outlier product of Qb and kb is formed 
through softmax functions over the channels to comprise b × b GCA map,

At the end, the attention map is Vb as (Vb × A
g

b
) which is reshaped back as b × h × w to pro-

duce the G-CA map Gb . The channel attention is denoted as in Eq. (4)

3.3  End to End VO Using C‑LSTM

Several well-known and potent DNNar architectures, such VGGNet [37] and GoogleNet 
[38], were created for computer vision applications and have demonstrated exceptional per-
formance. Most of them are built to solve problems related to recognition, classification, 

(1)xt = Bx0 + N

(2)Ismooth(G(x, y)) =
1

2��2
e
−

x2+y2

2�2

(3)A
g

b
= softmax(kb

TQb)

(4)Gb = �(Fully_Connected(Maxpool(X)) + Fully_Connected(Averagepool(X))
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and detection; thus, they are taught to derive knowledge from appearance and visual con-
text. However, as was previously mentioned, VO—which has its roots in geometry—should 
not be strongly associated with look. As such, applying the widely used DNN architectures 
currently available for the VO problem is not feasible. Addressing the VO and other geo-
metric problems requires a framework to learn geometric feature representations. Never-
theless, as VO systems function on picture sequences obtained during movement, inferring 
relationships between successive image frames, such as motion models, is crucial. These 
relationships grow over time. As a result, the suggested C-LSTM takes these needs into 
account. The proposed end–end VO system is shown in Fig. 3.

As seen in the above diagram, the C-LSTM (Convolutional Long Short-Term Memory) 
architecture is a novel strategy created to address the particular difficulties associated with 
voice over the internet. Convolutional neural networks (CNNs) and long short-term mem-
ory (LSTM) units are used in this architecture to provide a system that can interpret spatial 
data and take the temporal sequence of images into account to infer motion.

• This model, specifically designed to learn geometric feature representations—which 
are essential for effectively simulating motion between consecutive image frames—is 
the C-LSTM framework. In contrast to appearance-focused architectures, C-LSTM 
places more emphasis on the scene’s geometry and the relative motion of the object or 
camera.

Fig. 2  G-CA

Fig. 3  Proposed end–end VO using DL
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• The C-LSTM’s LSTM component is especially made to record the dependencies and 
temporal linkages between a series of frames. This is crucial for voice over internet 
(VO), as trajectory estimate accuracy is strongly correlated with the comprehension of 
continuity and changes in position over time.

• Without the need for human feature extraction or pre-processing, the system can learn 
directly from raw RGB images thanks to the end-to-end training methodology. By 
doing this, the system may potentially become more versatile and perform better by 
automatically figuring out what features are most relevant for voice over internet jobs.

3.3.1  CNN (AlexNet) Based Feature Extraction

For the study of virtual images, CNN is a popular DL model [39, 40]. Generally speak-
ing, CNN uses the image as input and divides it into many categories. Input neurons, a 
sequence of convolutional layers, pooling, fully connected layers, and normalising layers 
make up its structure [41]. The convolution layer’s neurons have a tiny region connecting 
them to the layer before it. The fully connected layers’ activation neurons are connected to 
the layers below. Equation  (5) represents a fully connected function’s forward and back-
wards reverse propagation.

where xl
i
 and gl

i
 are the activation and gradient of ith neuron at lth layer, wl+1

j,i
 denotes the 

weight of neuron i at l-th layer and neuron j at l + 1-th layer. Different CNN architectures 
have arisen in recent research growths. AlexNet has been used in this work. For the 2012 
ImageNet competition, it was implemented to lower the picture error in classification from 
26 to 15.3%. It’s an incredibly competent and well-organized architecture. Its eight learn-
ing layers comprise three completely connected layers and five convolution layers. To con-
struct the class labels, the output of the last layer is input into the softmax activation func-
tion. GPU sharing connects the second, fourth, and fifth levels’ kernels to their preceding 
layers. The second layer and the third layer kernel are entirely connected. The max-pooling 
layers are connected to the normalization layer after the first and second layers. Each learn-
ing layer is associated with ReLU activation function. The network architecture details are 
shown in Table 1. The neurons in the last layers are set to 22 to balance the features. The 
output layer, layer 12, has a sigmoid activation function that indicates the efficient prop-
erties of waste goods. This layer is provided as input to the DBN, which classifies waste 
products into recyclable and non-recyclable categories.

3.3.2  VO Sequencing Using LSTM

The backbone network in this work was a dense layer LSTM. Figure 4 displays the three 
layers of the thick LSTM. It consists of two fully connected (FC) layers; the first has 160 
neurons, and the second has 90 neurons. The following layers are batch normalisation and 
dropout. The final layer is the FC, which has three neurons used to segment the picture. 
The dense layer comes after the LSTM to divide the area around the brain tumour. Features 
are fed into the LSTM layer from the ROI and G-CA, and CNN. The dataset’s maximum 

(5)xl+1
i

=
∑
i

wl+1
j,i

xl
i

(6)gl
i
=
∑
i

wl+1
j,i
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number of slices is 30, which equals the number of sequences defined. There are 225 hid-
den units in the first and third layers of the LSTM and 200 hidden units in the second and 
fourth layers. As seen in Fig. 5, each layer was made up of LSTM units with four gates, 
such as input (i), forget (f), cell (c), and output (o).

In Fig. 5, the variables X, C and H declares the input, cell and hidden states sequen-
tially. In each LSTM block, three weights such as input weight Iw, recurrent weight Rw 
and bias b has been used as in Eq. (7)

The cell state at certain time step t is declared as follows,

(7)I� =

⎡
⎢⎢⎢⎣

I�i
I�f
I�c
I�o

⎤
⎥⎥⎥⎦
,R� =

⎡
⎢⎢⎢⎣

R�i

R�f

R�c

R�o

⎤
⎥⎥⎥⎦
, andb =

⎡
⎢⎢⎢⎣

bi
bf
bc
bo

⎤⎥⎥⎥⎦

Table 1  CNN architecture details Layer number Layers Size

0 Input preprocessed image 1280 × 384
1 Convolution_64 filters 640 × 192
2 Max pooling 320 × 96
3 Convolution_128 filters 160 × 48
4 Max pooling 80 × 24
5 Convolution_256 filters 40 × 12
6 Convolution_384 filters 40 × 12
7 Convolution_512 filters 40 × 12
8 Max pooling 20 × 6
9 Fully connected 512 neurons
10 Fully connected 512 neurons
11 Fully connected 512 neurons

Fig. 4  Dense LSTM structure
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where ⊙ is the Hadamard product. The concealed state  Ht of t is denoted as,

3.4  Cost Function Optimization

Consider using the suggested C-LSTM based VO system to calculate the conditional 
probability of the poses yt = (y1, y2,… yt) with the RGB sequential of monocular images 
xt = (x1, x2,… xt) up to the time t in the probabilistic form:

(8)Ct = Ft ⊙ Ct−1 + it ⊙ ct

(9)Ht = ot ⊙ tanh(Ct)

Fig. 5  LSTM block
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The C-LSTM is used for both probabilistic inference and modeling. The DNN maxi-
mizes in order to determine the ideal parameters θ × for the VO:

4  Results and Discussion

This section uses the popular KITTI VO/SLAM benchmark to assess the suggested end-
to-end monocular VO approach [42].Most currently available monocular video encoding 
techniques do not compute an absolute scale, so their localization outcomes must be manu-
ally matched to the actual data. As a result, the open-source VO library LIBVISO2 [43] 
is used for comparison. It recovers the scale for the monocular VO using a fixed camera 
height. It also uses its stereo version, which may acquire the absolute positions directly.

4.1  Dataset

There are 22 image sequences in the KITTIVO/SLAM benchmark [42], 11 of which 
(Sequence 00–10) are linked to ground truth. The remaining ten sequences (Sequences 
11–21) merely contain raw sensor data. The fact that this dataset was captured at a rela-
tively slow frame rate (10 frames per second) while driving through crowded, dynamic 
cities at speeds of up to 90 km/h makes it extremely difficult for monocular VO algorithms 
to process.

Two different experiments were carried out to assess the suggested approach. As ground 
truth is only available for these sequences, the first one is based on Sequence 00–10 to ana-
lyse its performance statistically. The relatively long sequences 00, 02, 08, and 09 are the 
only ones utilised for training to create a separate dataset for testing. The paths are divided 
into segments of varying lengths to produce large training data—7410 samples altogether. 
The tested, trained models are evaluated on the following sequence: 03, 04, 05, 06, 07, 
and 10. As the capacity to extrapolate effectively to actual data is crucial for deep learn-
ing methods, the subsequent trial examines the suggested technique’s behaviour and the 
trained VO models in entirely novel settings. This is also necessary for the VO problem, 
as previously explained. As a result, models trained on all of Sequence 00–10 are tested on 
Sequence 11–21, which lacks training ground truth.

The network is trained using an NVIDIA Tesla K40 GPU based on the well-known DL 
framework Theano. It is trained using the Adagrad optimiser for a maximum of 200 epochs 
at a learning rate of 0.001. Techniques such as dropout and early halting are implemented 
to prevent the models from overfitting. The CNN is based on a pre-trained FlowNet model 
to minimise both the training time and data required to converge [44].

4.2  Experimental Results of VO

The KITTIVO/SLAM evaluation metrics, which calculate the average root mean square 
errors (RMSEs) of translational and rotating errors for all sequences of lengths between 

(10)p
(
yt|xt

)
= p(y1, y2,… yt|(x1, x2,… xt)

(11)�
∗ = argmax

�

p
(
yt|xt;�

)
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100 and 800 m and various speeds (the range of speeds varies in different sequences), are 
used to analyse the performance of the trained VO models.

Sequences 00, 02, 08, and 09 are used to train the initial DL-based model. Sequences 
03 to 07 and 10 are used for testing. In Fig. 6, the translation and rotation against various 
path lengths and speeds are displayed along with the average RMSEs of the calculated 
VO on the test sequences. Due to the implementation of 6G network, the high drifts are 
avoided and the proposed model secured improved results than stereo VISO2-S, Monoc-
ular VISO2-M and DeepVO [45]. The rotational errors are smaller than the translation 
errors since the KITTI dataset is recorded while the car is moving, which tends to be high 
speed on driving and slow in rotation with varied velocity. As seen in Fig. 6a, b while the 
trajectory length is increased, the translation and rotation errors are reduced compared to 
the cases considered, such as stereo, monocular, and DeepVO. Also, in Fig. 7a, b the trans-
lation error and rotation error decrease as speed increases.

Table 2 summarises the detailed performance of the algorithms on the testing sequences. 
It suggests that compared to the examined VO systems, the C-LSTM produces more reli-
able results. While the previous experiment assessed the generalisation of the proposed 
model, the network is tested on the KITTI VO benchmark testing dataset to explore its 
performance in entirely new settings with distinct motion patterns and images. The KITTI 
VO benchmark’s 11 training sequences, or Sequence 00–10, are used to train the C-LSTM 
model. This provides additional data to minimise overfitting and optimise the network’s 
performance. The VO findings cannot be subjected to any quantitative analysis because no 
ground truth is available for these testing sessions.

• Trel-Average translation RMSE (%) of 100–800 m length.
• Rrel is the average rotational RMSE ( ◦/100 m) for 100–800 m length.

The C-LSTM VO produces results that are substantially superior to those of the monoc-
ular VISO2 and somewhat comparable to those of the stereo VISO2. It appears that this 
larger training dataset improves the performance of the proposed model. The DeepVO, a 
monocular VO method, provides an attractive performance, demonstrating that the trained 
model may generalise effectively in new settings, considering the stereo features of the 

(a) Translation error against path length                         (b) Rotation error against path length

Fig. 6  Error calculation during fixed-length path travel a Translation error against path length b Rotation 
error against path length
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stereo VISO2. One possible exception is the Sequence 10 test, which has quite large locali-
sation errors while having a trajectory shape that is similar to the stereo VISO2s. There are 
multiple causes. Firstly, there is insufficient data at high speeds in the training dataset. Only 
Sequence 01, out of the 11 training datasets, exhibits velocities greater than 60 km/h. On 
the other hand, Sequence 10’s top speeds range from 50 to around 90 km/h. Furthermore, 
only 10 Hz is used to collect the pictures, which increases the difficulty of VO estimate 
during rapid movement.

5  Conclusion

This work presents an innovative deep learning-based end-to-end monocular video algo-
rithm. This new paradigm combines CNNs with LSTM to achieve simultaneous represen-
tation training and sequential monocular voice-over network (VO) modelling, leveraging 
the power of GCA-CNN and LSTM. There is no need to properly adjust the VO system’s 
parameters because it is trained end-to-end and does not rely on any module in the tradi-
tional VO algorithms—not even camera calibration—for posture estimation. It is confirmed 

(a) Translation errors on various speed      (b)   Rotation errors on speed

Fig. 7  Error calculation during various speeds of path travel a Translation errors on various speed b Rota-
tion errors on speed

Table 2  Testing sequence results

Seq. No VISO2-S VISO2-M DeepVO C-LSTMVO (Pro-
posed)

Trel (%) Rrel (°) Trel (%) Rrel (°) Trel (%) Rrel (°) Trel (%) Rrel (°)

03 3.2 3.34 8.45 8.76 8.26 6.26 2.87 2.91
04 2.11 2.11 4.67 4.48 7.16 6.15 1.98 2.1
05 1.52 1.59 18.21 17.54 2.61 3.21 1.34 1.42
06 1.48 1.46 7.28 6.13 5.32 5.78 1.35 1.39
07 1.86 1.9 23.61 28.76 3.81 4.24 1.76 1.82
10 1.11 1.20 40.23 31.98 8.12 8.23 1.02 1.1
Mean 1.88 1.93 17.075 16.28 5.88 5.65 1.72 1.79
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that it can generate exact VO findings with exact scales and function well in new contexts 
based on the KITTI VO benchmark. The Analyzed results with the comparison among the 
considered VO approaches show the efficiency of the proposed model with reduced error 
rate on both testing and training video sequences. Quite the contrary: by combining geom-
etry with the representation, knowledge, and models that the DNNs have learned, it can be 
a useful supplement, helping to further enhance the VO’s accuracy and, more importantly, 
robustness.
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