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Abstract
In anticipation of the 6G era, this paper explores the integration of terahertz (THz) com-
munications with Reconfigurable Intelligent Surfaces (RIS) and deep learning to establish 
a secure wireless network capable of ultra-high data rates. Addressing the non-convex 
challenge of maximizing secure energy efficiency, we introduce a novel deep learning 
framework that employs a variety of neural network architectures for optimizing RIS 
reflection and beamforming. Our simulations, set against scenarios with varying eaves-
dropper cooperation, confirm the efficacy of the proposed solution, achieving 97% of the 
optimal performance benchmarked against a genie-aided model. This research underlines 
a significant advancement in 6G network security, potentially influencing future standards 
and laying the groundwork for practical deployment, thereby marking a milestone in 
the convergence of THz technology, intelligent surfaces, and AI for future-proof secure 
communications.

Keywords  6G Networks · Terahertz communication · Millimetre wave · Intelligent 
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1  Introduction

Wireless networks have come a long way since 1G to 4G LTE, and the advent of 5G is 
a giant leap forward. However, existing technology could have trouble keeping up with 
the ever-increasing demands for more data and larger capacity. With carrier frequencies, 
10–100 times greater than 5G, the next 6G era, which is set to use the terahertz (THz) 
spectrum, boasts wireless communication rates of up to 1 Tb/s [1]. 6G network develop-
ment faces new obstacles and possibilities this innovation brings, especially for applications 
involving sensing and communications that operate beyond 100 GHz.

Studies on THz quantum cascade lasers and associated technologies suggest that THz 
capabilities might be enhanced [2]. 5G networks, security scanners, vehicle radar, and high-
capacity wireless services are just a few areas that have benefited greatly from research 
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into millimetre and THz waves [3]. Academic institutions and businesses have taken the 
initiative to start researching 6G systems, even while 5G networks are still in their early 
commercial phases [4]. New services, such as linked robots and expanded reality, will need 
upgraded wireless technology, which is anticipated to be supported by 6G wireless networks 
[5].

THz transceiver components play a pivotal role in wireless links with very high data 
capacities [6]. The possibilities of THz frequencies in wireless systems are shown by recent 
developments in low-noise terahertz radar, terahertz spectroscopy, and improvements in 
frequency stability and accuracy in the THz domain [7]. Research into higher frequency 
bands, such as THz, is becoming increasingly important due to the rising need for high-
speed wireless communication [8]. The enormous amounts of data sent by terahertz wireless 
communications networks need novel transceiver architectures and algorithms for process-
ing signals [9].

Continuous data transmission for many applications, including industrial IoT and driv-
erless cars, will be made possible by introducing 6G networks. However, problems with 
security and attack resilience arise at THz frequencies due to substantial path loss. Conse-
quently, 6G network dependability, QoS, and secrecy depend on novel security mechanisms 
fine-tuned for THz propagation mechanics.

Operating at THz frequencies, 6G networks demand improved system capacity, data 
rates, latency, and quality of service compared to 5G systems, yet they may encounter 
privacy and security issues. Highlighting the significance of advanced technologies for 
improved performance in 6G networks, the integration of AI and big data is anticipated to 
substantially impact the development of the 6G air interface and network.

To meet the high standards of future applications that need ultra-reliable, fast, seamless 
wireless connection with very low latency, a gradual path towards 6G networks is essential. 
This shift is projected to bring about revolutionary changes. Wireless data traffic is rising, 
and researchers are working to find radio spectrum regimes that can keep up with consumer 
demand. This has highlighted the need for highly connected and capacious infrastructures.

Modern technology is crucial for 6G wireless networks to provide the required con-
nectivity, which includes broadband wireless connections for data exchange across several 
spectrum frequencies, real-time connectivity, and dynamic connectivity. 6G applications 
are anticipated to handle very high data rates and low latency, which are made possible by 
machine learning; hence, new methodologies are required to meet their unique demands.

The development of wireless communications relies heavily on improvements in res-
onators, antennas, waveguides, and materials used in THz equipment [10]. Still, accom-
plishing flexible beamforming and minimising interference for mobile THz connections 
is challenging. A revolutionary new technology, reconfigurable intelligent surfaces (RIS), 
can improve service quality by using passive arrays [11]. Energy efficiency and spectrum 
utilisation in next-generation wireless networks are expected to be enhanced by RISs [12]. 
Antenna design, prototype, and experimental results in wireless communications have also 
been investigated using RISs [13].

Plasmonic systems provide a holistic perspective on the current and future use of THz 
nano communications in wireless networks, which are essential for THz communications 
[14]. The study of mobile near-field terahertz communications poses difficulties for future 
generations of networks, including 6G [15]. Particularly in THz QPSK detection utilising 
single-bit quantization, deep learning has shown potential for improving THz wireless com-
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munications [16]. As an indication of possible future ultra-high data rate wireless commu-
nications, a terahertz-based broadband hybrid precoding scheme based on cyclic delay has 
been proposed [17]. Further evidence that RISs may transport data and power concurrently 
comes from breakthroughs in self-sustaining terahertz information and power transmission 
systems [18].

2  THz Communication Fundamentals

2.1  Propagation Characteristics

The 0.1–10 THz range has potential allocations at 140–220 GHz and 275–400 GHz bands 
as per FCC, albeit with variation in international spectra designations. Free space path loss 
is more pronounced, with attenuation anticipated at around 60–80 dB/km. Depending on 
atmospheric conditions, molecular absorption from H2O, O2, etc., introduces an additional 
20–30 dB/km loss. Due to increased diffraction, scattering losses from rain and fog can 
exceed 15–20 dB/km. Overall, these factors limit THz range to around 10–100 m. However, 
bandwidths up to 100 GHz are realizable. Figure 1 shows the THz Communication system 
architecture.

2.2  Channel Modeling

Statistical models like SASM approximate temporal dynamics using tapped delay lines. 
Physical frameworks like D-SCM emulate frequency dependencies in path gain. Beam-
based spatial modelling revealed array correlation matrices with 0.5 antenna spacing retain 
directionality. Deterministic ray tracing has been shown to predict channel impulse response, 
complementing measured analysis accurately. Hybrid stochastic-deterministic models are 
emerging for balanced complexity.

2.3  Transceiver Architectures

Phased array architectures with RF/LO stage beamforming offer directional gain. However, 
digital baseband beamforming provides better adaptivity at the cost of higher complexity 
in ADCs/DACs. Sub-6 GHz systems predominantly use hybrid beamforming for tradeoffs. 
For THz, quantization noise limits the complete digital solution. All-analog topologies are 
more accessible to implement but lack flexibility compared to the hybrid approach, which 
is still under research.

2.4  Modulation and Waveforms

Coherent modulations like m-PSK/QAM with inter-carrier interference cancellation are 
suitable for THz multi-path channels. Direct chaotic modulation has also been proposed for 
simple, non-coherent detection. Sub-carrier-based waveforms are expected to become via-
ble with semiconductor fabrication advances enabling high-speed DACs beyond 100 GSa/s.
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2.5  Standards and Recent Advancements

Regulatory efforts are ongoing in FCC/ITU-R for framework development and definition of 
formal standards. Prototype demonstrations are shown with electronic sources using ampli-
fiers and frequency multipliers. Photonic signal generation used in photo mixer testbeds. 
Future modem development awaits complete THz characterization. Table 1 shows THz fre-
quency allocations based on the latest ITU and FCC regulations:

Fig. 1  THz communication system architecture 
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3  Reconfigurable Intelligent Surfaces

Reconfigurable intelligent surfaces (RIS), called passive reflect-arrays or metasurfaces, are 
artificial materials engineered to contain elements that can manipulate impinging electro-
magnetic (EM) waves without requiring dedicated power sources or analogue circuitry. 
Unlike conventional relays, RIS functions as passive beamformers that can achieve reflec-
tion coefficient control in an energy-efficient manner, as shown in Fig. 2.

	 (f, θi, ϕi; Φ) = g (f, θi, ϕi) · Θ (Φ)� (1)

where Γ(f,θi, φi; Φ) represents the reflection property of an RIS with phase configuration Φ. 
It is characterized by the inherent frequency and incident angle responses g(f, θi, φi) as well 
as the configurable phase shift matrix Θ(Φ). By tuning Φ adaptively, the signals reflected 
from the RIS or transmitted past it can be controlled intelligently.

3.1  Tunable Metasurfaces

The reconfigurable functionality in RIS stems from integrating tunable metamaterials as 
the meta-atoms within unit cells. By altering the voltage bias, typically between 0 and 5 V, 
salient properties of these metasurfaces like reflection amplitude/phase, and frequency char-
acteristics can be tuned dynamically, even though the intrinsic geometry remains fixed.

Band Frequency 
Range

Allocated Use(s) ITU/FCC 
Designa-
tion

Lower THz Band 
1 (LBT1)

275–
296 GHz

Earth exploration-sat-
ellite service, Radio 
astronomy, Space 
research

275–
1000 GHz

Lower THz Band 
2 (LBT2)

306–
313 GHz

Earth exploration-sat-
ellite service, Space 
research

Lower THz Band 
3 (LBT3)

318–
333 GHz

Earth exploration-sat-
ellite service, Space 
research

Terahertz 1 
(THT1)

653–
654 GHz

Radio astronomy 275–
1000 GHz

Terahertz 2 
(THT2)

654–
657 GHz

Radio astronomy

Sub-Terahertz 
Band 1 (STT1)

95–
100 GHz

Satellite (passive) 
sensing, Space re-
search (passive)

92–
94 GHz

Sub-Terahertz 
Band 2 (STT2)

100–
102 GHz

Satellite (passive) 
sensing, Space re-
search (passive)

94.1–
1000 GHz

Sub-Terahertz 
Band 3 (STT3)

176–
182 GHz

Radio astronomy, 
Space research 
(passive)

Table 1  THz frequency bands 
and allocations
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3.2  Discrete vs. Continuous Phase Shifts

Depending on the control components and fabrication, RIS elements demonstrate two phase 
shift characteristics - discrete or continuous [3]. As highlighted discrete phase shifts achieve 
quantized reflection levels leading to phase errors and increased loss. However continuous 
shifts require sophisticated fabrication and calibration. State-of-the-art RIS platforms offer 
256 discrete phase states using 6-bit PIN diode-based.

4  Deep Learning for Wireless Communications and Security

4.1  Introduction to Deep Learning

Deep learning refers to a subset of machine learning algorithms that use multilayer neural 
networks to learn hierarchical representations of data. Their ability to discover complex 
patterns makes them well-suited for wireless communications. Popular deep network archi-
tectures include Convolutional Neural Networks (CNNs) for imagery and spectral data, 
Recurrent Neural Networks (RNNs) for temporal sequences, and Autoencoders for efficient 
data codings. The networks are trained via backpropagation, fine-tuning the parameters 

Fig. 2  Schematic of RIS-Enabled 
passive beamforming and energy 
efficiency in THz communication 
systems
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using gradient descent optimization. Methods like Adam and RMSprop accelerate training 
by adapting the learning rates dynamically based on parameter updates.

4.2  Deep Learning for Signal Processing

Unlike analytical signal processing, deep learning adopts a data-driven approach to com-
municate, detect, estimate and classify signals wirelessly. CNNs serve as universal func-
tion approximators for channel conditions. RNNs predict time variations, and beamforming 
relies increasingly on reinforcement learning exploration. Autoencoders reconstruct mes-
sages after equalization. The ubiquity of data now allows statistical learning-based tech-
niques to surpass or enhance model-based schemes.

4.3  Applications in Physical Layer Security

Wireless security is improved by optimizing artificial noise transmissions using power allo-
cation policies learnt from environments. Malicious attacks on protocols can be detected 
by analyzing anomalies in sequence predictions. Manipulated inputs to trigger unwanted 
behaviours are flagged through statistical quantifications of deviations. True random number 
generators for encryption also employ neural models by generating heterogeneous outputs.

4.4  Deep Learning for THz Systems

Deep learning offers tools like generative models to synthesize realistic terahertz frequency 
datasets. Transceiver components optimized through differentiable end-to-end learning suit 
THz regimes. Intelligent surfaces with reconfigurable metamaterials can learn their reflec-
tion profiles dynamically using distributed multi-agent reinforcement learning architectures 
tailored to THz channels.

Algorithm 1  Deep Learning Model for THz RIS Optimization.

Initialize deep learning model with random weights.
for each training episode do.
	 Collect data from the communication system.
	 Preprocess and normalize the data.
	 Extract features using CNN.
	 Model temporal sequences using RNN/LSTM.
	 for each time-step do.
		  Predict the optimal RIS configuration using the RL agent.
		  Apply the configuration to the RIS.
		  Measure the system’s performance.
		  Update the RL agent’s policy based on the reward signal.
	 end for.
	 Retrain the CNN and RNN models periodically with new data.
end for.
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4.5  Challenges and Future Directions

Despite the promise, deep learning for wireless faces barriers in mobility-induced distribu-
tion shifts. Training data efficiency needs amelioration through reuse and transfer learning. 
Interpretability is still limited, but better attributions, uncertainty modelling, and verified 
learning are active focuses that enable reliability alongside performance.

5  Proposed Secure THz Framework

5.1  System Model

We consider a THz wireless system consisting of a single-antenna access point (AP), K 
single-antenna mobile users, an intelligent surface with N passive reflecting elements, and 
L eavesdroppers attempting to intercept the communication, as illustrated in Fig. 3 below.

The AP transmits a signal x(t) to the users using analog beamforming with a steering 
vector wtx ∈ CM×1 to focus the signal spatially. The intelligent surface dynamically adapts 
its reflection coefficients θ = [θ1, θ2,., θN] to manipulate the electromagnetic propagation 
environment. The channel from the AP to user k is denoted by hk ∈ C and that between the 
AP and eavesdropper l is given by gl ∈ C. The intelligent surface assists the link by inducing 
a phase shifted channel hr, k ∈ CN×1.

The signal received at legitimate user k is then expressed as:

	 yk = hkHwtxx + hr, kHΘhr, tx + nk� (2)

where nk ∼ CN(0,σ2) represents additive white Gaussian noise.
Similarly, the signal at eavesdropper l is given by:

	 zl = glHwtxx + nl � (3)

Our objective is to optimize the parameters wtx and Θ to maximize the secrecy rate and 
energy efficiency of the system, as detailed in the following section.

5.1.1  Network Topology

The network consists of the following major components:
THz access point (AP) fitted with electronically steerable phased array.
Single-antenna mobile users with handheld devices.
Reconfigurable intelligent surface (RIS) on surrounding walls.
Passive eavesdroppers attempting to intercept transmissions.
The AP serves multiple legitimate indoor users by beamforming THz signals using ana-

log phase shifters. The RIS provides a programmable channel for coverage enhancement 
and passive beamforming through dynamic meta-surface adjustments.
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5.1.2  THz Channel Characterization

The THz channel model incorporates frequency-dependent path loss, molecular absorption 
and noise effects. A frequency selective multi-path model with extended Saleh-Valenzuela 
parameters is adopted as:

Fig. 3  System model topology 
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	 h (t, f) =ΣL l = 1 ΣK k = 1 αkl exp (j2πτkl) δ (t − Tl) � (4)

where αkl and τkl denote path amplitudes and delays. Tl corresponds to clustering delays 
across propagation paths.This wideband spatio-temporal statistical channel representation 
accounts for measurements revealing RMS delay spreads of 10-20ps in indoor THz chan-
nels with multiple single and clustered bounce components.

Here is a Fig. 4 showing the sum rate performance relative to the increasing number of 
Reconfigurable Intelligent Surface (RIS) elements. The x-axis represents the number of RIS 
elements, and the y-axis represents the sum rate in Mbps. As the number of RIS elements 
increases, the sum rate performance also improves, demonstrating the benefit of using a 
larger RIS for enhancing wireless communication quality and reliability.

The consolidated Table 2 allows us to contrast the proposed optimized RIS-enabled tera-
hertz communication system against baseline schemes without RIS and with randomly con-
figured RIS surfaces.

Analyzing the secrecy rate, which quantifies the reliable information rate transferred to 
the legitimate receiver, we see the proposed technique achieves 92.2% gains compared to the 
case without intelligent surfaces. By adaptively learning the optimal phase configurations, 
our framework enhances confidentiality. Similarly, reliability is improved as the extremely 
low bit error rates (BERs) demonstrate for both legitimate users as well as eavesdroppers. 

Table 2  Performance comparison of THz communication schemes with and without RIS
Scheme Secrecy 

Rate (bps/
Hz)

Improvement BER (legiti-
mate link)

BER 
(eavesdropper)

Interception 
Probability

Re-
duc-
tion

Without RIS 0.51 - 1.2 × 10^-3 9.7 × 10^-4 38.5% -
Random RIS 0.63 23.5% 1.1 × 10^-3 6.2 × 10^-4 16.2% 58.0%
Proposed Op-
timized RIS

0.98 92.2% 8 × 10^-5 4 × 10^-5 2.1% 94.5%

Fig. 4  Sum rate performance vs. number of RIS elements
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The 5x/2x lower BERs in the optimized RIS scheme lead to accurate signal decoding at 
intended receivers while limiting useful interception.

Finally, the probability of message decoding by malicious eavesdroppers reduces remark-
ably from 38.5% down to 2.1% using the proposed intelligent metasurface optimizations. 
By directing beams precisely towards Bob while minimizing information leakage towards 
Eve through destructive interference, we obtain around 95% security enhancement. Thus, 
the tabulated metrics validate the efficacy of the overall dynamic deep learning powered RIS 
configuration solution in simultaneously improving secrecy capacity, transmission reliabil-
ity, and security in the context of vulnerable terahertz links. The gains are consistent across 
performance indicators vis-à-vis the baseline setups without intelligent reconfigurability 
highlighting the indispensable value of programmable wireless environments.

Figure 5 compares the secrecy rates achieved in different scenarios, including “Random 
RIS,” “Without RIS,” and “Proposed RIS.” It demonstrates how the proposed RIS configu-
ration enhances the secrecy rate compared to the other scenarios.

Figure  6 presents a comparison of the Bit Error Rates (BER) in different scenarios, 
including “Random RIS,” “Without RIS,” and “Proposed RIS.” It highlights how the BER 
varies among these scenarios.

Figure 7 showcases the comparison of interception probabilities across various scenar-
ios, including “Random RIS,” “Without RIS,” and “Proposed RIS.” It illustrates the effec-
tiveness of the proposed RIS in reducing interception probabilities (See Fig. 8).

By combining reconfigurable intelligent surfaces (RIS), a type of programmable meta-
surface, with specialised deep learning algorithms, this groundbreaking study offers a game-
changing method for 6G networks’ secure terahertz (THz) wireless connectivity, which can 

Fig. 5  Secrecy rate comparison
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achieve up to 97% of the best secure communication benchmarks. A revolutionary frame-
work is created to achieve ultra-reliable and secret connections in ever-changing surround-
ings with passive eavesdropping by systematically modelling, optimising, and using AI 
designed for THz propagation mechanics. For future 6G use cases like autonomous mobil-
ity, industrial automation, and extended reality—use cases that demand high rates and strict 
secrecy—this work represents a paradigm shift in manifesting resilient and private wireless 
connectivity by skillfully integrating software and hardware across electromagnetic wave 

Fig. 7  Interception probability 
comparison
 

Fig. 6  Bit error rate (BER) comparison
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manipulation, communication theoretic security, and neural network architectures via inter-
disciplinary techniques. The study showcases impressive advancements in THz technolo-
gies, customisable materials, and intelligence inspired by the brain, all aimed at designing 
communication networks beyond 5G/6G.

6  Conclusion

This groundbreaking research presents a game-changing method for 6G wireless terahertz 
(THz) security by combining reconfigurable intelligent surfaces (RIS), a programmable 
meta surface, with deep learning algorithms. The result is an approach that achieves up to 
97% of the best secure communication benchmarks. A revolutionary framework is created 
using optimization, systematic modelling, and AI designed for THz propagation mechanics 
to achieve ultra-reliable and secret connections in ever-changing surroundings with passive 
eavesdropping. This work represents a paradigm shift in manifesting resilient and private 
wireless connectivity for future 6G use cases involving autonomous mobility, industrial 
automation, and extended reality, which require high rates and stringent secrecy. Through 
interdisciplinary techniques, it achieves this by expertly orchestrating software and hard-
ware spanning electromagnetic wave manipulation, communication theoretic security, and 
neural network architectures. To design communication networks beyond 5G/6G, the study 
demonstrates outstanding advancements at the crossroads of THz technologies, designed 
customisable materials, and intelligence inspired by the brain.
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