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Abstract
Extensive research on traffic of modern communication networks, including Internet and 
wireless, establish the presence of power-law behavior. However, developing traffic mod-
els capturing power-law characteristics is a difficult task due to analytical intractability. 
Adopting maximum entropy approach, a theoretical model Pow∕Pow∕1∕∞ has been pro-
posed recently. The paper extends this framework to build two new theoretical models 
Pow/Pow/1/K and Pow/Pow/K/K where both inter-arrival and service times follow power-
law distribution. Closed form expressions of queue length distribution and various perfor-
mance measures are derived in terms of traffic intensity � . An explicit expression for state 
probability distribution of Pow/Pow/K/K is also derived and compared with well-known 
Erlang loss formula. Both queue length distribution and blocking probability are found to 
depict power-law implying that increasing buffers have little impact on improving the per-
formance of systems in these cases. Numerical computations reveal that the mean queue 
length explodes as � tends to 0.5 resulting in longer delay. The variance of number of pack-
ets also depicts sharp rise as � approaches to 0.3. These results are in close agreement with 
the empirical studies carried out on real traffic traces in the past. The proposed models are 
useful in designing networks, dimensioning resources and developing congestion control 
algorithms.

Keywords  Entropy · Erlang loss formula · Geometric mean constraint · Inter-arrival time · 
Maximum entropy principle · Power-law behavior · Quality of service · Network systems

1  Introduction

Ubiquity of power-law has been well established across variety of systems [1]. If X is a 
random variable following  power-law distribution then there exists a positive parameter k 
such that the Complementary Cumulative Distribution Function (CCDF) behaves as
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It can be noted from (1) that the graph of CCDF with x on log–log scale is a straight line 
with slope k. The presence of power-law also leads to long-tail behavior in a system [2]. 
One of the widely observed power-law distribution in computer communication networks 
is Pareto. Many empirical studies on various types of network traffic also validate the pres-
ence of power-law characteristics [3]. This is in contrast to traditional voice networks which 
exhibit exponentially distributed inter-arrival time. Thus, it becomes imperative to examine 
the impact of power-law distributed traffic on the performance of network systems. Such a 
study is essential for determining appropriate resource (for example buffers) dimensioning 
in network systems like routers and gateways. The requirement of proper number of buffers 
in routers has been emphasized by Ghosh et al. [4] by observing that improper and large 
buffers may result in longer queueing delays based on the analysis utilizing M/M/1 and 
M/D/1 queueing models.

1.1 � Motivation

Several studies on various types of applications and networks traffic also suggest inappli-
cability of models based on exponential distribution. For example, statistical analysis of 
mobile data traffic reveals that inter reference time of file (time difference between suc-
cessive requests of a file) as well as the inter-session time (time difference between two 
sessions of a client) is well described by lognormal distribution [5]. Investigation on the 
cyberlocker service traffic on cloud platform confirms that inter arrival time of cyberlocker 
traffic flows can be best modelled by hybrid lognormal and gamma distribution [6]. It is 
worth to mention the findings by Mitzenmacher [7] here, “lognormal and power law distri-
butions connect quite naturally, and hence, it is not surprising that lognormal distributions 
have arisen as a possible alternative to power law distributions across many fields”. Power-
law is ubiquitous. Access pattern of file downloads in global file hosting platforms at cloud 
[8] and DNS queries [9] also follow power-law. A similar behavior is observed for video 
traffic stream [10]. Empirical studies of web and peer-to-peer network traffic also establish 
that inter-arrival time follows two mode Weibull distribution and Weibull-Pareto distribu-
tion respectively [11]. Kokoszka et al. [12] analyze the inter-arrival time between consecu-
tive anomalies in the Internet and tail probabilities are found to decay following power-law. 
A model to evaluate the performance of Wi-fi network using power-law distribution for 
ON periods has been built in [13]. The emergence of power-law is also reported in satellite 
network [14]. The most evolving trend in networking domain is Internet of Things (IoT). 
After collecting and analyzing sensors data from IoT-based smart home applications, gen-
eralized Pareto distribution is found to describe the inter-arrival time of packets in [15]. 
The requirement for developing simple models based on Pareto and Weibull distribution to 
capture traffic characteristics of access as well as backbone networks is emphasized in [16]. 
The presence of power-law in mobile network of an operator in France has been reported 
in [17]. A good summary of the appearance of power-law in diverse types of network is 
compiled in [18] recently.

The power-law behavior in network traffic has severe impact on the performance of net-
work systems, for example, high queueing delays. The performance analysis of network 
systems is carried out using models from queueing theory like M/G/1, M∕G∕∞ with ser-
vice time G following Pareto or other long-tail distribution [19]. These models do not rep-
resent an actual real network system. Also, these models become analytically intractable 

(1)P{X > x} ∼ x−k, x > xmin.
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and only provide approximate asymptotic results, for example, upper bound on blocking 
probability is estimated from buffer overflow probability [20–22]. The blocking probability 
relates to the probability with which buffers inside a network system are full. The blocking 
probability is computed using finite buffer queueing models. Recently, bounds on queue 
and packet loss distribution are obtained for finite buffer system under the assumption of 
Poisson arrivals [23]. However, the Poisson assumption based queueing models are use-
ful only for voice networks and classical data networks as they fail to capture the features 
of traffic exhibited in modern days’ integrated communication networks. Thus, there is 
a requirement to develop appropriated models capturing the traffic characteristics of the 
modern networks.

1.2 � Role of Maximum Entropy Framework in Networks’ Performance Evaluation

An alternate mechanism for deriving the results of queueing theory is based on maximum 
entropy framework exploiting the Jaynes maximum entropy principle (MEP) which states 
that the most appropriate probability distribution given some prior information about the 
system is the one which maximizes entropy of the system [24]. Prior information is usu-
ally available in the form of moments. MEP using Shannon entropy has been successfully 
employed to recover the results of M/M/1 queueing systems [24] when arithmetic mean is 
the characterizing moment. While applying MEP to queueing systems, there is no assump-
tions made about the probability distribution of arrivals and services, rather the queueing 
system is treated as a black box and only the indices like mean number of customers in the 
system, mean utilization etc. are considered [25]. Kouvatsos [26] has derived the expres-
sion for steady state probability distribution of G/G/1 queueing system using MEP when 
information about first two moments of arrival and service distributions are available. It 
is important to note that the power exponent k in (1) usually lies between 2 and 3 and the 
second order moment (i.e. variance) becomes infinite in this range. Hence, one cannot use 
the results of G/G/1 model to analyze the queueing system driven by power law distributed 
arrivals and service. Thus, other entropy measures has been explored to model these sys-
tems. Shachi and Karmeshu [27, 28] have used MEP with Tsallis entropy measure to obtain 
the results for broadband networks depicting power-law behavior. Amit and Karmeshu [29, 
30] have applied MEP with Shannon entropy when geometric mean or shifted geometric 
mean of system size is specified as constraint to generate power-law behavior. The impor-
tance of geometric mean in relation to power-law has been discussed in the literature. As 
pointed out in [31], for majority of the power law distributions like Pareto, first moment or 
arithmetic mean is not defined and application of geometric mean thus becomes logical. 
Visser [32] concludes that the logarithmic average i.e. geometric mean plays an important 
role seems to have a connection with the fact that logarithmic scales are ubiquitous in clas-
sifying many natural and social phenomena. Following this, Amit and Karmeshu [29] note 
that geometric mean is an unbiased measure for lognormal distribution that approximates 
tail of many distributions showing power-law behavior.

1.3 � Contributions

It is worth highlighting that the packets size in networks does not remain fixed. In the con-
text of wireless Long Term Evolution (LTE) networks, packets lengths are found to follow 
Pareto distribution [33]. The same pattern is expected to present in 5G wireless networks 
[34]. Thus, it becomes essential to develop models considering power-law distributed 
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service time as well. To the best of our knowledge, there is no literature available that con-
siders power-law distributed arrival and service processes and obtain closed-form expres-
sions for performance measures. These models facilitate in performance evaluation of sys-
tems such as routers, gateways, servers on cloud etc. in modern computer communication 
networks. Motivated by the these findings, an infinite capacity Pow∕Pow∕1∕∞ where both 
inter-arrival time of packets as well as service time follow power-law distribution has been 
proposed by Sharma [35] using maximum entropy approach with geometric mean and uti-
lization as constraints. This paper extends the framework presented in [35] to finite buffer 
Pow/Pow/1/K and Pow/Pow/K/K models. The closed-form expressions for queue length 
distribution and various performance measures are obtained in terms of traffic intensity. 
The results of performance analysis are found to be in close agreement with past empirical 
studies. This paper is an extension of [35] and makes following contributions: 

1.	 A single server finite buffer model Pow/Pow/1/K is proposed and closed-form formula 
for blocking probability is derived in terms of traffic intensity.

2.	 The above model is extended to include multiple servers viz. Pow/Pow/K/K, the loss 
system and modified Erlang loss formula is obtained.

3.	 The applications of both newly proposed models in computing buffer requirements is 
illustrated.

The paper is organized into five sections. The Pow∕Pow∕1∕∞ model is reproduced from 
[35] in Sect. 2 and closed form expressions for steady-state queue length distribution and 
various performance measures in terms of traffic intensity are presented. The finite buffer 
queueing system Pow/Pow/1/K is proposed in Sect. 3. The multi-server generalization of 
the finite buffer model is presented in Sect. 4. The last Sect. 5 discusses the findings and 
application of the proposed models in congestion control algorithm’s design as well as 
concludes the paper.

2 � Pow∕Pow∕1∕∞ Model

The model as proposed in [35] is presented in this section for completeness. Consider a 
network system such as a router or where packets arrive following a stochastic process 
such that inter-arrival time of the packets is explained by power-law distribution. Since, the 
packets may vary in size and some studies have confirmed it to be characterized by power-
law distribution [33, 34], the processing time of the packets at the system can also be mod-
eled by power-law distribution. Let random variable N represent the number of packets 
inside the system. The probability that there are n packets at a network system at any given 
instant of time is P(N = n) = pn . Given this, the Shannon entropy for the system is given 
by

Assuming that prior information about the number of packets is available in the form of 
geometric mean G of non-zero queue size as

(2)S = −

∞
∑

n=0

pn ln pn
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and system utilization

where � is the traffic intensity. The normalization constraint is

Employing MEP, the most objective probability distribution of number of packets is 
obtained by maximizing Shannon entropy (2) subject to (3), (4) and (5) as constraints. The 
optimization problem can be solved by Largrange’s multiplier method. The Lagrangian 
function in this case becomes

Differentiating (6) with respect to pn and equating to zero gives

and

Solving (7) and (8) using constraints (4) and (5) results in

where Z =
∑∞

n=1
n−� is normalization constant. In order to compute Z, we consider 

{

1

n𝜅
, 𝜅 > 1

}

 , which is a strictly decreasing sequence of positive numbers. Thus, taking 

f (x) =
1

x�
 , the normalization constant can be approximated by integral as 

Z =
∑∞

n=1
n−� ≈ ∫ ∞

1
x−�dx transforming (9) into

The Lagrange’s parameter � can be computed by substituting (10) in (3) viz.,

Replacing summation by integral in (11), the expression for � becomes

Postulating 1
�
= � , (10) becomes

(3)
∞
∑

n=1

(ln n)pn = lnG

(4)U = 1 − p0 = �

(5)
∞
∑

n=0

pn = 1.

(6)L = −

∞
∑

n=0

pn ln pn + �

[

lnG −

∞
∑

n=1

(ln n)pn

]

+ �

[

1 − U − p0
]

+ �

[

1 −

∞
∑

n=0

pn

]

.

(7)−
(

1 + ln pn
)

− � ln n − � = 0, n ≠ 0

(8)−
(

ln p0 + 1
)

− � − � = 0.

(9)pn = Z−1Un−�

(10)pn = U𝜅

(

1 −
1

𝜅

)

n−𝜅 , 𝜅 > 1, n ≥ 1.

(11)U(� − 1)

∞
∑

n=1

(ln n)n−� = lnG.

(12)� = 1 +
U

lnG
.



	 S. Sharma 

1 3

This is steady state probability distribution of the number of packets at a network system, 
also known as queue length distribution and is a power-law distribution. This is similar 
to the asymptotic behavior of the stationary queue length distribution obtained by [19] 
for M/G/1 with service time following power-tail distribution. Using (4), one can easily 
express pn in terms of p0 as

2.1 � Performance Measures

For analytical tractability of the performance evaluation of the Pow∕Pow∕1∕∞ queue, 
the fluid flow approximation is considered such that the number of packets arriving to the 
queue is assumed to be so large that it appears to be continuous flow of fluid. Under this 
approximation, discreteness of the random variable N can be neglected and it can be treated 
as a continuous random variable X, (chapter 2 of [36]). Fluid flow is a good approximation 
under heavy-traffic condition.

For computing quality of service (QoS) parameters, the average number of packets 
in the system, known as mean queue length, is required. The mean queue length for this 
model is

Using fluid flow approximation, (15) becomes

One can also compute the closed form expression for variance of number of packets �2 in 
the system under fluid flow approximation as

The variance of number of packets become infinite as � tends to 1/3.
One important QoS parameter is overflow probability which is the probability of 

exceeding a given buffer size � viz.,

which under heavy traffic can be simplified into

It is clear from (19) that the overflow probability also follows power-law in buffer sizes 
asymptotically

(13)pn = (1 − 𝜌)n−1∕𝜌, n ≥ 1, 𝜌 < 1.

(14)pn = n−1∕𝜌p0, n ≥ 1, 𝜌 < 1.

(15)N̄ =

∞
∑

n=1

npn = (1 − 𝜌)

∞
∑

n=1

n
−
(

1

𝜌
−1

)

.

(16)N̄ =
𝜌(1 − 𝜌)

(1 − 2𝜌)
, 𝜌 < 1∕2.

(17)𝜎
2 = 𝜌(1 − 𝜌)

[

1

1 − 3𝜌
−

𝜌(1 − 𝜌)

(1 − 2𝜌)2

]

, 𝜌 < 1∕3.

(18)P(n > 𝜔) =

∞
∑

n=𝜔+1

(1 − 𝜌)n−1∕𝜌

(19)P(n > 𝜔) =

(

𝜌

1 − 𝜌

)

(𝜔 + 1)
−
(

1−𝜌

𝜌

)

.
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This result is in conformity with the one obtained by [37]. The average waiting time of the 
packets at network system can be computed by using Little’s law and is given by

Here, � is the mean arrival rate of packets at the network system.
The performance measures are analyzed numerically to get deeper insight into 

Pow∕Pow∕1∕∞ queueing system.

2.2 � Numerical Results

This subsection contains the numerical results evaluating performance of Pow∕Pow∕1∕∞ 
system. Table 1 shows the probability of number of packets, as obtained from (13) for vari-
ous values of � . As expected, the probability is initially low and then increases with �.

Since the performance measures are derived using fluid flow approximation, it becomes 
imperative to examine its accuracy. The comparison of exact mean queue length (15) is 
carried out with approximated mean queue length (16) and results are presented in Table 2. 
The approximated mean queue length starts matching with exact mean queue length as 
traffic intensity parameter � increases. This is expected as fluid flow approximation pro-
vides accurate results under heavy traffic.

(20)P(n > 𝜔) ∼ 𝜔
−
(

1−𝜌

𝜌

)

.

(21)W =
1

�

[

�(1 − �)

1 − 2�

]

.

Table 1   Probabilities in 
Pow∕Pow∕1∕∞ Queue

n �

0.1 0.2 0.5 0.9

2 8.79 × 10
−4 0.02500 0.12500 0.04629

5 9.22 × 10
−8

2.56 × 10
−4 0.02000 0.01672

10 9.00 × 10
−11

8.00 × 10
−6 0.00500 0.00774

20 8.79 × 10
−14

2.50 × 10
−7 0.00125 0.00358

50 9.22 × 10
−18

2.56 × 10
−9 0.00020 0.00129

100 9.00 × 10
−21

8.00 × 10
−11

5.00 × 10
−5 0.00059

Table 2   Comparison of 
approximated and exact mean 
queue length of Pow∕Pow∕1∕∞

� Approximated mean 
queue length

Exact mean queue length

0.1 0.1125 0.9018
0.2 0.2667 0.8659
0.3 0.5250 0.9906
0.4 1.2000 1.5674
0.45 2.4750 2.8012
0.49 12.4950 12.7909
0.499 124.9995 125.2888
0.4999 1.2500 ×103 1.2503 ×103
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The mean number of packets (16) viz. mean queue length is plotted for various val-
ues of traffic intensity � in Fig. 1.

The mean queue length for Pow∕Pow∕1∕∞ queue remains lower for small values 
of � . As the traffic intensity crosses 0.3, the mean queue length increases fast. The 
mean queue length increases abruptly towards infinite as � approaches to 0.5 in case of 
Pow∕Pow∕1∕∞ system. These results comply to earlier empirical studies [38]. Hence, 
the proposed model captures the real network traffic burstiness.

The variance of number of packets (17) shows interesting property as shown in 
Fig. 2. The variance is not significant for lower values of � but increases sharply as � 
approaches 0.3. This is due to bursty nature of the input traffic.

The behavior of overflow probability (19) is plotted for various values of traffic inten-
sity in Fig. 3 on log–log scale. The plot is a straight line for all values of traffic inten-
sity confirming the presence of power-law behavior in overflow probability. For a given 
value of overflow probability, (19) can be used to compute number of buffers � . Norros 
[39] provides a closed form expression for calculating buffer requirement, referred as 
Norros formula, when input traffic is governed by fractional Brownian motion process 
and service rate is constant. The Norros formula is

Here, H is the Hurst parameter measuring the degree of long range dependence. The buffer 
requirement as obtained from (19) for overflow probability of 0.01 is compared with Nor-
ros formula for H = 0.938 in Fig.  4. Both Pow∕Pow∕1∕∞ and Norros formula result in 
approximately same number of buffers for lower value of traffic intensity. However, as 
the traffic intensity increases, the buffer requirement is higher for Pow∕Pow∕1∕∞ system 
as compared to Norros formula. The reason is because Norros formula has been derived 

(22)b =
𝜌

1

2(1−H)

(1 − 𝜌)
H

1−H

, 1∕2 ≤ H < 1.

Fig. 1   Behavior of mean queue length of Pow∕Pow∕1∕∞ with �
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assuming constant service time, however, it is considered to be following power-law distri-
bution in the proposed model.

The average waiting time (21) for different values of mean arrival rates is shown in 
Fig. 5. The average waiting time of packets in the system increases fast as � approaches 
to 0.5. This behavior of average waiting time is identical to the real network traffic 
where a sharp rise in mean delay is observed around 50% utilization [38].

Fig. 2   Variance of number of packets in Pow∕Pow∕1∕∞ queue

Fig. 3   Power-law behavior of overflow probability in Pow∕Pow∕1∕∞ queue
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3 � Finite Buffer Pow/Pow/1/K Model

In practice, network systems have finite number of buffers K where packets get stored 
and wait for processing. The performance of such a system can be analyzed by using 
Pow/Pow/1/K queueing model. Following the same notations as used in Sect.  2, the 

Fig. 4   Comparison of buffer requirements of Pow∕Pow∕1∕∞ with Norros formula

Fig. 5   Behavior of average waiting time in Pow∕Pow∕1∕∞ with �
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Shannon entropy of the finite buffer system becomes

Since, geometric mean is considered to be characterizing moment for generating power-
law [32], it is assumed that prior knowledge about the number of packets is available in the 
form of geometric mean

The system utilization

and normalization constant

are two other constraints. Following the same optimization procedure as outlined in Sect. 2, 
the queue-length distribution of finite buffer system can be derived as

where C =
∑K

n=1
n−� and � is the Lagragnge’s parameter corresponding to (24). To com-

pute C, we again consider 
{

1

n𝜇
,𝜇 > 1

}

 which is a strictly decreasing sequence of positive 

numbers. Thus, taking f (x) = 1

x�
 , the summation can be approximated by integral in (27) 

transforming it into

Resembling the substituation for Lagrange’s parameter in previous Sect. 2, putting 1
�
= � , 

(28) becomes

Drawing analogy from the application of MEP for driving results of Poisson arrivals based 
queueing models [24], the form (29) can be regarded as the steady state probability dis-
tribution of the number of packets in Pow/Pow/1/K system, also known as queue length 
distribution. It is to be noted that queue length distribution follows power-law. The queue 
length distribution (29) can also be re-written in terms of p0 using (25) as

(23)S = −

K
∑

n=0

pn ln pn.

(24)
K
∑

n=1

(ln n)pn = ln G.

(25)U = 1 − p0 = �.

(26)
K
∑

n=0

pn = 1.

(27)pn = C−1Un−�

(28)pn =
U(𝜇 − 1)n−𝜇
(

1 − K1−𝜇
) , 𝜇 > 1, n ≥ 1.

(29)pn =
(1 − 𝜌)n−1∕𝜌

1 − K
−(1−𝜌)

𝜌

, n ≥ 1, 𝜌 < 1.

(30)pn =
n−1∕𝜌

1 − K
−(1−𝜌)

𝜌

p0, n ≥ 1, 𝜌 < 1.



	 S. Sharma 

1 3

The performance of the Pow/Pow/1/K system is studied in the next subsection.

3.1 � Performance Measures and Analysis

For deriving closed form solutions for various performance measures of the system, the 
fluid flow approximation is used as discussed in Sect. 2. The important QoS measure in 
case of finite buffer queueing system is blocking probability. Given a value of blocking 
probability, the network designers can use blocking probability closed-form expression to 
compute the buffer requirement at the network systems. Using (29), the blocking probabil-
ity in case of Pow/Pow/1/K is given by

which also follows power-law. This is also clear from Fig. 6 where blocking probability 
(31) is plotted on log–log scale. Power-law behavior in blocking probability implies that 
increasing buffer sizes does not help to reduce the probability significantly.

The variation of blocking probability with buffer sizes for different value of utilization 
is shown in Fig. 7. The blocking probability is higher for higher values of utilization.

The closed-form of blocking probability (31) can be used to compute the required buff-
ers at a network system. Some results of buffer sizes for corresponding blocking probabil-
ity are presented in Table 3. Since buffers are integers, the calculated values are rounded 
off to nearest integer. It is observed that the buffer requirement is very less for low utilisa-
tion and increases sharply for higher utilization for specified blocking probability.

The expression for mean queue length can also be computed as

(31)pK =
(1 − �)K

−1

�

1 − K
−(1−�)

�

Fig. 6   Power-law behavior of blocking probability
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which can be simplified into

It would be imperative to examine the finite buffer power-law queueing system for multiple 
servers and it is discussed in the next section.

(32)N =

K
∑

n=1

npn =

K
∑

n=1

(1 − �)n
−1

�
+1

1 − K
−(1−�)

�

(33)N =
(1 − �)�

(

1 − K
−(1−2�)

�

)

(1 − 2�)
(

1 − K
−

(1−�)

�

)
, � ≠ 1∕2.

Fig. 7   Variation of blocking probability with buffer sizes

Table 3   Buffer size for given 
blocking probability

Blocking probability Utilization

0.1 0.5 0.9

0.1 1 3 5
0.01 2 7 23
0.001 2 22 137
0.0001 2 71 887
0.00001 3 224 6117
0.000001 4 707 43,870
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4 � Multi‑server Extension—Loss System: Pow/Pow/K/K

Finite buffer multi-server queueing system, also known as loss system, has well known appli-
cations for telecommunication systems. At a computer communication network system, ports 
represent servers. The channels are servers in case of wireless communication networks. Such 
systems are loss systems because the packets are lost if all the servers/ports/channels are busy. 
Using MEP, when arithmetic mean of number of packets is available as constraint, a model of 
loss system is developed in [40]. This model is useful when network traffic shows exponential 
behavior, for example, in case of voice traffic. However, present day communication network 
traffic depict different characteristics in the form of power-law behavior. The notations used 
in [40] are closely followed in this section. Consider a system with K servers, each server can 
be in two states viz. idle (0) or busy (1). Then, the state space of the system is S = {0, 1}K 
with x = {x1, x2, ..., xK} ∈ S as system state where xi = 1 implies that the server i is busy. As 
discussed in [40], function f maps the state space S to a reduced state space M such that the 
number of busy servers or ports is

The function f divides the state space S into equivalence classes

The probability of system been in state x is given by px . It is assumed that the prior knowl-
edge about the geometric mean of the number of packets in the system and utilization is 
available i.e.

and

The normalization constant is

When the Shannon entropy (23) is maximized with constraints (36), (37) and (38), the state 
probability distribution in steady state turns out to be

where � is the Lagrange’s parameter. Since the cardinality of the equivalence classes [n] is 
(

N

n

)

 , the probability distribution (39) on reduced state space can be expressed by

(34)f (x) =

K
∑

i=1

xi, x ∈ S.

(35)[n] = {x ∈ S ∶ f (x) = n}, n ∈ M = {0, 1, ...,K}.

(36)
∑

x∈S

(ln f (x))px = lnG

(37)1 − p0 = U = �

(38)
∑

x∈S

px = 1.

(39)px =
U
�

f (x)
�−�

∑

x∈S

�

f (x)
�−�
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Substituting � =
1

�
 , the steady state probability distribution (40) turns into

The probability that all the servers are busy i.e. blocking probability in this case can be 
derived from (41) as

which plays the same role in power-law queueing system as the well-known Erlang’s loss 
formula does for Poisson arrivals based queueing system. Thus, (42) can be regarded as 
generlized Erlang loss formula.

The state probability distribution b(n) is plotted for � = 0.1 in Fig. 8. Interestingly, the 
state probability shows bimodal behavior corresponding to periods of low and high load. 
But as the � is increased, the bimodal behavior disappears, as shown in Fig. 9 indicating 
only high load on the system. The similar behavior is also observed in [27]. The compari-
son of state probability distribution (42) with Erlang loss model is presented in Table 4. 
The blocking probability is high for all values of maximum buffer size N and utilisation � 
in case of Pow/Pow/K/K system as compared to Erlang loss formula. It implies that more 
buffers are required at a system in case network is driven by power-law traffic.

(40)
b(n) =

�

K

n

�

U ⋅ n−�

∑K

i=1

�

K

i

�

i−�

(41)b(n) =

�

K

n

�

� ⋅ n
−1

�

∑K

i=1

�

K

i

�

i
−1

�

.

(42)b(K) =
� ⋅ K

−1

�

∑K

i=1

�

K

i

�

i
−1

�

Fig. 8   Behavior of state probability distribution for � = 0.1
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5 � Discussion and Conclusion

Extending the MEP framework proposed in [35], two finite buffer models are proposed in 
this paper where both inter-arrival and service times follow power-law distribution. First, 
an infinite buffer model Pow∕Pow∕1∕∞ has been discussed [35]. The numerical study and 
analysis of the model shows that such a queueing system explodes at very low utilization 
viz. mean number of packets shows sharp rise as � tends to 0.5, the variance of number of 
packets starts to explode as � approaches to 0.3. These results are in agreement with real 
traffic studies of network with LRD behavior [38].

A finite buffer queueing system Pow/Pow/1/K has been proposed to generate closed 
form expressions for queue length distribution, QoS measures viz. blocking probability and 
mean queue length. The queue length distribution and blocking probability are found to 

Fig. 9   Behavior of state probability distribution for � = 0.5 and � = 0.9

Table 4   Comparison of state 
probability distribution b(N) with 
Erlang loss formula

� K b(K) Erlang loss formula

0.1 10 9.9540 × 10
−13

1.0625 × 10
−17

20 4.8316 × 10
−16 6.1097 × 10

−40

50 9.5571 × 10
−21

2.8009 × 10
−117

0.5 10 7.4730 × 10
−5 4.6669 × 10

−12

20 9.8604 × 10
−8

1.1788 × 10
−28

50 1.0406 × 10
−16 4.5800 × 10

−89

0.9 10 8.4618 × 10
−4

1.5672 × 10
−10

20 3.7092 × 10
−7

1.3294 × 10
−25

50 3.6099 × 10
−16 1.9560 × 10

−81
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depict power-law. The numerical results validate that the blocking probability formula can 
be used to compute the buffer requirements. The analysis validates that the buffers will be 
occupied sharply as the utilization of the system increases to 50% introducing longer delays 
at low utilization. This is in conformity with the empirical studies carried out in the past 
[38]. The model is extended to multiple servers and state probability distribution for loss 
system Pow/Pow/K/K are derived. The state probability distribution shows bimodal behav-
ior at low utilization which turns into uni-modal at high utilization. A comparative study of 
numerical results of Pow/Pow/K/K with Erlang loss model is carried out and it is observed 
that the blocking probability is very high in case Pow/Pow/K/K system. These results are 
of significant importance to network designers facilitating them in dimensioning resources 
at network systems and in developing efficient admission and congestion control policies.

An exemplary application of the proposed models is in the congestion control at a net-
work system. One of the famous congestion avoidance algorithm for gateway systems is 
random early detection (RED) [41]. The gateway system detects congestion by calculating 
mean queue size upon arrival of every packet. When the mean queue size crosses a pre-
specified threshold, the gateway starts dropping packets with some dropping probability. 
In order to find the initial value of mean queue size, a procedure is proposed in [41] that 
allows minimum number of packets L to arrive at the gateway and then computes mean 
queue size. The mean queue length formula (33) can be used to compute mean queue sizes 
in the RED algorithm. This requires the knowledge of utilization � . One way to approxi-
mate the server utilization is by CPU utilization. All operating systems supports system 
calls to obtain utilization of CPU. Thus, the requirement to wait for L packets in RED does 
not exist. The expression for overflow probability (19) can be utilized for calculating drop-
ping probability. Also, the probability of occupancy of buffers between two thresholds viz. 
minth and maxth can be computed using (13) as

A thourgh comparative analysis of the aforementioned methods in RED algorithm is an 
area of future work.
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