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Abstract
Wireless sensor network (WSN) clustering techniques play a crucial role in extending the 
network’s lifespan through various methods. In WSN, the clustering techniques elect the 
best cluster heads (CHs) among the deployed sensor nodes in terms of their computational, 
energy, and link capabilities. The CHs nodes expend more energy than other sensor nodes 
due to a heavier workload, such as receiving messages from their cluster members and 
other cluster heads, aggregating all messages, and transmitting them to the base station with 
the help of non-cluster head nodes in the layered sensor network. Thus, there is a dire need 
to develop an efficient CHs election algorithm. In this paper, the modified particle swarm 
optimization (M-PSO) method, along with the Genetic algorithm (GA), is considered 
for selecting cluster heads and non-cluster heads. The proposed method computes the 
probability of choosing the best nodes as cluster heads, and the GA is employed to discover 
the optimum shortest path. The selection of the optimum route is based on the employed 
objective function. Additionally, the proposed method demonstrates superior performance 
compared to existing state-of-the-art techniques such as GAPSO-H, EC-PSO, and NEST. 
However, DMPRP performs 12% better than NEST, EC-PSO, and GAPSO-H overall.

Keywords Clustering · Crossover · Genetic algorithm · Modified particle swarm 
optimization algorithm · Wireless sensor network · Mutation

1 Introduction

The sensor networks’ lifespan can be extended by clustering techniques that reduce 
the quantity of radio emissions. The clustering approach may dynamically modify the 
lifespan of various sensor regions in network performance, reduce energy consumption, 
fault tolerance, low latency, and reliability [1]. The idea of clustering is to divide the 
network into several clusters, with one node in each cluster being chosen as the Clus-
ter Head (CH). CHs are responsible for intra-cluster coordination, communication, and 
data aggregation among nodes within their cluster, as well as inter-cluster communica-
tion with external observers. Clustering is the process of grouping all of the network’s 
sensors into groups with Non-Cluster Members (NCMs), Cluster Members (CMs), and 
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CHs [2]. The cluster administrations control and transmit the gathered data to the Base 
Station (BS). In recent years, numerous clustering techniques have been introduced in 
WSNs. The distance from the BS to other nodes is computed based on the location of 
the BS, using the distance rate and the list of neighbors. The network’s power consump-
tion can be effectively lowered since the majority of the sensor nodes only need to send 
data over a short distance to the subsequent CH [3]. From NCMs to CH and from CH to 
BS, an optimal path may be chosen. Therefore, by applying an M-PSO method, DMPRP 
can be designed to increase the effectiveness of cluster selection [4]. The Genetic Algo-
rithm (GA) is a global optimization approach based on the natural selection process [5, 
6], which can be used to choose an optimized path. When constructing network paths, 
GA often optimizes a variety of factors. High-performance data network routing is suit-
able for optimization. The wireless sensor network in Fig. 1 is cluster-based. To com-
municate further, sensor nodes first monitor their surroundings, collect data, and then 
transfer it to the corresponding cluster head [7]. In Fig. 1, the performance of the cluster 
head collects data from cluster members and aggregates it to send directly or indirectly 
to the sink node and base station. Thus, the routing problem can be simplified through 
optimization [8]. This article examines the reliability of the genetic string while defin-
ing specific constraints on energy bandwidth, average inter-cluster distance, and cluster 
quality. Therefore, with the aid of GA, we are creating a routing plan to perform the best 
path [9].

1.1  Contribution of Article

The contributions of the work are given as follows:

Fig. 1  Cluster based wireless sensor network
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• In this work, we have developed an effective dynamic multipath cluster optimization 
model that reduces energy consumption and increases the network lifetime through 
optimal cluster head (CH) selection in cluster-based sensor networks.

• The M-PSO algorithm has been used to select the optimal cluster head based on 
probability computed using energy consumption rate (ECR).

• The genetic algorithm (GA) is utilized to discover the optimum shortest path based on 
the M-PSO after the selection of CH.

• By combining M-PSO and GA, the algorithm benefits from their complementary 
strengths. M-PSO may excel in efficiently exploring the solution space and quickly 
converging to promising regions, while GA can further refine the solutions and explore 
diverse search areas. This collaborative approach ensures a more robust and effective 
optimization process, leading to an end-to-end optimum solution from the source to the 
destination host in the wireless sensor network.

The remaining paper is set up as shown below. A literature review is included in 
Sect. 2. The network and energy models are presented in Sect. 3. In Sect. 4, we proposed 
a method for choosing the optimal cluster head by utilizing the M-PSO algorithm. 
Findings best cluster is using head selection M-PSO and the best cluster heads assist the 
genetic algorithm in determining the optimal shortest path in Sect. 5, which is all about 
genetic algorithms. The paper’s experimental and performance evaluation for models and 
conclusion with the future work are offered in Sect. 6 and 7 respectively as a concluding 
point.

2  Literature Survey

The literature survey is divided into two parts namely traditional routing protocols and 
swarm intelligence-based routing protocols.

2.1  Traditional Routing Protocols

A well-known clustering methodology known as Low Energy Adaptive Clustering 
Hierarchy (LEACH) [10] adopts a hierarchy based on the idea of distributing traffic 
balance across the network’s sensor nodes, which is a substantial contribution from 
LEACH. The LEACH protocol functions in multiple rounds, with some nodes acting as 
forwarders while others serve as CH nodes to balance the energy usage of nodes. The 
primary weakness of LEACH was the random selection of CH nodes, which could result 
in an uneven distribution of sensor nodes and cause an uneven distribution of power 
consumption among clusters in the network. The cluster head can perish earlier due to 
the LEACH protocol’s primary focus on single-hop propagation, as it consumes energy 
more quickly [11]. Cognitive LEACH, an improved version of LEACH, distributes CHs 
more logically. It is largely focused on reducing the problem of power imbalance. Cog-
LEACH, a centralized cognitive LEACH, was addressed by Latiwesh et  al. [12]. This 
technique employs the remaining energy of sensor nodes and the addition of idle channels 
for head selection to manage the power burden on cluster nodes. However, this protocol 
was not suitable for scalable networks, single-hop routing transmission, or delivering data 
from source to destination [13]. Arumugam et  al. [14] developed a novel protocol idea 
known as EE-LEACH. It suggests an effective way to create clusters and aggregate data, 



 V. Prakash et al.

1 3

which reduces energy but increases network complexity as a result of integrating several 
technologies.

The grid-based protocols divide the network situation into several rectangles, with an 
odd number of grids from the rectangle region, and the sensor nodes forming clusters in 
each row [15]. This approach lengthens the life of the network and considerably reduces 
energy exploitation. Even if the grids are working inconsistently for each rectangle, there 
is an excessive amount of forwarding across all the tiers. This processing occurs when top-
layer nodes have expired, and lower-layer nodes are unable to transfer data, which uses a 
lot of energy. The hotspot problem is successfully solved using several protocols, known 
as "Energy-Efficient and Balanced-Cluster-based Data Aggregation" (EE-BCDA) multi-
hop [16]. In an effort to reduce the network’s energy consumption, authors present the 
grid-based clustering algorithm EEMRP in transmission management (CM) [17]. They 
distribute multi-hop data transfer, which spreads the burden of CH nodes.

2.2  Swarm Intelligence Based Routing Protocols

Self-organization and self-association provide the optimum answer in optimizing several 
technological domains such as the position of nodes or localization, efficient data packet 
routing, cluster creation, CH selection, and many more, and are at the core of swarm 
intelligence (SI). ABCSD, known as the artificial bee colony search features protocol that 
Ari et al. created for cluster-based energy-efficient routing [18], was utilized to build the 
cluster, which uses less energy. While setting the threshold power is used in the protocol 
approach to pick CHs, a distributed method is used to choose CHs. No further cluster 
heads have been chosen when the cluster’s total energy falls below the energy threshold 
[19]. Yalçin et al. [20] have presented two approaches based on bacterial interaction. The 
first is known as the cognitive-routing algorithm for power save, and the second is known 
as communication limits for cluster head selection. This method selects the number of 
hops between source to destination for communicating information. Karaboga et al. [21] 
proposed a routing protocol for clustering systems that uses the artificial bee colony (ABC) 
method to lengthen the network’s lifespan. This approach uses a different quality of service 
system to reduce delay time between clusters receiving communication signals. This 
procedure was reacting to unequal energy consumption in the dispersion of cluster heads 
not taken into account.

Rao et  al. proposed an "Energy-Efficient Cluster-Head Selection Algorithm" based 
on particle swarm optimization (PSOECHS) [22]. They select Cluster Head nodes by 
taking into account several variables, such as intra-cluster distance, BS distance, and 
the remaining energy of the sensors. Some nodes that are further away from the Cluster 
Head nodes fail prematurely. Due to a number of circumstances, it is necessary to exercise 
caution simultaneously when the cluster head node picked by nodes includes residual 
energy but is farther from such a node. Kuila et al. [23] employed clustering approaches 
based on particle swarm optimization. The cluster creation in this approach is dependent 
on two factors: first, the average cluster distance, and second, the lifespan of the gateway. 
The fitness amounts of each particle in the system are determined using a fitness function 
approach. The system quality is conditioned by this fitness value. Particularly higher value 
functions in the network structure helped the fitness to improve.

With the use of the PSO approach, Latiff et al. [24] suggested a clustering technique in 
energy-aware for WSN, which established an actual value function to minimize network 
energy reduction and reduce intra-cluster distance. The cluster-head sends data to the 
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BS during routing. A method of PSO was proposed by Singh et al. for the formation of 
energy-aware clusters through the selection of an ideal cluster head. Particle swarm 
optimization enables the final cost reduction for the best placement of both cluster-
head nodes in such a cluster. Instead of employing BS, a Semi-Distributed Particle 
Swarm Optimization (PSOSD) technique has been created using the Particle Swarm 
Optimization-based methodology inside clusters. However, because the protocol does not 
take into consideration the distance between nodes and the base station, it could result in 
CHs using excessive amounts of energy to send data to the base station [25]. The hybrid 
energy-efficient distributed clustering (HEED) protocol is another well-known clustering 
protocol that is discussed. The cost of intra-cluster data exchange and the residual energy 
of a hybrid node is taken into account while choosing the CHs on a periodic basis [26]. 
This method of clustering connects cost with re-selection, lowers head network, and can 
rule out the possibility of several CHs in the area. Additionally, HEED uses the multi-hop 
communication concept, allowing cluster heads to collectively send data to the base station 
through many hops [27]. Table 1 shows the comparative analysis of the various existing 
metaheuristics.

The authors introduce a hybrid GA-inspired greedy mutation strategy for IoT-enabled 
WSNs in a smart city, focusing on a weighted fitness function with node density, energy 
levels, and distance, alongside a 3-tier heterogeneity and energy-efficient node deployment 
to extend network longevity [32]. The proposed GM-WOA model, integrating genetic 
mutation with whale optimization, optimizes cluster node selection in heterogeneous 
SDN-enabled WSNs by using self-adaptive inertia weights, a fitness function, and genetic 
mutation for dynamic selection and energy-efficient transmission, ensuring even CN 
distribution for load balancing, and is implemented on the ONOS controller and tested 
with the ns-3 simulator [33]. This study introduces an AI-based green routing for ICPS 
utilizing a cluster-based approach with CH election via the AI-inspired ESHLFO algorithm 
and tackles the energy hole issue using four peripheral, energy-unlimited data collection 
nodes [34]. The papers [35, 36] explore methods to extend the lifetime of IoT networks.

3  Network Model

The methodology suggested in this study aims to establish a flexible structure of cluster 
heads, improving scalability for diverse network scenarios. It seeks to maintain enhanced 
energy efficiency in an ideal manner using wireless sensor networks. The energy is utilized 
to extend the life of the networks. The clustering process, which offers an algorithm for 
choosing CH nodes, and the routing algorithm are the main focus. The aforementioned 
network assumptions apply to the proposed DMRP. All sensor nodes are uniform. These 
nodes are immobile when processing and sending data. In this protocol, routing entails 
route discovery and route management [37]. The source node initiates the route recovery 
process to send messages known as route request and route reply (RREP). The destination 
node is the only node that can send an RREP message back to the sender node. The best 
route between the sender and the destination is used. Multiple data channels should be 
provided to ensure load balancing, reduced latency, and improved network performance. 
Several routing protocols might offer an alternative path in the event that any route fails 
[38].

The main energy-consuming processes of sensor nodes can be divided into three cat-
egories: transmission, energy amplification, and reception operations. One of the most 
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important characteristics for radio sensors is the distance between the transmitter and 
receiver nodes. The system chooses a free-space or multipath fading communication chan-
nel for the propagation distance in Eq. (1). Energy consumption is directly proportional to 
d2 if the propagation distance is less than the threshold distance t0 , else it is proportional to 
d4 . The first equation establishes the highest energy required to transmit a l-bit packet over 
a d-distance from the transmitter to the receiver:

For transmitting one-bit data of sensor node use, the Econ energy and system in Eq. (1) 
uses two versions of energy model amplifier coefficients, first free-space, and second 
multipath fading, indicated by Efs and Emp , respectively. Determined using the second 
equation the threshold distance:

In Eq.  (2), Efs and Emp are both parameters for amplifiers. The sensor nodes employ 
the multipath fading energy model amplifier parameter Emp when d < t0 and the free-
space energy model amplifier parameter Efs when d = t0 and d > t0 , respectively [30]. 
The proposed dynamic multipath clustering system based on uneven dynamic M-PSO 
is guaranteed to be able to communicate with nodes in clusters since the maximum 
transmission distance of sensor nodes in this study is not greater than t0.

4  Proposed Mechanism

The working of the proposed mechanism consists of the cluster creation and formation, and 
cluster head selection.

4.1  Cluster Creation and Formation

Cluster members, cluster heads, and non-cluster heads all play roles in the development 
of clusters employing cluster-based designs. A cluster head node controls the cluster 
and collects data from cluster members to send to the base station. The ability of nodes 
to handle additional tasks is considered in relation to their proximity to the base station 
or their number of neighbors when choosing the cluster head. Node residual energy is 
assessed using characteristics such as cluster member, neighbor node, neighbor-ID, cluster 
head-IP, and neighbor cluster (NCH-IP), cluster gateway-IP. Using distance values and the 
base station location as reference points, we estimated the distance from the base station 
to other nodes and identified the list of nearby nodes. The multi-objective function of a 
network is taken into consideration to identify k-optimal clusters in mathematical form. 
The query that employs the k-means algorithm is referred to as expectation–maximization. 
The closest cluster is giving a data point’s assignment by the E-step in Eq. (3).

(1)Econ(l, d) =

{
lXEelec + lXEfsXd

2, d < t0
lXEelec + lXEmpXd

4, d ≥ t0

(2)t0 =

√
Efs

Emp
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The centroid of each cluster will be determined using the M-step in Eq. (4).

The mathematical solution is described below. It encompasses the following objectives:

Equation  (5) presents data point xi , where wik = 1 indicates that xi belongs to cluster 
k , and wik = 0 otherwise. The centroid of cluster k , to which xi belongs, is also referred 
to as k . This represents a dual minimization problem. First, we treat the set k and then 
minimize J with respect to wik . Next, we fix wik and minimize J in relation to k . In practice, 
we first identify J with respect to wik and monitor cluster assignments in the E-step. After 
determining the cluster assignments from the previous M-step, we split J with respect to k 
and then recalculated the centroid. The data point xi is assigned to the closest cluster based 
on its distance from the overall cluster’s centroid, as detailed in Eq. (6).

4.2  Cluster Head Selection

The following factors are primarily considered when selecting a cluster head: Cluster Head 
IP, Neighbour Node-IP, Neighbour Cluster-IP, Cluster Member-IP, NCH IP, and Cluster 
Gateway-IP. Dynamic multipath routing protocols used for cluster selection perform a 
minimal amount of calculation to determine the Energy Consumption Ratio (ECR) for 
each Cluster Head’s selection:

After determining the ECR, the DMPRP calculates the Residual Energy Transfer Ratio 
(RETR) as shown in Eq. (7):

where dtoBS represents the distance between the CLNm and the BS. Incorporating the ECR 
equation, the RETR is presented in Eq. (8):

(3)
�y

�x
=
∑m

i=1

K∑
k=1

||||x
i − �k

||||
2 = wik =

{
1 if k = argminj||||xi − �j

||||2
0 otherwise

�y

�x
= 2 ×

m∑
i=1

wik

(
xi − �k

)
= 0

(4)μk =

∑m

i=1
wikx

i

∑m

i=1
wik

(5)J =

m∑
i=1

k∑
k=1

wik||xi − μk||2

(6)
1

mk

mk∑
i=1

||xi − μck ||2

(7)ECR(m) = E0∕(E0 − Er)

(8)RETR(m) = Er∕(E0∕(E0 − Er) × dtoBS)

(9)RETR(m) = Er∕ECR × dtoBS)
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The aggregate values of ECR and RETR in Eq. (9) for several nodes over a given period 
are determined by DMPRP for the current round. Since the rate of energy consumption 
equals P = Er∕T  , the total power dissipation over time is calculated using the Riemann 
sum. This approach allows for estimating the duration of an instance over time ( Einstance ) in 
Eq. (10).

Einstance − ECR works only in the presence of R in Eqs.  (10) and (11). Over time, the 
energy usage is incorporated into Eq. (10) as follows:

The prior instance RETR is also calculated using DMPRP with the aforementioned 
formulas. In consideration of this, the BS selects a set of nodes with the lowest energy 
usage and highest residual energy. The choice of a CLN as a CH node is significantly 
influenced by the distance between factors. The following pseudo-code demonstrates 
the steps taken to select DMPRP cluster heads. The Algorithm 1 outlines the work steps 
that will be followed to choose cluster heads and non-cluster heads using the M-PSO 
Algorithm.

Algorithm 1  Cluster Head Selection

Here, a brief description of the packet scheduling using modified particle swarm 
optimization is discussed. Route selection is based on the condition of node fitness. To 
organize efficient route selection, we introduced the MPSO scheduling packets method, 
which generated a dynamic multipath routing protocol. We briefly describe MPSO before 
providing the projected algorithm. PSO essentially chooses an appropriate number of 
nodes to communicate with multiple nodes, with distance and fitness values entered into 
an N-dimensional space. Each node’s fitness and distance are updated using Eqs. (12) and 
(13), respectively:

(10)Einstance − ECR =

Rinstance∑
r=0

p(ti)Δti

(11)Einstance − ECR =

Rinstance

∫

r=0

p(t)dt.
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where ni stands for a node’s fitness and si for a node’s distance. The category of the node 
route is the optimal solution to determine PSO using the best dynamic multipath rout-
ing in three distinct objectives of packet scheduling. PSO classifies the best cluster head 
as the optimal outcome. The best non-cluster head is presented as the best point among 
non-clustering nodes, while the best cluster member represents the accurate point among 
certain nearby nodes. Positions of all cluster members, the best cluster head, and the non-
cluster head are shown in Eqs. (12) and (13), where ni represents the ith node’s fitness and 
si represents the ith node’s distance. PSO creates the optimum dynamic multipath routing 
for packet scheduling that categorizes the node route’s optimal solution into three differ-
ent scopes: CHbest , CMbest , and NCHbest . It displays the best cluster head ( CHbest ) as the 
ideal result. The top cluster participant, the best point among certain surrounding nodes, is 
represented by CMbest , while the best point among non-clustering nodes is represented by 
NCHbest , a non-cluster head.

The positions of the best cluster head, cluster member, and non-cluster head, are 
displayed respectively in Eqs. (14), (15), and (16):

There are following updates which are made to the n + 1 nodes’ fitness and distance for 
the next node, respectively in Eqs. (17) and (18):

where i = 1, 2, and j = 1, 2, ..., np . After several iterations, np represents the number of 
nodes,w , which ranges from 0 to 1. These are random parameters given between 0 and 1, 
and the nodes will find the best solution in the search space. The search space is determined 
by the previous average solution and the population.

The pseudo code modified packet scheduling using MPSO is discussed in this subsection 
as Algorithm 2. There are the following inputs used nodes, fitness value, distance, and time 
for finding the best cluster head selection. We are using the following steps to find out the 
best cluster head selection:

(12)ni =

m∑
n=1

nn

(13)si =

m∑
n=1

sn

(14)ai =

m∑
n=1

an

(15)bi =

m∑
n=1

bn

(16)ci =

m∑
n=1

cn

(17)si
j
(n + 1) = wsi

j
(n) + �1

(
ai
j
− n

j

i

)
+ �2

(
bi
j
− n

j

i

)

(18)n
j

i
(n + 1) = n

j

i
(n) + s

j

i
(n)
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Algorithm 2  Modified MPSO

The description of the cluster selection flow using the MPSO algorithm as follows. A 
DMPRP is first used to create and establish clusters. After the clusters are formed, we must 
choose the best cluster heads, which aggregate the data and send it to the base station. The 
base station computes the optimal choice based on probability. Using the MPSO approach 
from Eq. (7), the likelihood of the energy consumption ratio is calculated for CHs (Cluster 
Heads) and NCHs (Non-Cluster Heads). Figure 2 depicts a working flow diagram for the 
PSO (Particle Swarm Optimization) algorithm’s cluster selection process. If a cluster head 
produced at random falls below the threshold value, choose it as a CH; otherwise, choose 
it as an NCH. Based on the best probability and fitness value, the BS (Base Station) selects 
the clusters using the MPSO Algorithm shown in Fig. 2. If the fitness function is lower 
than the options for CHs and NCHs, select the best applicable option. Repeat this process 
until the best selection scheduling is completed. The optimal shortest path is then deter-
mined using GA (Genetic Algorithm) by computing the cluster heads’ selection using the 
M-PSO algorithm.

5  Genetic Algorithm (GA)

The underlying concept of GAs for evolution closely resembles the ideas put forth 
by Charles Darwin. The concept of natural selection provides the foundation for the 
hypothetical search algorithm known as GA. Genetic crossover significantly improves the 
algorithm’s capacity to locate and identify the ideal outcome. Holland had two additional 
objectives: first, to better understand the process of natural selection; and second, to create 
an artificial framework that functions similarly to the natural system. Through optimization, 
the best response can be derived from the parameters. The objective function is set up for 
optimization. Instead of aiming for the largest production to optimize, it means striving for 
the best quality that most closely satisfies the criteria. GAs are most useful for applications 
that require optimization.

5.1  GA Operations

The efficacy of GAs is dependent on its operators, which determine the mode of operation 
of the GA, as shown in Fig. 2. The following are numerous GA procedures:
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Fig. 2  Data flow process of PSO Cluster Selection
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1. Selection The chromosomes are picked in the selection process either from the 
population or based on the significance of their intended function. The most important 
node for assessing whether a chromosome will persist is the Objective function. A 
chromosome with a higher fitness value is more likely to produce one or more offspring 
in the next generation.

2. Crossover In general, it is similar to other optimization methods. At the bottom and 
top of the crossing, the selected parent crosses across a 1-point or 2-point mechanism. 
Following the parents’ marriage, further children are born.

3. Mutation A genetic algorithm’s decision-making process includes a supporting role for 
mutation. Due to the possibility of genetic information being lost during reproduction 
and crossover processes, the mutation is crucial. Rotating bits at a rate of Mutation 
is a common method for achieving mutation. The main objective is to diversify the 
population [39].

5.2  Algorithm Representation of String

A numerical sequence represents the real chromosome across the population. Each 
number represents one of the network’s nodes, whereas the text indicates a network 
path. Figure  3 depicts the length of the genetic string. There is no defined length for 
chromosomes; they can vary in length. Then, more hops occur the more nodes there 
are throughout the genome. Transport data will be present. Instead, they make up a sig-
nificant section of the population and have the same origin and destination. Random 
sampling is done from that population count. The remaining chromosomes are not taken 
into account.

5.3  Proposed Genetic Outline

The generic outlines of the proposed work as given as follows:

1. Population initialization 33% of the population is picked after 30 rounds of 
randomization for n chromosomes.

2. Parents selection Fitness functions F(x) are used to choose parents. Based on the findings 
of an M-PSO algorithm, this value is determined for each X chromosome. As a parent, 
the big Fitness value chromosome is picked. The two chromosomal pairs that produce 
offspring that seem to thrive in natural selection are used for crossing over.

3. Create a new population, and then continue the previous procedures until the new 
population is complete.

• Selection Choose parents from either group based on objective characteristics 
such as the fitness value of CHs and NCHs.

• Crossover: Creating new offspring by crossing parents.

1 3 5 4 6 

Fig. 3  Genetic representation of string
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• Mutation Offspring are mutated based on mutation rate.

Case 1: Trace the recurring and missing nodes, denoted by R and M.
Case 2: If R and M is not present
Then randomly pick any two nodes and swap say as S. length of chromosome say L
Case 3: If (L≤2)
No mutation is performed.
Case 4: If (L≥3)

The middle value is changed with the missing node.

• Acceptance If the current kids outperform the existing chromosomes, they are placed in 
the new population.

• Then ’stop’ if the stop condition is met, and the best solution from the current 
population is returned.

5.4  Data Flow of Cluster Selection Using Results of M‑PSO with GA

Based on a random selection, the population is initially chosen as the best-fitted subset of 
the CHs (Cluster Heads) and NCHs (Non-Cluster Heads) created by the M-PSO algorithm. 
It is then determined which chromosomes will be transferred to the offspring based on their 
fitness values. Following the crossover procedure, a new offspring is generated, and then 
the mutation procedure is performed. A flow diagram for cluster selection using M-PSO 
and GA is shown in Fig. 4. In Case 1, during the mutation operation, it is necessary to 
identify the repeating and absent nodes to organize the data. If there are no repeating or 
missing nodes in Case 2, any random integer is selected and swapped. To decide whether 
a mutation is necessary in Case 3, the length of the chromosome must be examined. In the 
fourth case, if the length is greater than three, the chromosome with the missing node is 
flipped. Generation refers to the loop’s repeated iteration. The population’s initial repeat 
(Generation 0) is managed on randomly selected individuals. After reaching the final con-
dition, the most promising outcome is selected based on the superiority of the path.

5.5  Evaluating the Fitness Value of Mutated Off‑Springs

Both mutant children’ fitness values have been computed. The mutant progeny replaces the 
chromosomes that have the lowest fitness value. It is thought that the worst chromosomes 
are eliminated. The population is stable in size. The fitness function confirms the 
accessibility of a bandwidth first. The path disregards the Optimum-path unless the 
required bandwidth is unavailable. If not, it calculates the number of route hops and the 
delay factor. Each route’s sustainability is assessed using the Objective Functions described 
below. Let f1 stand for an energy efficiency function and f2 for a fitness function of cluster 
quality and an average of intra-cluster distance. The f1 and f2 functions must be minimized, 
and this calls for the best possible choice of CHs. The 2-objective functions are normalized 
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between 0 and 1, which effectively minimizes the linear combination of f1 and f2. f1 and 
f2 are used to generate the fitness function for the proposed modified PSO (M-PSO)-based 
strategy. The following is the linear programming formulation for choosing the best CHs. 
We take into account the three parameters: average Inter-cluster distance, existing energy, 
and cluster quality (CQ).

Fig. 4  Data flow diagram of 
Cluster Selection using PSO 
with GA
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5.6  Derivation of the Fitness Function

5.6.1  Cluster Quality for CH and NCH

The objective is to maximize the energy consumption ratio (ECR) by improving the cluster 
quality between CHs and NCHs and their cluster members. Using the signal strength indicator 
(RSSI), it evaluates the amount of energy that the RF client is delivering. Calculating the 
receiver’s low power and low voltage requires the CC2420 transceiver from an access point or 
router. The quality of a route may be measured accurately and simply using RSSI, according 
to numerous researches. Following is an estimation of the quality of the route link between 
local CHj and cluster member nodei:

Because the quality of the route connection is inversely related to the RQ, the value must 
be lowered in order to improve cluster quality.

To increase the cluster quality, the value must be decreased because the quality of the route 
connection is inversely connected to the RQ.

where is the number of cluster j members?

5.6.2  Average ICD

Average ICD (intra-cluster distance) is the average of all node distances from the specified 
CHs and may be computed as:

The energy consumption ratio (ECR) needs to be decreased because all nodes utilize 
energy when sending data to their respective CHs during intra-cluster communication. Conse-
quently, a node is selected as a CH if it is close to all other nodes. The average cluster quality 

(20)RQnodei−CHj
=

RSSInodei−CHj

RSSImin

(21)RQnodei−NCHj
=

RSSInodei−NCHj

RSSImin

(22)AverageCQ =
1

CMj

CMj∑
i=1

RQnodei−CHj

(23)AverageNCQ =
1

CMj

CMj∑
i=1

RQnodei−NCHj

(24)AverageICD =
1

CMj

CMj∑
i=1

Distancenodei−CHj

(25)AverageICD =
1

CMj

CMj∑
i=1

Distancenodei−NCHj
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(CQ) and average inter-cluster distance (ICD) must be minimized to ensure a suitable CH 
range for all CHs. Consequently, we have the following first objective:

Objective 1:

where m denoted the number of CHs.

5.6.3  Energy Efficiency

Every existing energy is indicated as, where the total existing energy of all the 
currently chosen CHs, denoted by, may be calculated as

For the optimal selection of CHs, the total energy of all CHs must be maximized, 
meaning the reciprocal need should be minimized. This is because a node with greater 
battery capacity is better suited for data aggregation and cluster management, making 
a node’s remaining energy a critical factor in deciding CHs. Furthermore, all sensor 
nodes receive an equal share of the absorbed energy. Consequently, the following is 
our second objective function:

Objective 2:

where j stands for initial and current energy values, respectively, and m stands for the 
number of CHs.

The proposed technique does not directly contradict any of the two objective 
functions indicated above. Therefore, it is preferable to reduce each of these goal 
functions linearly combined rather than individually. We utilize the fitness function 
shown below since it generates a distinct optimum solution.

(26)Minimize f1 =

m�
j=1

1

CMj

⎛
⎜⎜⎝

CMj�
i=1

RQnodei−CHj
+ Distance

nodei−CHj

⎞
⎟⎟⎠

(27)Minimize x1 =

m�
j=1

1

CMj

⎛⎜⎜⎝

CMj�
i=1

RQnodei−NCHj
+ Distance

nodei−NCHj

⎞⎟⎟⎠

(28)existing energy =

m∑
j=1

existing energyCHj

(29)existingenergy =
m
∑

j=1
existing energyNCHj

(30)Minimize f2 =

m∑
j=1

Initial energyCHj

existing energyCHj

(31)Minimize x2 =

m∑
j=1

Initial energyNCHj

existin genergyNCHj
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Since a lower fitness value yields better particle positioning, which results in the 
best possible selection of CHs, minimizing the fitness value is our main objective.

6  Experimental and Performance Evaluation

We use Network Simulator Version 2 to simulate our experiment and evaluate the 
effectiveness of our proposed model, DMPRP (NS2). Using WSN features, we first set 
up a wireless sensor network in NS2, and then we develop a hybrid WSN model that 
accounts for sensor nodes with various energy rates, channels, and bandwidth rates. Each 
sensor node in a network is randomly placed and equipped with different wireless sensing 
capabilities. In this experiment, we altered a network with various nodes, topographies, 
energy rates, and communication ranges. The main goal is to assess how well the suggested 
strategy improves communication effectiveness in diverse contexts.

6.1  Performance Analysis

In this experiment, we compared the proposed DMPRP’s performance with that of the 
NEST [3], EC-PSO [28] and GAPSO-H [29] techniques using the following metrics: the 
amount of energy used, the routing overhead, the end-to-end latency, communication delay, 
packet delivery ratio, and throughput.

The energy consumption metric refers to the total power expenditure incurred by a 
network in executing its operations, including the processing and transmission of data 
across its nodes. This parameter is pivotal for evaluating the efficiency and sustainability of 
networks, especially in environments where energy resources are limited.

Network overhead refers to the amount of traffic or data being transmitted through 
a network infrastructure at any given time. It is a measure of the utilization of network 
resources and indicates the level of demand placed on the network by various applications, 
devices, and users. Understanding and managing network load is essential for maintaining 
network performance, reliability, and quality of service.

The end-to-end latency is also known as network latency. Network latency is the time 
it takes for data to travel from the source node to the destination node in a network. It is a 
crucial metric in assessing the responsiveness and efficiency of a communication system, 
including wireless sensor networks (WSNs), Internet of Things (IoT) devices, and other 
networked systems.

The communication delay also referred to as transmission delay, is the time required for 
data to be transmitted from the sender to the receiver in a communication system. It is one 
of the components of end-to-end latency and is a critical factor in determining the overall 
responsiveness and efficiency of the communication network.

The packet delivery ratio (PDR) is a metric used to evaluate the effectiveness of data 
transmission in a network, particularly in wireless communication systems like wireless 
sensor networks (WSNs). It represents the ratio of successfully delivered packets to the 
total number of packets sent by a source node.

(32)Fitness = 𝜔 × f1 + (𝜔 − 1) × f2, 0 < 𝜔 < 1

(33)Fitness = 𝜔 × x1 + (𝜔 − 1) × x2, 0 < 𝜔 < 1
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Throughput in the context of networking, refers to the rate at which data is successfully 
transmitted from a source to a destination within a network over a specified period of time. 
It is a key performance metric that measures the efficiency and capacity of a network to 
deliver data packets between devices or nodes.

In our first experiment nodes are varying from 50, 100, 150, and 200 nodes with respect 
to the amount of energy used, the routing overhead, the end-to-end latency, communication 
delay, and packet delivery ratio in Fig. 5. The following are some examples of the met-
rics used to determine the effectiveness of the routing technique and compare it with the 
approach based on the NEST-sites selection process: NEST, EC-PSO, GAPSO-H, and EC-
PSO, which are acronyms for Energy Centers Searching employing PSO. We looked into 
two options: the number of nodes and the number of rounds [29]. The results presented 

Fig. 5  A represents ratio between nodes and packet delivery, B represents ratio between nodes and network 
overhead, C represents ratio between nodes and energy consumption, D represents ration between nodes 
and end-to-end delay and E represents ratio between nodes and throughput



 V. Prakash et al.

1 3

above show how well the suggested protocols DMPRP, NEST, EC-PSO, and GAPSO-H 
perform for different numbers of nodes. The findings showed that using additional Clus-
ter Heads improved the distribution of data from the zones of non-cluster members to the 
closest Cluster Head. The number of nodes affects how much energy is used by the total 
system. Figure 5A and B show how many packets were successfully sent to the base station 
and how the packet delivery ratio fell as the number of nodes and rounds increased. The 
overall delivery ratio varied with the number of rounds, as seen in Fig. 5C. The overhead 
rises with the quantity of nodes and rounds, as seen by the overhead results in Figs. 5D and 
6E. More routing was completed, which had a higher impact on control packets as more 
nodes distributed data.

Additionally, the number of rounds is considered with respect to the packet deliv-
ery ratio, network overhead, energy consumption, end to end delay, and throughput in 

Fig. 6  A represents ratio between rounds and packet delivery, B represents ratio between rounds and net-
work ahead, C represents ratio between rounds and energy consumption, D represents ratio between rounds 
and end-to-end delay and E represents ratio between rounds and throughput



Energy‑Optimization Route and Cluster Head Selection Using…

1 3

simulation results. Figure 6C and B show that when the number of sensors increases, the 
energy consumption rises, and the cluster head establishes connectivity with both non-clus-
ter and cluster members. The cluster head consumes extra energy based on the designated 
energy level, and the suggested model improves communication by limiting the routing 
packets for the number of rounds in Fig. 6A. Figure 6D shows the end-to-end delay per-
formance of DMPRP, NEST, EC-PSO, and GAPSO-H compared in Fig. 6A–E. According 
to the findings, the suggested protocol DMPRP’s end-to-end delay rate is higher because 
there are more players and cluster heads, which impacts packet delay. As a result, DMPRP 
performs 12% better overall than NEST, EC-PSO, and GAPSO-H. Figures 5 and 6 depict 
the throughput fluctuation with regard to the number of nodes and rounds in the throughput 
scenario. According to the determined results, the throughput rate was marginally lower, 
although it was higher in relation to the volume of packets transmitted over the network 
when compared to NEST, EC-PSO, and GAPSO-H.

6.2  Discussions

In our initial study, we varied node counts at 50, 100, 150, and 200 to assess their impact 
on energy usage, routing costs, delay times, communication delay, and successful message 
transmissions, as seen in Fig. 5. We measured the efficiency of different routing methods, 
including proposed DMPRP, NEST [3], EC-PSO [28], and GAPSO-H [29], based on 
metrics like energy consumption and delivery success rates. These methods were compared 
against a background of varying node and operational cycle numbers. Our findings indicate 
that increasing the number of Cluster Heads enhances data distribution efficiency from 
non-cluster zones to their nearest Cluster Heads, impacting the system’s overall energy 
footprint. Figure  5A and B highlight the correlation between node/round numbers and 
packet delivery success, showing a decline in delivery rates with higher node and round 
counts. This trend also influenced routing overhead and control packet distribution as node 
and cycle numbers grew, as detailed in Figs. 5D and 6E.

Further analysis into the effects of operational cycles on delivery success, net-
work costs, energy use, delay times, and overall throughput revealed a direct relation-
ship between sensor count and energy demand, with Cluster Heads playing a pivotal 
role in connecting different network segments, as documented in Fig.  6C and B. This 
setup necessitated additional energy, especially for Cluster Heads, to maintain effective 
communication across rounds, as illustrated in Fig.  6A. Moreover, our comparison in 
Fig. 6D and E showed that DMPRP, despite causing higher end-to-end delays due to the 
increased number of elements in the network, still outperformed other models by 12% 
in overall efficiency. Figures 5 and 6 collectively demonstrate how network performance 
metrics like throughput react to changes in node and cycle counts, underlining a slight 
throughput reduction but an overall higher packet transmission rate when compared to 
other evaluated protocols.

7  Conclusion and Future Work

In this article, the suggested dynamic multi-path routing protocol enhances network 
performance by using a modified particle swarm optimization technique for the optimum 
cluster and cluster head selection. Improvements in packet delivery ratio, network overhead, 
energy consumption, end-to-end delay, and throughput all contribute to better overall 
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performance. In order to obtain a more efficient energy-consumption ratio, the network 
field structure is divided into numerous groups (clusters) based on node architecture. This 
will balance the load and improve performance by choosing the cluster head. The proposed 
work has further enhanced a route path from NCH to CH based on the cluster head selected. 
The results are used to find the best shortest path using the Genetic Algorithm. Comparing 
DMPRP’s overall performance to NEST, EC-PSO, and GAPSO-H, it is becoming more 
effective.

Future research in wireless sensor networks (WSNs) will focus on enhancing load 
balancing through advanced location techniques and Bacterial Foraging Optimization 
(BFO). Efforts will also be made to improve energy efficiency using Managed Diffusion 
and Load Aggregation. The integration of WSN clustering with technologies like machine 
learning, edge computing, and IoT will address challenges in data processing, security, 
and scalability. Collaborations across various fields and real-world testing of clustering 
techniques will provide insights into their application effectiveness and scalability. 
However, challenges like computational complexity from integrating Modified Particle 
Swarm Optimization (M-PSO) and Genetic Algorithm (GA), and resource constraints in 
WSNs, will need addressing to optimize network performance.
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