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Abstract
Image captioning is a challenging task involving generating descriptive sentences to 
describe images. The application of semantic concepts to automatically annotate images 
has made significant progress. However, the now available frameworks have apparent 
limitations, particularly in concept detection. Incomplete labelling due to biased 
annotations, using synonyms in training captions, and the enormous gap between positive 
and negative thought samples contribute to the problem. Incomplete labelling is a result 
of biased annotations. The captioning frameworks that are now in use are inadequate and 
create a barrier to accurate image captioning. Unequal sample occurrences and missing 
training captions negatively affect the model’s potential to develop rich and varied 
descriptions of images. Inadequate sample occurrences and missing training captions also 
contribute to insufficient idea generation. To circumvent these limitations, a novel approach 
has been designed to automatically generate images using Weighted Stacked Generative 
Adversarial Network (WSGAN). With the help of this boost, the uneven distribution of 
concepts is intended to be rectified, thereby expanding the breadth of the horizons covered 
by the training set. The proposed approach utilizes a WSGAN in conjunction with a 
Gated Recurrent Units (GRU)–based Deep Learning (DL) model and a Visual Attention 
Mechanism (VAM)–based DL model. The purpose of the GRU-VAM model is to enable 
the generation of text captions for images. To train the model, combining the MS COCO 
dataset with a wide variety of original and machine-generated image datasets in numerous 
permutations is necessary. The WSGAN-generated images correct the imbalance and 
incompleteness in the training dataset, which boosts the model’s ability to capture a wider 
variety of thoughts. During testing and evaluation, the proposed WSGAN- GRU-VAM 
demonstrates significant enhancements in image captioning metrics compared to existing 
models. WSGAN-GRU-VAM is superior to other well-known image captioning algorithms 
such as EnsCaption, Fast RF-UIC, RAGAN, and SAT-GPT-3 in terms of its performance 
across various essential parameters. Increase in BLEU (8%), METEOR (7%), CIDEr (9%), 
and ROUGE-L (6%), on average, reflect the model’s capacity to provide image captions 
with enhanced linguistic accuracy, relevance, and coherence.
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1 Introduction

Image captioning, a technology at the intersection of computer vision and natural language 
processing, has emerged as a game-changing tool in recent years [1]. The end goal is 
to give computers the ability to comprehend and explain visual content as humans can. 
This technology has a wide variety of applications that could be developed, including 
enhancing content search and retrieval, and making it simpler for visually impaired people 
to access visual information [2]. The advancements made in deep learning algorithms are 
what have really pushed the envelope in terms of the development of image captioning 
systems. Convolutional neural networks (CNNs), which play a significant part in 
obtaining hierarchical characteristics from images by capturing fine-grained information 
necessary for content comprehension [3], play a crucial function in obtaining hierarchical 
characteristics from images. In parallel, RNNs and their derivatives, such as Long 
Short-Term Memory and Gated Recurrent Units, have been utilized to generate textual 
descriptions that are coherent and contextually relevant based on the information that has 
been collected from visual data [4, 5].

Ambiguity in the visual material, differences in the complexity of the scenario, and the 
requirement for a nuanced understanding of all present difficulties in the construction of 
correct and reliable captions [6]. It is difficult to train models that are capable of working 
well in several domains, in part because there are so few datasets that are both diverse 
and well-annotated, which makes it difficult to train models [7, 8]. Researchers in the field 
of image captioning have investigated a variety of approaches to the problem of how to 
improve both their accuracy and their rate of production [9]. Recent developments in the 
field include the incorporation of semantic concepts for improved contextual understanding 
and attention approaches that allow the model to focus on specific portions of the image 
[10]. The field is continually evolving, and some of the more recent achievements include 
these incorporations [11]. Focusing on concerns such as dataset biases, concept variety, 
and computation efficiency, ongoing research efforts continue to push the boundaries of 
what is achievable in automatic image captioning [12].

Image captioning has come a long way, but there are still certain challenges to get 
over before it can be considered fully developed [13]. Existing frameworks that rely on 
semantic concepts created from image-caption pairs are prone to run into issues since 
there is a dearth of concept examples that represent negative ideas [14]. As a result of 
biased annotations and an excessive reliance on synonyms, training captions suffer from 
an insufficient number of diverse and accurate concepts [15–17]. Due to the limitations in 
the methods currently used for image captioning, a more efficient technique is required for 
idea recognition. The quality of image captions suffers from a lack of concepts [18], which 
inhibits the capacity to generate variabilities and accurate descriptions of the images they 
accompany [19].

In enhancing existing frameworks  [20–22], the proposed research develops a novel 
strategy for the captioning of images. The primary objectives are to broaden the scope 
of the training concepts available, improve the precision of the image descriptions, and 
level out the distribution of the different types of concept occurrences. The efficiency of 
computation for applications in the actual world is another objective of the research. In this 
paper, a novel strategy is presented for the generation of machine images by including a 
Weighted Stacked Generative Adversarial Network (WSGAN).

This paper provides a novel solution to the difficulties of automatic image captioning 
by introducing the WSGAN with a Deep Learning (DL) model that incorporates Gated 
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Recurrent Units (GRU) and a Visual Attention Mechanism (VAM). This model includes 
both components. Concept recognition is significantly improved when WSGAN-generated 
images are used, which results in image captions that are both more correct and more 
diverse. The proposed method contributes to the development of technology for image 
captioning, and it has implications for content comprehension and accessibility.

2  Related Works

Together, numerous studies have made significant contributions to developing various 
systems for image captioning.

Recently, there has been a lot of interest in innovative ways to visual understanding, 
as well as inquiry into those approaches, particularly in the context of the development of 
image captions. TextCaps is a profession that involves adding captions to images based 
on text, and it has been the focus of several studies. Because TextCaps is dependent on 
OCR and the textual information in images, so it might be challenging to use. The problem 
is addressed in [23], where a solution is proposed. This technique addresses the issue 
by maximizing the utilization of multiple modalities in images and applying pre-trained 
Contrastive Language-Image Pre-training (CLIP) models to enhance OCR linguistic 
properties. Two more attention models were embedded within a transformer architecture 
in order to significantly strengthen the representation of the visual modality and produce 
better results on the TextCaps dataset.

Another significant contribution deals with the more general topic of image captioning, 
as is detailed in [24]. The study divides the existing strategies into two categories: 
generation-based and retrieval-based techniques, and then evaluates the advantages 
and disadvantages of each one of these categories. The authors offer a solution to these 
problems in the form of a recommendation for a novel dual-generator generative adversarial 
network model that goes by the name EnsCaption. A generation model, a re-ranking 
model, and a discriminator are the three components that make up EnsCaption, which is an 
attempt to combine the most beneficial aspects of techniques that are generation-based and 
retrieval-based. The model takes advantage of adversarial training to increase the quality 
of its synthetic and retrieved candidate captions to compensate for the inherent difficulty in 
evaluating image captioning methods.

The method in [25] undertakes a comprehensive paper of the previously existing 
ideas-to-caption framework in an aim to advance the field of automatic image captioning. 
As a result of this analysis, defects that are the result of a lack of concepts in semantic 
concept recognition are discovered. The authors present a novel strategy that they name 
online positive recall and missing concepts mining as a potential solution to the problem of 
incomplete labeling in training captions as well as the gap that exists between positive and 
negative samples. When applied to the MSCOCO image captioning dataset, this method 
demonstrates superior performance in comparison to competing options, highlighting its 
utility in the production of accurate and comprehensive image captions.

People who are visually challenged benefit tremendously from having the meaning of 
images communicated to them using image captioning. The newly developed unsupervised 
model known as Fast RF-UIC is described in [26]. It reduces the amount of time required 
for training by employing a Pre-trainer that was constructed specifically for it. The model 
takes use of an encoder-decoder architecture, more especially the R2-Inception-V4 
encoder and the Bi-FGRU decoder, to improve visual feature extraction and character 
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representation. especially, the model uses these two components. When compared to earlier 
unsupervised image captioning systems, the performance of current unsupervised systems 
on text evaluation measures improves as the corpus develops.

The [27] provide an improved method for identifying crop diseases in urban farming 
by utilizing a mix of Image Captioning and Object Detection in their research. The model 
creates diagnostic words based on the severity of the symptoms by using InceptionV3 
and Transformer for image captioning and YOLOv5 for object detection. These three 
algorithms work together. While achieving a high BLEU score for phrase creation, there 
is an acknowledgment of the need for improvement in Object Detection (mAP50). This 
highlights the potential advantages that the proposed system may have for beginning 
farmers.

In high-quality image caption generation, the introduction of the Residual Attention 
Generative Adversarial Network (RAGAN) in [28] is a step forward. RAGAN makes use 
of GAN attention-based residual learning to improve the diversity and accuracy of the 
image captions that it generates. The recommended architecture, which consists of an 
encoder-decoder mechanism with residual learning and a connected language evaluation 
unit, exhibits its utility in increasing the quality of image captions by performing better 
than state-of-the-art GAN models. This demonstrates the proposed architecture potential to 
be an effective means of enhancing the overall level of accuracy of image captions.

The research in [29] provides a framework for the automatic creation of clinical image 
captions by merging radiological scans with patient data. Due to the combination of the 
Show-Attend-Tell and GPT-3 language models, the recommended method can effectively 
apply to the captioning of chest X-ray images across all medical datasets. Table 1 provides 
a summary of related works.

The existing frameworks for mapping concepts to captions all have the same issue: they 
have an uneven distribution of positive and negative concept examples. Because of this 
inequality, the model is less capable of accurately capturing a wide variety of concepts, 
which in turn leads to visual descriptions that are less highly descriptive. Incomplete 
labelling in the training dataset results from biases in training annotations and the frequent 
usage of captions. This limits the ability of the model to comprehend and classify visual 
information.

Existing image captioning frameworks have certain limitations, but a research gap 
still calls for innovative solutions. To successfully enrich the dataset, novel approaches 
are required because training concepts that are varied and vast are not readily available. 
Even though recent research has studied the incorporation of weighted stacking generative 
adversarial networks (GANs) to improve image output, applying GANs for image 
captioning remains primarily unknown. Filling up this knowledge gap can substantially 
improve both the accuracy and diversity of image captions, and it could do so by addressing 
issues such as concept imbalance and insufficient labelling in training datasets.

3  Proposed Method

The proposed method depicted in Fig. 1 addresses the shortcomings of the existing image 
captioning frameworks by utilizing a WSGAN, a DL model with GRU, and a VAM.

• The WSGAN plays an essential role in the expansion of the data utilized for training. 
Through the utilization of weighted image synthesis by machines, the objective is to 
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rectify the excessive positive/negative concept sample imbalance that has developed. 
This augmentation strategy, when applied to training data, helps fill in the gaps that 
emerge as a result of a lack of ideas in more typical concepts-to-caption frameworks.

• The DL model, which makes use of GRU and VAM, acts as the principal foundation 
for producing image captions in the form of text. This is because the DL model utilizes 
both of these models. GRU makes it easier to replicate the sequential dependencies that 
are inherent in the captioning process. Whereas VAM helps the model zero down on 
crucial areas of the images, GRU helps it simulate sequential dependencies. Together, 
they make it possible for us to write captions that are coherent and descriptive in a 
range of settings.

3.1  Image Captioning Generation Using WSGAN

The fact that the proposed WSGAN-based image captioning generation creates synthetic 
images to complement the training dataset is the key innovation that this method brings 
to the table. WSGAN is a generative adversarial network that utilizes a novel weighted 
technique. Its primary goal is to correct the inherent imbalance that existed between 
positive and negative idea samples in earlier image captioning systems. In contrast to 
traditional GANs, WSGAN implements a stacking mechanism, which enhances the 
generator ability to produce images that are both original and relevant to their environment. 
The weighted feature ensures a more variabilities synthesis of images by giving more 
weight to concepts in the training dataset. It is a simple and straightforward method to 
incorporate the images generated by a WSGAN into a DL model that also includes a GRU 
and a VAM. This DL architecture acts as the primary driving force behind the generation 
of descriptive captions that are associated with synthetic images. The GRU is capable of 

Fig. 1  Proposed Method
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simulating the sequential dependencies that arise during the process of captioning thanks 
to its ability to capture the temporal complexities of language development. At the same 
time, the VAM assists the model in concentrating on the most significant aspects of the 
manufactured images. Consequently, the captions that are generated are in perfect harmony 
with the most valuable visual information. It can be ascertained that the generated captions 
are logically consistent and contextually appropriate for the extensive variety of concepts 
that are communicated by the augmented synthetic images thanks to the combination of 
WSGAN and an intricate DL model. These two technologies work in tandem to ensure 
this.

Training Initialization WSGAN initial step is to establish a generator and discriminator 
network, which is known as initiating training. This is the first step in the process of 
implementing WSGAN. It is the responsibility of the generator to concoct false images out 
of the noise, while it is the discriminator’s task to identify the differences. Both networks 
have their weights and biases set appropriately at the beginning of the process.

Weighted Stacking Mechanism During the training phase, the generator will do image 
synthesis using a weighted algorithm. This necessitates giving more weight to particular 
ideas or qualities in comparison to others in order to compensate for the imbalance in 
the number of occurrences of positive and negative concepts. Because of the weighted 
stacking, the generator produces a series of synthetic images that are richer in variety and 
more pertinent to their surrounding context. When you make an image using the weighted 
method, you have the ability to give distinct concepts varied levels of importance. Let W 
represent the weight matrix, and z be the input random noise. The generator function G 
with the weighted stacking mechanism (Ws) can be represented as:

Adversarial Training The type of training that is known as adversarial training is one 
in which the generator and the discriminator actively work against one another. While 
the discriminator strives to accurately differentiate between genuine and made images, 
the generator objective is to produce synthetic images that are indistinguishable from real 
ones. The discriminator works to reliably discern between real and manufactured images. 
The generator is better able to recognize and highlight captions ideas using the weighted 
stacking process. The Wasserstein loss (LWass) measures the dissimilarity between the 
distribution of real (Pr) and generated (Pg) images. It is commonly used in WSGAN and is 
defined as the distance between these distributions:

Where, x–input; LWass–Wasserstein loss; (Pr,Pg)–(real distribution, generated distribution); 
D–Discriminator Function; L: Lipschitz Constant;  Ex∼Pr[D(x)]–Discriminator output for 
real distribution;  Ex∼Pg[D(x)]–Discriminator output for generated data distribution.

Training the generator to reduce the negative Wasserstein loss as much as possible while 
simultaneously training the discriminator to increase it as much as possible produces the 
best outcomes.

Loss Function Optimization In order to acquire the best possible outcomes in terms of 
decreasing the loss function, it is necessary to perform loss function optimization, which 
entails repeatedly performing training while making minor adjustments to the weights 
of the generator and the discriminator. The Wasserstein distance is frequently used as 
the loss function in WSGAN, and its purpose is to evaluate the degree of dissimilarity 
between the distribution of real and generated images. The process of optimization 

Ws = G(W ⋅ z)

LWass(Pr,Pg) = max∥D∥L≤1Ex∼Pr[D(x)] − Ex∼Pg[D(x)]



 J. N. Chandar, G. Kavitha 

1 3

seeks to increase the generator capability to produce a wide variety of images and the 
discriminator ability to correctly differentiate natural and artificial content.

Image Captioning After the WSGAN training has been finished, the synthetic images 
are seamlessly integrated into a DL model that is used for image captioning. There is no 
discernible disruption in this process. The existing frameworks are going to get a boost 
from this combination because it will increase the training dataset level of diversity 
and comprehensiveness. Combination of WSGAN-generated synthetic images (Isyn) 
into an image captioning model, which is based on a combination of GRU and VAM. 
The GRU is utilized in the processing of the image characteristics, and the attention 
mechanism is used in order to gather pertinent facts. The following steps are required by 
the captioning model in order to produce the caption (C):

Isyn–WSGAN-generated synthetic images.
Weighted Stacking in WSGAN is implemented during the training phase of the 

generator to address the imbalance between positive and negative concept samples. The 
key idea is to give more weight to specific ideas or qualities in the training dataset to 
compensate for the unequal distribution of positive and negative concepts. By doing so, 
the generator produces synthetic images that are not only diverse but also more relevant 
to their surrounding context.

In the weighted stacking mechanism, a weight matrix (W) is introduced, and it 
is multiplied by the input random noise (z) during the image synthesis process. The 
generator function (G) with the weighted stacking mechanism (Ws) can be represented 
as:

where, W represents the weight matrix, and z is the input random noise. The weighted 
stacking allows the generator to assign varied levels of importance to different concepts 
during image synthesis. By adjusting the weights in the matrix, the generator can focus 
more on certain ideas, helping to overcome the imbalance issue and generate a more varied 
set of synthetic images. This process ensures that the generated images cover a broader 
spectrum of concepts, addressing the imbalance between positive and negative samples.

Algorithm 1: Image Captioning with WSGAN
Initialize the WSGAN with G and D.
Initialize weights and biases.
Introduce a weighted stacking mechanism in G.
Adjust W during synthesis G(W⋅z)
Train G and D in an adversarial manner.
Utilize LWass for adversarial training.

Update G and D to maximize the negative LWass
Generate synthetic images using trained G using random noise N:

C = CM
(

Isyn
)

Ws = G(W ⋅ z)

LWass(Pr,Pg) = max∥D∥L≤1Ex∼Pr[D(x)] − Ex∼Pg[D(x)]

Isyn = G(N);
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where G - function that maps the input N to the output Isyn. This function could rep-
resent some synaptic or neural processing, where the input N or x (representing neural 
activity or input signals) is transformed into the synaptic current Isyn.

Evaluate generated captions.

3.2  GRU Process

The model in GRU, which is a subclass of RNN, has the purpose of storing information 
that is pertinent throughout a sequence of data. GRU maintains a hidden state vector that 
expands as more time passes so that it may recall data from previous operations and apply 
that data. Update and reset gates are two examples of the gating mechanisms included in 
GRU that allow for more efficient control of the information flow across the network than is 
feasible with standard RNNs. Both gates are instances of what are known as update gates. 
The GRU method adheres to the same three stages throughout each and every stage of 
sequential data processing. The reset gate decides which parts of the previous secret state 
are going to be wiped clean. This gate determines the significance of previous knowledge, 
so preventing the model from being overly influenced by historical context is irrelevant 
to the problem at hand. The update gate will make use of both the output of the reset gate 
as well as the current input in order to figure out the subsequent possible hidden states. 
This helps in selecting what data should be included in the updated concealed state since 
it provides useful information. The final step is to perform a weighted combination of the 
current state and the newly computed candidate state in order to incorporate the newly 
calculated candidate state into the concealed state. The vanishing gradient problem is a 
difficulty that is common to conventional RNNs. GRU uses gating methods, which allow 
it to selectively keep or reject information, to solve this problem. This allows it to better 
capture long-range dependencies in sequential data.

The reset gate (rt) is the one responsible for making the call on whether or not to 
forget certain aspects of the previous hidden state (ht−1). Its computation makes use of the 
sigmoid activation function:

where Wr represents the reset gate weights, σ is the sigmoid function, and xt is the input at 
time t.

In order to determine a new candidate hidden state (h~t), the update gate (zt) takes into 
account both the output of the reset gate and the current input. The following is the formula 
for this:

where Wh and Wz are the candidate weights, tanh is the hyperbolic tangent function, ⊙ 
denotes element-wise multiplication.

The updated hidden state ht is calculated by taking the weighted average of the original 
state and the new candidate state:

C = CM(Isyn)

rt = �
(

Wr ⋅
[

ht−1, xt
])

h∼t = tanh
(

Wh ⋅ [rt ⊙ ht−1, xt]
)

zt =𝜎
(

Wz ⋅
[

ht−1, xt
])



 J. N. Chandar, G. Kavitha 

1 3

This integrates both the forgetting process and the input process, giving the model the 
ability to choose which data to preserve and which data to throw out based on the state of 
the update gate.

Algorithm 2: Gated Recurrent Unit (GRU)
Initialize weights and biases for the Wr, Wz, and Wh
Initialize h0
For Each Time Step (t)

Output ht from entire sequence.

3.3  Visual Attention Mechanism

Visual Attention Mechanism (VAM) is a complicated component of the deep learning 
models developed to improve the processing of visual information, such as image 
captioning. VAM imitates human visual attention by selecting and focusing on certain 
regions of an image at various moments. Because of this, the model is able to place a 
greater emphasis on the most relevant aspects and is now capable of generating results 
that are not only more accurate but also more contextually rich across a larger variety 
of scenarios. In the VAM process, there are three basic stages that are involved in each 
cycle of image processing. It starts out by giving different sections of the image varying 
degrees of relevance ratings. Each component of the task at hand receives a score that 
is proportional to the significance it plays in achieving the overall objective. Next, the 
attention ratings are taken to construct a weighted combination of the image attributes. 
Within this combination, greater weight is given to the aspects of the image that have 
been identified as having greater significance. Incorporating this attention-weighted 
data into the model decision-making process enables the production of captions or other 
appropriate outputs that appropriately reflect the model’s advanced knowledge of the visual 
information. Therefore, VAM offers a method that is both dynamic and adjustable for 
collecting sections of an image that are essential to the context of the image by matching 
the focus of the model with the most helpful visual aspects.

The computed attention scores eij determines how well the context vector (st−1) 
aligns with the spatial positions (hi) of the image. Normalized attention scores are 
frequently computed with the use of a scoring function such as the dot product, which are 
subsequently utilized by a softmax network after being activated.

A weighted combination of the image characteristics is created by combining the 
attention scores eij with the image features (hi). The context vector ct, is a weighted sum 
that draws attention to significant aspects of an image.

ht =
(

1 − zt
)

⊙ ht−1 + zt ⊙ h∼t

Compute rt = 𝜎(Wr ⋅
[

ht−1, xt
]

)

Compute h∼t = tanh(Wh ⋅ [rt ⊙ ht−1, xt)

Update zt = 𝜎(Wz ⋅
[

ht−1, xt
]

)

UpdateHidden State ht =
(

1 − zt
)

⊙ ht−1 + zt ⊙ h∼t

eij = softmax(st−1 ⋅ hi)
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The decision-making process of the model takes into account the context vector (ct), 
typically in conjunction with the output of the RNN or other relevant components:

where AGRU  represents the specific operation for incorporating attention-weighted 
information into the model internal state.

Algorithm 3: Visual Attention Mechanism
Initialize the parameters, including weights for computing eij.
For Each Time Step (t):

where st−1 is the vector representing the query at the previous time step t − 1 and hi is 
vector representing the context at position i.

Output xt i.e., model decision at time step

4  Results and Discussion

The MS COCO dataset [30] was used, which is available for public consumption, as a 
benchmark for image captioning research along with PyTorch as the implementation 
framework. This strategy entails merging the WSGAN with the Gated Recurrent Units 
(GRU), as well as the Visual Attention Mechanism (VAM). To accelerate the learning 
curve, the simulation was executed on a high-performance computer cluster that was 
outfitted with NVIDIA GPUs as tabulated in Table 2. Several experiments are conducted 
to fine-tune the model hyperparameters to get optimal results and increase the overall 
performance. The scores of BLEU, METEOR, CIDEr, and ROUGE-L were used in the 
evaluation process. These metrics enable an in-depth examination of the quality of the 
captioning provided by the proposed model.

Evaluation of the system against the industry current gold standard, EnsCaption, as 
well as to Fast RF-UIC and RAGAN was performed in order to determine how effective 
the proposed solution is. RAGAN is an innovative adversarial training strategy, Fast 
RF-UIC makes effective use of random forests, and EnsCaption is well-known for its 
ensemble-based approach to the process of image captioning. Head-to-head comparisons 
were carried out on a number of measures in order to investigate the relative value of 
each one. The results of the trials demonstrated that the proposed WSGAN with GRU-
VAM outperformed the state-of-the-art methods discussed earlier in terms of captioning 
quality and computational efficiency. This demonstrates that it is successful in overcoming 
the limitations of idea imbalance and incomplete labeling that affects existing image 
captioning frameworks.

ct =
∑

i

eij ⋅ hi

xt = AGRU
(

ct, xt−1
)

Compute eij = softmax (st−1 ⋅ hi)

Compute ct =
∑

i

eij ⋅ hi

Incorporate xt = AGRU(ct, xt−1)
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4.1  Quantitative Performance Metrics

Image captioning models have performance metrics that quantify how well generated 
captions perform in contrast to reference captions.

• BLEU (Bi-Lingual Evaluation Understudy): BLEU determines how accurate the 
generated captions are by analyzing the n-grams, or sequences of words, that are 
present in both the reference captions and the generated captions. The higher the 
score, which can vary from 0 to 1, the more closely it replicates the language of the 
reference captions; this is because the value is based on a scale from 0 to 1.

• METEOR (Metric for Evaluation of Translation with Explicit ORdering): 
METEOR evaluates the quality of generated captions based on precision, recall 
with reference captions. METEOR is an acronym for the Metric for Evaluation of 
Translation with Explicit ORdering. It is a full evaluation of the linguistic quality 
since in order to generate a score, it takes into consideration unigram matching, 
stemming, and synonymy.

• CIDEr (Consensus-based Image Description Evaluation): CIDEr is a method 
that assesses generated captions based on how effectively they reflect both diversity 
and consensus. When comparing the generated captions to the human consensus, 
it considers common terms found in a variety of reference captions and determines 
how well they match. As the CIDEr score grows, the degree to which human 
annotators concur among themselves also rises.

• ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation-Longest 
Common Subsequence): A metric known as ROUGE-L evaluates the degree to 
which the generated captions and the reference captions share the same Longest 
Common Subsequences (LCS). Memory plays a significant role in the storage of 
essential data in this system. A higher ROUGE-L score indicates that there was 
greater topic overlap and memory.

Table 2  Experimental settings

Experimental setup Parameters and values

Dataset MS COCO
Framework PyTorch
Training Epochs 50
Batch size 64
Learning rate 0.0001
Optimizer Adam
Weight initialization Xavier/Glorot
GRU hidden units 512
Attention mechanism type Scaled Dot-Product Attention
GAN training steps 5 (for each generator and discriminator update)
GAN learning rate 0.00005
Evaluation metrics BLEU, METEOR, CIDEr, ROUGE-L
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4.2  Qualitative Performance Metrics

In a wide variety of machine learning and classification tasks, performance measures such 
as accuracy, precision, recall, and F-measure are used widely to evaluate the efficacy of 
a model. Other performance measures include recall rate. The following is a rundown of 
what each definition entails:

• Accuracy: Accuracy is defined as the proportion of true predictions made in relation to 
the total number of instances.

• Precision: Precision is defined as the proportion of precisely anticipated positive cases 
in relation to the total number of positive examples foreseen.

• Recall: Recall evaluates the proportion of accurately anticipated positive occurrences 
relative to the total real positive instances to evaluate the model capacity to capture all 
positive events.

• F-measure: It is the harmonic mean of precision and recall, the F-measure provides an 
evaluation of the usefulness of a model.

4.3  Qualitative Results

The findings from the experiments offer insight on the relative strengths and shortcom-
ings of the proposed WSGAN-GRU-VAM architecture in comparison to other state-of-
the-art approaches to image captioning, such as EnsCaption, Fast RF-UIC, RAGAN, and 
SAT-GPT-3. The WSGAN-GRU-VAM frequently outperforms other approaches on a wide 
range of assessment parameters, demonstrating that it is able to successfully deal with the 
challenges that are inherent in image captioning. In terms of accuracy as shown in Fig. 2, 

Fig. 2  Accuracy
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the WSGAN-GRU-VAM strategy demonstrates a significant improvement in comparison 
to earlier methods, with an average percentage improvement of almost 10%. This enhance-
ment indicates the model capacity to generate captions that are of a higher quality and 
more contextually suitable. As a result, the state of the art for automatically captioning 
images has advanced because of this upgrade.

Figure 3 demonstrates that the proposed WSGAN-GRU-VAM greatly enhances preci-
sion, which is a crucial parameter in  situations where false positives have major ramifi-
cations, by an average of approximately 8%. This demonstrates the model capability of 
lowering the number of false positives and producing accurate image descriptions, both of 
which are necessary for applications such as medical diagnostics and content filtering.

Due to a significant improvement in recall, as shown in Fig. 4, the WSGAN-GRU-VAM 
was able to successfully retrieve a higher proportion of information that is meaningful. 
The model achieves an average percentage improvement of roughly 7%, which indicates its 
greater capacity to notice positive cases. This is particularly helpful in circumstances when 
failing to recognize important information might result in expensive consequences.

As shown in Fig.  5, the WSGAN-GRU-VAM often results in an improvement of 
approximately 9% in terms of the F-measure, which is a balanced evaluation of precision 
and recall. This indicates the model ability in achieving a balance between the two compet-
ing goals of capturing a comprehensive collection of key information in image descriptions 
while simultaneously limiting false positives.

4.4  Quantitative Results

Tables 3 and 4 tabulate the qualitative and quantitative results of the experiments. EnsCap-
tion achieved a BLEU score of 75%, indicating that 75% of its generated captions match 

Fig. 3  Precision
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Fig. 4  Recall

Fig. 5  F-Measure
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the reference captions. Its METEOR score stands at 82%, showcasing a high level of flu-
ency and semantic similarity. With a CIDEr score of 120%, EnsCaption excels in capturing 
diverse and relevant phrases. The ROUGE-L score of 88% indicates strong overlap with 
reference captions.

Fast RF-UIC outperforms EnsCaption across all metrics. It achieves a BLEU score of 
80%, METEOR score of 85%, and CIDEr score of 130%, suggesting improved accuracy, 
fluency, and descriptive quality. Its ROUGE-L score of 92% indicates a significant overlap 
with the reference captions.

RAGAN demonstrates competitive performance with a BLEU score of 78%, METEOR 
score of 84%, and CIDEr score of 125%. Its ROUGE-L score of 90% shows strong content 
overlap with reference captions.

SAT-GPT-3 emerges as a top performer with an 85% BLEU score, an 88% METEOR 
score, and a 140% CIDEr score. This suggests high accuracy, fluency, and rich descriptive 
content. The ROUGE-L score of 94% indicates extensive lexical overlap.

The proposed WSGAN-GRU-VAM showcases superior performance across the board, 
achieving an 88% BLEU score, a 90% METEOR score, and a 145% CIDEr score. This 
suggests exceptional accuracy, fluency, and descriptive quality. The ROUGE-L score of 
95% indicates substantial lexical overlap with reference captions.

SAT-GPT-3 and WSGAN-GRU-VAM demonstrate the highest overall performance, 
outshining the other models in terms of BLEU, METEOR, CIDEr, and ROUGE-L scores. 
These metrics collectively affirm the proposed model’s effectiveness in generating captions 

Table 3  Results of qualitative 
analysis on the proposed method

Iteration Fluency Sentimental 
accuracy

Context 
relevance

Loss Accuracy

0 0.75 0.8 0.85 1.2 0.92
200 0.78 0.82 0.86 1.15 0.93
400 0.8 0.84 0.88 1.1 0.94
600 0.82 0.85 0.89 1.05 0.95
800 0.85 0.87 0.9 1 0.96
1000 0.87 0.88 0.91 0.95 0.97
1200 0.88 0.9 0.92 0.9 0.98
1400 0.9 0.91 0.93 0.85 0.98
1600 0.92 0.92 0.94 0.8 0.99
1800 0.94 0.93 0.95 0.75 0.99
2000 0.95 0.94 0.96 0.7 1

Table 4  Results of quantitative analysis on the proposed method

Model BLEU score METEOR score CIDEr score ROUGE-L score

EnsCaption 0.75 0.82 1.2 0.88
Fast RF-UIC 0.8 0.85 1.3 0.92
RAGAN 0.78 0.84 1.25 0.9
SAT-GPT-3 0.85 0.88 1.4 0.94
WSGAN-GRU-VAM 0.88 0.9 1.45 0.95
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that are accurate, fluent, contextually relevant, and lexically similar to reference captions. 
The results of image captioning predicted samples are represented in Fig. 6 for two differ-
ent images.

5  Conclusion

The WSGAN-GRU-VAM technique is the product of research efforts to enhance image 
captioning. It is a novel framework that integrates WSGAN, GRU, and VAM. The 
enhanced captioning accuracy and coherence provided by the WSGAN-GRU-VAM 

Fig. 6  Results of Predicted Image Captioning
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approach has a wide variety of potential applications in the real world. Some examples 
of these applications include medical image analysis, the retrieval of multimedia content, 
and autonomous systems. These advantages are particularly significant in spheres that 
emphasise exactness, comprehensiveness, and narrative coherence in their work. To 
remedy these deficiencies, the proposed new methodology combines the positive aspects 
of three previously established approaches: the WSGAN for dataset augmentation, the 
GRU for sequential learning, and the VAM for visual attention. Adding machine-generated 
images to training datasets has proven to help resolve several issues, including an uneven 
distribution of concept occurrences, problems caused by biased annotation, and an 
excessive reliance on captions.
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