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Abstract
The development of a system to recognize the speeches of standard speakers has been in 
practice for many decades. Research development is still progressing to implement a strat-
egy to identify the speeches uttered by people with hearing impairment/Autism spectrum 
disorder/dysarthria. This work includes various speech enhancement techniques to increase 
the intelligibility of spoken utterances. This system uses perceptual features and different 
modelling techniques for developing a dysarthric speech recognition system. Perceptual 
features are extracted from raw speeches, and intelligibility-enhanced spoken utterances 
and models are created. The design features extracted from the test utterances are given 
to the models, and based on the classifier used, the test utterance is identified to be associ-
ated with the model. An Implementation of speech enhancement techniques would facili-
tate better accuracy. Decision-level fusion classification on integrating features, models, 
and speech enhancement techniques has provided overall accuracy of 81% for recognizing 
isolated digits spoken by a few dysarthric speakers. Better accuracy can be ensured for the 
database containing more utterances from many dysarthric speakers. This system would 
help caretakers understand the speeches uttered by persons affected with dysarthria to pro-
vide the necessary assistance.

Keywords Perceptual features · Dysarthric speech recognition · Speech enhancement 
techniques

1 Introduction

Speech production is a mechanism in which speech is considered an output of a vocal tract 
system excited by vocal cords’ vibration due to airflow from the lungs. Articulators in the 
vocal tract and muscles move in response to the neural signals for producing speech. Mus-
cles in the vocal tract are weak in delivering speech for persons with dysarthria. Dysarthria 
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refers to multiple neurogenic disorders with irregularities in speech. It is measured in the 
articulator movements’ strength, speed, range, tone, and precision. Dysarthric patients may 
struggle to control the articulatory mechanisms in producing normal sounds. Dysarthric 
persons may be easily identified by listening to their way of creating speech. They may 
utter unclear, slurred, random, rapid, slow, and weak speeches. They may have difficulty 
controlling the facial muscles and articulators for speech production. Stroke and injury 
or tumour in the brain influence dysarthric patients’ neurological defects. It may also be 
caused by facial paralysis or tongue and weakness in throat muscles.

Speech-language pathologists treat dysarthric patients and administer remedial meas-
ures to improve their speaking abilities. It is suggested that dysarthric patients’ communi-
cation abilities could improve by increasing lip and tongue movement, strengthening the 
speech muscles, reducing the rate of uttering speech, and doing regular voice-related exer-
cises. Converting thoughts into speech sounds includes articulators in the vocal tract sys-
tem [1]. Speech is an output of the linear time-varying vocal tract system excited by quasi-
periodic air pulses due to vocal cords’ vibration for voiced sounds and noise for unvoiced 
sounds. Dysarthria is a speech disorder caused due to the lack of ability to control articula-
tors. Speech impairment affects every activity and makes these people’s lives miserable.

Dysarthria makes coordinating the nerves and articulators used for speech production 
difficult. Articulation of various speech sounds will get perturbed by the uncontrolled 
behaviour of the nerves used for speech production. The speed at which dysarthric people 
utter speeches is relatively slow compared to standard speakers. Due to the lack of control 
of muscular activity, it is difficult for patients with dysarthria to control speech parameters 
such as loudness, speed, pacing, breath, rhythm, and voice quality. Due to cerebral palsy, 
the system is proposed to recognize persons’ speeches with an articulation disorder [2]. 
The acoustic and language models are constituent components of the speech recognition 
system.

An acoustic model may be specific to persons with dysarthria, but a language model 
may be universal irrespective of any category of speakers. A speech recognition system 
[3] is developed to assess the severity of dysarthric people’s problems. The Partial Least 
Square based Voice conversion (VC) method [4] is used for dysarthric people. Healthy 
speeches are transformed into dysarthric utterances for data augmentation [5], and large-
scale machine-learning models are used for classification.

Convolutional bottleneck networks [6] are used for speech recognition. Two hybrid 
speech recognition systems (DNN-HMM and GMM-HMM) [7] have been developed for 
speech recognition, with a 13% improvement in word error rate. The system’s efficiency 
for dysarthric persons has been improved using rhythm knowledge [8]. The connectionist 
approach assesses the severity of the dysarthria, and the Hidden Markov Model is used to 
recognize speaker-dependent dysarthric speech. System [9] is developed to convert physi-
cally disabled persons’ spoken utterances into intelligible utterances to understand better. 
The transformations are based on the movement of articulators for speech production. Non-
negative matrix factorization [10] is used for voice conversion, which is better than GMM-
based voice conversion.

Augmentation of acoustic models with articulatory information [11] shows 
improved recognition of the speech of dysarthric speakers. This integration is done by 
suiting the dysarthric speakers. Deep learning neural networks [12] are used to predict 
the severity of the problem concerned with dysarthric speakers. Dysarthric speeches 
are modified based on temporal and spectral factors [13] to improve the intelligibil-
ity of the speeches uttered by dysarthric speakers. A speech recognition system [14] 
is developed for dysarthric speakers using Hidden Markov Models, and the severity 
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of the problems associated with their speeches being uttered is evaluated. Speech 
enhancement techniques [15–21] are described. A description of the UA- speech data-
base [22] is given. A speech recognition system [23] is developed for hearing impaired. 
The unsupervised learning method has been developed [24] to assess the auditory sys-
tems for speech recognition, which do not need a specific transcription of training data.

The dysarthric speech classification from coded telephone speech was developed 
[25, 26]. This feature is extracted using the deep neural network-based glottal inverse 
filtering method. Furthermore, an algorithm is proposed for syllable boundary and 
repletion of syllable detection [27] in dysarthric speech. Acoustic speech parameters 
[28] are analyzed for patients with Parkinson’s disease. Speech patterns are analyzed 
to study the speaking characteristics of dysarthric speakers, and speech recognition 
systems [29–34] are developed. Variational mode decomposition with wavelet thresh-
olding is used for speech enhancement. CNNs [35] classify dysarthric speeches on 
the UA-speech database. Speaker-independent dysarthric speech assessment [36] sys-
tems are developed. Deep neural network architectures [37] are used for analyzing 
the speeches of a dysarthric speaker. Empirical mode decomposition and Hurst-based 
mode selection (EMDH), along with deep learning architecture using a convolutional 
neural network (CNN) [38], are used to improve the recognition of dysarthric speech. 
The diversity of the speech patterns [39] of dysarthric speakers is characterized using 
clinical perspective and speech analytics. Dysarthric speeches are synthesized using 
text–into–speech (TTS) conversion systems [40] to improve the accuracy of dysarthric 
speech recognition.

Deep-belief-neural networks [41] are used for dysarthric speech recognition. Dysar-
thric speeches are augmented [42] using more training data to improve accuracy. The 
TORGO dataset uses transfer learning-based convolutional neural networks (CNN) 
[43] for dysarthric speech recognition. Variational mode decomposition with wavelet 
thresholding is used for speech enhancement. CNNs [35] classify dysarthric speeches 
on the UA-speech database. Dysarthric speech recognition [44] uses features and mod-
els on the UA-speech database. Speech emotion recognition [45] is done using CNNs. 
Detection of dysarthric speech [46] is done using CNNs. Automatic assessment of dys-
arthric speech intelligibility [47] is done using deep learning techniques. Deep-learn-
ing-based acoustic feature representation [48] is done for dysarthric speech recognition 
[49–52]. Audio-visual features are considered [49] for dysarthric speech recognition. 
A dysarthric isolated digit recognition system with speech enhancement techniques 
has been developed [50]. This work emphasizes using speech enhancement techniques 
to improve the intelligibility of the speeches uttered by dysarthric speakers to establish 
a robust speech recognition system for dysarthria. It also emphasizes using different 
spectral features and machine learning techniques to produce the speech recognition 
system.

In this work on speaker-independent dysarthric speech recognition, Sect.  2 
describes the database used, analysis of dysarthric speeches in time and frequency 
domains, implementation of speech enhancement techniques, Feature extraction pro-
cedures, modelling techniques and testing procedures. Section 3 depicts the system’s 
experimental, subjective comparison between experimental and emotional, and statis-
tical validation results. Finally, Sect. 4 summarises the dysarthric speech recognition 
system’s outcome by applying speech enhancement techniques, features, models and 
testing procedures of different modelling techniques.
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2  Preliminaries

2.1  Dysarthric Speech Database

The dysarthric dataset [22] considered in this work contains speech utterances from 6 
speakers (M01, M04, M07, M09, F03, F05) in the age group 18–51 for each isolated digit. 
As per the database description, M01, M04, M07, M09, and F03 are low speech intel-
ligibility. F05 is a speaker with high speech intelligibility. Subjective analysis done on the 
speeches of F05 by hearing would also indicate the clarity of the spoken utterance, and her 
speeches are similar to that of standard speakers. The listeners can easily understand and 
recognize the speech recordings of F05. However, these speakers are spastic and athetoid 
and persons who use wheelchairs. Speech intelligibility is measured in the average score 
in word transcription tasks. Few utterances are recorded from these speakers because it is 
difficult to understand and reciprocate the word transcriptions correctly. So, it isn’t easy to 
increase the robustness of the dysarthric speech recognition system.

2.2  Analysis – Dysarthric Speech

It is fascinating to characterize the speech uttered by dysarthric speakers. There are many 
differences between dysarthric speakers in pronouncing words/sentences. This fact neces-
sitates the provision of an extensive database for recognizing the words uttered by them. It 
is understood that their speeches are highly distorted, and subjective identification of utter-
ances becomes difficult. On average, dysarthric and regular speakers’ speeches are different 
in style, slang, and place of articulation. Figure 1 indicates the characteristics of the speech 
uttered by the dysarthric person in terms of signal variations and its spectrogram for the 
isolated digit "one".

Signal representation and spectrogram are shown in Fig. 2, which depict another dysarthric 
person’s characteristics for uttering the word "one". The same word they spoke at different 

Fig. 1  Speech signal and spectrogram – Dysarthricspeaker (M09)—Digit "One."
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instants may have differences in amplitude and spectral energy. Since dysarthric speakers’ 
speeches are indistinct, it is more imperative for better accuracy in recognizing dysarthric 
speakers’ speeches.

2.3  Implementation of Speaker Independent Speech Recognition System

The speaker-dependent and independent speech recognition systems are implemented to rec-
ognize the isolated words /isolated digits/continuous sentences/spontaneous sentences uttered 
by speakers. A speaker-dependent system is developed using a set of speech utterances spoken 
by all the speakers for training and the remaining set of phrases spoken by the same speakers 
for testing. Speaker independent speech recognition system facilitates the use of utterances 
spoken by some of the enrolled speakers for training and other enrolled subjects’ utterances 
for testing.

Feature extraction and modelling are the two stages constituting the training phase. The 
feature extraction stage facilitates the extraction of speech-specific robust features. Then, these 
features are applied to the modelling techniques for creating templates specific to speeches. 
The testing phase dwells upon using test feature vectors in the models designed to recognize 
the spoken utterance. The word is finally recognized as associated with the pertinent model 
based on matching. So, it is imperative to have a proper notion of robust feature selection, 
modelling techniques, and implementing the appropriate testing procedure. It is also essential 
to use techniques to improve the lucidity of dysarthric speakers’ distorted speeches so that the 
system’s accuracy can be reasonably enhanced.

2.4  Speech Enhancement Techniques

In noisy practical environments, background noise sources often degrade speech clarity. So, 
it is required to use efficient speech enhancement techniques to improve the clarity of the 
speech. The noisy speech is represented by the Eq. (1)

xn(m) – Clean speech signal.

(1)yn(m) = xn(m) + dn(m)

Fig. 2  Speech signal and spectrogram – Dysarthric speaker (M07)—Digit "One"
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dn(m) – Noise signal.

2.4.1  Single‑channel online enhancement of speech [15]

Background noises and reverberation affect the voice-based interaction between people. 
Speech enhancement techniques are used to improve the quality of the speech for better 
speech recognition. Online speech enhancement technique based on the all-pole model 
enhances speech quality. It is implemented using reverberation power and a hidden Markov 
model for removing noise superimposed with speech. Statistical parameters are estimated 
from the speech and noise, and analysis is performed by taking a short-time Fourier trans-
form (STFT) with filters spaced in the MEL scale; spectral gain is derived.

Figure 3 indicates the speech enhancement process in the STFT domain. System param-
eters and signal powers are estimated using the MEL-spaced sub-bands. Then, the transfor-
mation of the power spectrum is done by using filters spaced in the Mel scale.

Consider noisy speech signals as Yn(m) . STFT is taken on Yn(m) and coefficients are 
computed as in (2)

k – STFT frequency bin. n – Time frame index. w(n) – Hamming Window sequence.
A power-domain filter bank is applied to compute the power in k Mel-spaced sub-bands 

as in (3)

aF,k – Frequency response of the triangular filters.
HMM model is used to define the clean speech with an input probability distribution, 

state transition probabilities, and output observation probability distribution as in (4)

Hm is an HMM model including the reverberation Rm and noise parameters dm for all 
subbands in a single state vector. Noise removal and improvement in intelligibility from 
noisy speech are made in the STFT domain. Figure 4 indicates the signals before and after 
applying the online speech enhancement algorithm on dysarthric speech.

(2)Yn(k) =

k−1∑

m=0

Yn(m)w(m)e
−i2�mk

N

(3)Ŷn(F) =

F−1∑

k=0

aF,k
||Yn(k)||

2

(4)Hm =
(
xm, dm,Rm

)T

Fig. 3  Speech enhancement using a single-channel online enhancement technique
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2.4.2  Speech Enhancement Using a Minimum Mean Square Error (MSE) LogSpectral 
Amplitude Estimator [16]

Minimizing MSE of the log spectra of the difference between the original signal’s short-
time spectral amplitude and the estimated signal is performed by the short-time spectral 
amplitude (STSA) estimator. The magnitude and phase response of the noisy, noise and 
clean speech signal is expressed in the frequency domain.

As Yk = Rke
j�k , Dk = Bke

j�k and Xk = Ake
j�k

The short-time spectral amplitude estimator Âk , for minimizing the distortion measure 
is defined as in (5)

The expected value of Âk given Yk equal to the expected value of Ak given Yk as in (6)

MSE of log power spectra is calculated as in (7)

Âk

2
 Denote the estimator of Ak as in (8)

E[lnAk|Yk] is computed by utilizing the moment-generating function of lnAk given Yk.
Let Zk = lnAk , and �Zk|Yk (�)

 of Zk given Yk Be the moment generating function, and it is 
defined as in (9)

E{[lnAk|Yk] } is obtained from �Zk|Yk (�)
 by using (10)

(5)Ak = E[
(
logAk − log Âk

)2

(6)Ak = exp
{
E
[
lnAk|Yk

]}

(7)E

{(
logA2

k
− log Âk

2
)2

}

(8)Ak =

√
Âk

2

(9)�Zk|Yk (�)
= E{exp(�Zk|Yk)}

Fig. 4  Illustration of online speech enhancement algorithm
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The STSA estimator is as in (11)

Figure  5 indicates the speech enhancement process using a log spectral amplitude 
estimator.

2.4.3  Speech Enhancement by Using Minimum Mean‑Square Error Short‑Time Spectral 
Amplitude Estimator [17]

The signal x(t), noise n(t), and the noisy observations y(t) are expressed in the frequency 
domain as Dk and Yk . The Yk in the interval [0 T] is defined as in (12)

The spectral components are uncorrelated to each other; The MMSE estimator. Âk of 
Ak given Yk is obtained as in (13) and (14)

E{.} – denotes Expectation operation

p(.) - Probability density function.
p
(
Yk|ak, �k

)
 is given by (15)

(10)E
{[
lnAk|Yk

]}
=

d

dy
�Zk|Yk (�)

at� = 0

(11)Ak =
�k

1 + �k
exp

{
1

2

�

∫
vk

e−t

t
dt

}
Rk

(12)Yk =
1

T

T

∫
t=0

y(t) exp

(
−j2�kt

T

)
dt

(13)Âk = E{Ak|Yk}

(14)Âk =
∫∞
0

∫ 2�
0

akp
(
Yk|ak, �k

)
p
(
ak, �k

)
dakd�k

∫∞
0

∫ 2�
0

p
(
Yk|ak, �k

)
p
(
ak, �k

)
dakd�k

Fig. 5  Illustration of speech enhancement by log spectral amplitude estimator
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p
(
ak, �k

)
 is given by (16)

�d(k) , �x(k) are the variances of the kths pectral component of the noise and the speech.
Substituting p

(
ak, �k

)
 in Eqs. (17) and (18)

Γ(.) Denotes the gamma function.
I0(.), I1(.) Denotes the modified Bessel functions of zero and first order, respectively, 

with parameters as in Eqs. (19–21)

�k and �k – a priori and a posteriori signal-to-noise ratios.
Figure 6 depicts the speech enhancement process by a short-time spectral amplitude 

estimator.

2.4.4  Wavelet denoising for Speech Enhancement [18]

The wavelet denoising technique suppresses noise from noisy speech to obtain clean 
speech. First, wavelet packet transform decomposes noisy speech into approximation 
and detail coefficients. Then, the threshold is fixed and applied to the final level sub-
band coefficients to minimize the noise propositions. Figure 7 shows the wavelet-based 
enhancing quality of speech. Finally, Enhanced speech is obtained by upsampling and 
interpolating the modified detail and approximation coefficients.

Figure 8 demonstrates the speech enhancement process by using wavelets.

(15)p
(
Yk|ak, �k

)
=

1

��d(k)
exp

{
−1

�d(k)

|||Yk − ake
−i�k |||

2
}

(16)p
(
ak, �k

)
=

−ak

��x(k)
exp

{
−a2

k

�x(k)

}

(17)Âk =

∫∞
0

a2
k
exp

(
−a2

k

�k

)
I0

(
2ak

√
vk

�(k)

)
dak

∫∞
0

ak exp
(

−a2
k

�k

)
I0

(
2ak

√
vk

�(k)

)
dak

(18)Âk = Γ(1.5)

√
vk

�k
exp

�−vk
2

���
1 + vk

�
I0

�vk
2

�
+ vkI1

�vk
2

��
Rk

Γ(1.5) =

√
�

2

(19)vk =
�k

1 + ∫k
�k

(20)�k =
�x(k)

�d(k)

(21)�k =
Rk

2

�d(k)
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2.4.5  Probabilistic Geometric Approach (PGA) to spectral subtraction based Speech 
Enhancement [19]

A confidence parameter of noise estimation is introduced in the gain function, which 
removes the noise efficiently and prevents speech distortion. The schematic shown in 
Fig. 9 depicts the PGA-based speech enhancement technique modules.

The equation represents the STFT of noisy speech as in (22)

n – frame number.
The STFT of yn(m) is represented as in (23)

(22)Yn(k) = Xn(k) + Dn(k)

Fig. 6  Illustration of speech enhancement by short-time spectral amplitude estimator

Fig. 7  Speech enhancement using Wavelet denoising technique
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From the basic rule of spectral subtraction, the Eq. (23) can be written as (24)

This equation can also be written as (25)

Hn(PGA)(k) – gain function of the  nth frame. Xn(k) , Yn(k) and Dn(k) can be expressed in polar 
form as

(23)Yn(k) =

N−1∑

m=0

yn(m)e
−j

2�mk

N

(24)

(25)|||X̃n(k)
|||
2

=
|||Hn(PGA)(k)

|||
2

− ||Dn(k)
||
2

Fig. 8  Illustration of speech enhancement process by wavelets

Fig. 9  Speech enhancement using Probabilistic Geometric Approach
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� – is a constant dependent on posterior and a priori SNRs.
ax , ay and ad are the magnitude response of clean, noisy and noise signals.
�x , �y and �d are the phase response of clean, noisy and noise signals.
The gain function Hn(PGA)(k) can be defined as in (26)

The unchanged phase spectrum and compensated magnitude spectrum are combined to 
produce an enhanced speech by using the formula in (27)

Figure 10 indicates the effect of the probabilistic geometric approach in enhancing the 
speech uttered by the dysarthric speaker.

2.4.6  The Geometric Approach to Spectral Subtraction‑Based Speech Enhancement [20]

Noise present in speech is effectively reduced by spectral subtraction. The spectral subtrac-
tion method removes the noise based on the assumption that the noise is uncorrelated with 
any other system signal. Figure 11 gives a detailed description of the blocks used for geo-
metric approach-based speech enhancement.

This equation to compute signal spectrum is as in (28)

Hn(GA)(k) – gain function of the Geometric approach of the  nth frame.
The magnitude and phase response of the noisy, noise and clean speech are related as in 

(29)

The triangle shown in Fig. 12 depicts the phase spectra of the noisy speech and clean 
speech and noise signals.

In Fig. 12, Eqs. (30) give the trigonometric relations for magnitude and phase spectra of 
noisy speech, clean speech and noise signals.

Taking square of both sides

Xn(k) = axe
i�x , Yn(k) = aye

i�y , Dn(k) = �ade
i�d

(26)Hn(PGA)(k) =

√
a2
y

a2
x

(27)

(28)|||X̃n(k)
|||
2

=
|||Hn(GA)(k)

|||
2

− ||Dn(k)
||
2

(29)aye
i�y = axe

i�x + aDe
i�d

AB⊥BC

aysin
(
�D − �y

)
= axsin

(
�D − �x

)

ay
2sin2

(
�D − �y

)
= ax

2sin2
(
�D − �x

)

ay
2
[
1 − cos2

(
�D − �y

)]
= ax

2
[
1 − cos2

(
�D − �x

)]



2327A Strategic Approach for Robust Dysarthric Speech Recognition  

1 3

It can be written as in (30)

The gain function is defined as in (31)

Using cosine rules in triangle ABC, Eqs. (32) and (33) are used

(30)a2
y

[
1 − C2

yD

]
= a2

x

[
1 − C2

xD

]

(31)Hn(GA) =
ax

ay
=

√√√√1 − C2
yD

1 − C2
xD

Fig. 10  Illustration of speech enhancement by a probabilistic geometric approach

Fig. 11  Geometric approach to spectral Subtraction for speech enhancement
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Dividing both numerator and denominator of the equation by aD2 as in (34) and (35)

Υ – A posteriori SNR.
� – A priori SNR.
The gain function can be written as in (36)

Enhanced speech is obtained by combining an unchanged phase spectrum with compen-
sated magnitude spectrum, as in (37)

(32)CyD =
a2
y
+ a2

D
− a2

x

2ayaD

(33)CxD =
a2
y
− a2

D
− a2

x

2axaD

(34)CyD =

a2
y

a2
D

+ 1 −
a2
x

a2
D

2ay

aD

(35)CxD =

a2
y

a2
D

− 1 −
a2
x

a2
D

2ax

aD

Υ =
a2
y

a2
D

, � =
a2
x

a2
D

(36)Hn(GA) =
ax

ay
=

√√√√√√
1 −

(�+1−�)2

4�

1 −
(�−1−�)2

4�

Fig. 12  Geometric representation of noisy speech, clean speech and noise spectra
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Figure 13 illustrates the speech enhancement process by the geometric approach applied to 
the dysarthric speaker’s speech.

2.4.7  Phase Spectrum Compensation Based Speech Enhancement [21]

This method combines the modified phase response with a magnitude response to get the 
changed frequency response for the noisy speech. Analyzing the relation between the spec-
tral and time domains during the synthesis process makes it possible to cancel out the high-
frequency components, thus producing a signal with a reduced noise component. The STFT of 
the noisy signal is computed as in (38)

The compensated short-time phase spectrum is computed by using the Eqs.  (39) and 
(40)

The process obtains phase spectrum compensation function as in Eq. (39)

||Dn(k)
|| Defines magnitude response of the noise signal.

� – Constant.
The anti-symmetry function �(k) is defined as in (40)

Multiplication of symmetric magnitude spectra of the noise signal with anti-symmetric 
function ψ(k) produces an anti-symmetric ∧n(k) . Noise cancellation is made during the 
synthesis process by utilization of the anti-symmetry property of the phase spectrum com-
pensation function. The complex spectrum of noisy speech is computed as in Eq. (41)

(37)

(38)Yn(k) =
||Yn(k)||e

j∠Yn(k)

(39)∧n(k) = ��(k)||Dn(k)
||

(40)𝜓(k) =

{
1 if 0 < k

N
< 0.5

−1 if 0.5 < k

N
< 1

Fig. 13  Effect of speech enhancement process by a geometric approach
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The compensated phase spectrum of the noisy signal is derived as in Eq. (42)

Recombination of the compensated phase response with the magnitude response of the 
noisy signal is done to get the modified spectrum, from which enhanced speech is derived 
by performing inverse transform as in (44) on the modified spectral response given in (43).

Figure  14 indicates the performance of the speech enhancement technique by phase 
compensation. Figure 15 depicts the variation in the distribution of samples for each speech 
enhancement technique by performing histogram equalization.

2.5  Feature Extraction

PLP extraction is based on the principle of how the human ear perceives sounds [1]. 
The PLP extraction method is similar to the linear prediction coefficient method, except 
its spectral characteristics are changed based on the human auditory system. Perceptual 
features with filters spaced in BARK, ERB, and MEL scales are extracted from the pre-
processed speech using the techniques shown in Fig. 16. The FFT technique obtains the 
pre-processed signal’s power spectrum; the auditory spectrum is obtained by multiplying 
the signal’s power spectrum. The squared magnitude spectrum of the filters is spaced in 
different frequency scales. Cube root compression and Loudness equalization simulate the 
human ear’s power law of hearing perception. Finally, the inverse transform is performed 
to obtain the signal, from which cepstral coefficients are derived using LPC and Cepstral 
analyses.

i Procedural steps used for PLPC, MF-PLPC and ERB-PLPC extraction are summarised 
as follows.

1 Computation of power spectrum on pre-processed speech segment.
2 Critical band analysis uses 21, 47 and 35 critical bands in BARK, Mel, and ERB 

frequency scales at 16 kHz as sampling frequency. The magnitude response of the filter 
banks spaced in the MEL scale, BARK scale and ERB scale are shown in Figs. 17, 18 
and 19. Frequency in Hz and other frequency scales, namely MEL, BARK and ERB, are 
related as in (45), (46) and (47).

(41)Yn(k) = Xn(k) + ∧n(k)

(42)∠Yn(k) = ARG
[
Yn(k)

]

(43)Sn(k) =
||Yn(k)||e

j∠Yn(k)

(44)s(n) = real
[
inverse STFT

(
Sn(k)

)]

(45)f (Mel) = 2595 ∗ log10

(
1 +

f (Hz)

700

)

(46)(Bark) =

[
26.81f (Hz)

1960 + f (Hz)

]
− 0.53
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(47)f (ERB) = 24.7(4.37f (Hz) + 1)

Fig. 14  Illustration of speech enhancement by phase spectrum compensation technique

Fig. 15  Histogram equalization – (1) Original speech (2–8) Enhanced speech using speech enhancement 
techniques



2332 A. Revathi et al.

1 3

3 Hearing’s power law is stimulated by hearing, loudness equalization, and cube root com-
pression. Loudness equalization is done by pre-emphasis filter to weight the filter-bank out-
puts to simulate the sensitivity of ears to perceive sounds as in (48).

(48)E(�) =

(
�2 + 56.8 ∗ 106

)4
(
�2 + 6.3 ∗ 106

)(
�2 + 0.38 ∗ 109

)(
�6 + 9.58 ∗ 1026

)

Fig. 16  Procedure—Perceptual features extraction

Fig. 17  Magnitude response of critical bands in the BARK scale
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Transformation of equalized values is done by a power law of hearing (i.e.) raising the 
power by 0.33. It is represented in (49)

4 IFFT is performed on L ( �).
5 The Levinson-Durbin procedure computes the LP coefficient.
6 LP coefficients are converted into PLP, MFPLP and ERBPLP Cepstral coefficients.

2.6  Implementation of Template Creation Module

For a speech recognition system, templates are created to act as a representative model 
pertinent to speeches to be recognized. VQ-based or fuzzy-based clustering technique 
forms the low dimensional cluster set from the high dimensional training set among the 
many modelling techniques. They include M cluster centroids for contemplating the speech 
model from the training data of high dimension. This process is done by computing the 
Euclidean distance between the training set and initial cluster centroids. These cluster 
centroids are updated for iterations, and finally, the cluster set formed in pertinent speech 
represents the training set of feature vectors. For testing, Euclidean distance is computed 
between test vectors and cluster set, and cluster centroid, which produces minimum dis-
tance, is restored. All the test speech features and minimum distances are calculated and 

(49)L(�) = I(�)
1

3

Fig. 18  Magnitude response of the critical bands in the MEL scale

Fig. 19  Magnitude response of the critical bands in the ERB scale
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stored as a model value. This process is implemented for all models. Finally, a model is 
selected for the test speech to compare the minimum of model values. MHMM model-
ling technique facilitates the expectation–maximization procedure to generate templates 
containing maximum likelihood parameters. The testing procedure for MHMM enables 
the application of test features to the models, and log-likelihood values are computed. The 
model associated with the test speech has the most considerable log-likelihood value.

3  Experimental Evaluation – Results and Discussion

The dysarthric speech recognition system is evaluated based on perceptual features and 
various modelling techniques. Different speech enhancement techniques applied to dis-
torted dysarthric speeches would enable the system to enhance performance. This speech 
recognition system encompasses training and testing phases. During training, speeches are 
concatenated, and conventional pre-processing techniques are applied to the speech data. 
After the pre-processing, extraction of perceptual features is performed, followed by using 
features for creating templates. Test speeches undergo pre-processing during testing, and 
perceptual features are extracted. These features are applied to all speech templates, and 
based on the classifier used; speech is identified to be associated with pertinent speech tem-
plates. Recognition accuracy/word error rate is used as a performance metric for evaluating 
the system. Finally, speech enhancement techniques are applied to raw training and test 
speeches, and the system’s performance is assessed. The implementation uses the deci-
sion-level fusion of speech enhancement techniques, features, and modelling techniques to 
classify the pertinent dysarthric speech. Features extracted from test segments are applied 
to the models, and the model index based on the classifier used is derived. This process 
is repeated for all test segments. Finally, a decision-level fusion of correct indices about 
the modelling techniques is done to augment the system’s performance. The decision-level 
fusion classifier is depicted in Fig. 20.

This decision-level fusion classifier classifies the pertinent speech based on the cor-
rect classification of features, modelling techniques, and speech enhancement techniques. 
Table 1 indicates the system’s performance with a decision-level fusion of elements and 
models by taking speeches with and without speech enhancement techniques. The overall 
accuracy for ten digits in Fig. 21 shows the system’s evaluation for recognizing dysarthric 
speeches against speech enhancement techniques with a decision-level fusion of results on 
features and models. Individual accuracy for some isolated digits is 100%, with overall 
accuracy for the decision-level fusion of influences of the features, models, and speech 
enhancement techniques at 80.2%.

Individual accuracy for some isolated digits is low because the testing is done with 
utterances of a dysarthric speaker with only 6% speech intelligibility. Training the mod-
els with many feature vectors can enhance the system’s accuracy. The system has not 
provided good accuracy because it is tested for the female speaker with only 6% speech 
intelligibility. Decision-level fusion of results of features and models has provided a 
better overall accuracy of 43%, with an application of phase spectrum compensation 
as a speech enhancement technique. It is 12% more than the system without using a 
speech enhancement mechanism. So, the system’s accuracy depends on features, mod-
els, speech enhancement techniques, and the test set of spoken utterances. However, the 
system is trained for speech utterances at all intelligibility levels. Therefore, obtaining 
better accuracy for speakers with very low intelligibility is difficult.
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Table  2 gives the individual performance of the isolated digit recognition system 
for dysarthric speakers with 95% speech intelligibility by considering the perceptual 
features and vector quantization (VQ) models. Results show that the system provides 
excellent accuracy if the features and models are tested for speaker F05, diagnosed with 
95% speech intelligibility. She is almost like an average speaker, and testing done using 
her speech utterances for all isolated digits provides exemplary accuracy. So, the speech 

Fig. 20  Decision-level fusion classifier

Table 1  Performance – Average accuracy—decision level fusion of features and models for speech 
enhancement techniques

Technique One Two three four Five six seven eight nine Zero

Without speech enhancement 31 49 12 3 30 87 10 26 38 29
Spendred 37 28 49 1 10 62 62 13 31 28
Ssubmmse 71 61 5 30 26 59 17 25 62 19
Ssubmmsev 45 20 34 31 30 51 72 20 26 24
WDEN 20 11 17 14 33 76 100 40 45 20
GA 63 63 33 31 27 62 18 28 41 23
PGA 15 19 17 34 35 48 100 21 98 37
PSC 27 29 22 27 37 55 90 29 43 72
Decision-level fusion of all 

enhancement techniques
84 82 74 53 70 100 100 57 100 82
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utterances applied for evaluation must be acceptable, and the distortion level must be 
low.

3.1  Statistical Analysis and Validation of Experimental Results

The system’s performance is statistically analyzed [23] to validate the perceptual features, 
models and speech enhancement techniques for recognizing dysarthric speakers’ speeches. 
Table 3 indicates the usage of χ2 a statistical distribution tool to analyze the experimental 
result. The number of test segments for concatenated test speech uttered by the dysarthric 
speaker in a pertinent digit is probable frequency. The actual frequency is the number of 
correctly identified test speech segments for each digit. Ten isolated digits are taken as ten 
attributes. Since the sample size is 100, χ2distribution is applied to statistically analyze the 
choice of features, models and speech enhancement techniques. Hence, the rule of hypoth-
esis based on χ2distribution is framed as below:

H0: Rejection rate is greater than or equal to 10%
H1: Rejection rate is less than 10%
The individual χ2test is applied at a 10% significance level, and the degree of freedom 

is considered nine χ20.1 = 21.66. Concerning the χ2 table, the  H0 hypothesis is accepted. 

Fig. 21  Performance of the dysarthric speech recognition system –dysarthric speaker F03 (6% speech intel-
ligibility)

Table 2  Performance of the system – Perceptual features and clustering –Female Speaker F05 (95% speech 
intelligibility)

Features and models one two Three four Five Six Seven eight nine zero Average % RA

PLP-Kmeans 100 100 98 95 100 97 96 100 100 97 98.3
MFPLP-Kmeans 100 100 98 94 100 97 96 100 100 96 98.1
ERBPLP-Kmeans 100 100 100 94 98 97 96 100 100 96 98.1
All features – Kmeans 100 100 100 95 100 97 96 100 100 97 98.5
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Table 4 indicates the system’s statistical analysis for F05 speakers with perceptual features 
and clustering as a modelling technique with the hypothesis set below.

H1: Digit recognition rate is ≥ 95%

H0: Digit recognition rate is < 95%

The individual χ2 test is applied at a 5% significance level, and the degree of freedom 
is considered nine χ20.05 = 16.919. The χ2 table’s calculated values are much less than 
the table value. Hence, the  H1 hypothesis is accepted. Subjective analysis is done to sup-
plement the experimental dysarthric speech recognition system. Four average persons are 
asked to recognize the speeches uttered by dysarthric speakers. They are informed to listen 
to the isolated digits spoken by F03 and F05 dysarthric speakers. Tables 5 and 6 indicate 
the subjective analysis results for recognizing the numbers uttered by dysarthric speakers. 
Figure  22 and 23 show the comparative analysis between the experimental and manual 
assessment for identifying isolated digits spoken by F03 and F05 dysarthric speakers. The 
practical and subjective analysis would yield low accuracy since the F03 dysarthric speaker 
has 6% speech intelligibility. The experimental study is better than manual recognition for 
all the digits except ’zero’. It reveals that ensuring better performance for dysarthric speech 
recognition has been challenging. The comparative analysis in Fig. 23 indicates that the 
subjective assessment has yielded slightly better accuracy than the experimental assess-
ment. F05 is a dysarthric female speaker with 95% speech intelligibility, so the accuracy of 
the decision-level practical classification and subjective analysis is very high. It is revealed 
that accuracy is directly proportional to the speakers’ intelligibility level of the speeches 
uttered. In this work, speech enhancement techniques are implemented for improvement.

Since the speeches of F03 speakers with 6% speech intelligibility are highly distorted 
and disordered, it is cumbersome to ensure better accuracy. There are significant varia-
tions in style, difficulty level and pronunciation of words in the speeches of these speak-
ers. However, if the speech intelligibility is good, their speeches can be classified without 
ambiguity. Adapting better speech enhancement mechanisms, features, and models would 
be a promising solution for ensuring better accuracy for speech-impaired whose impair-
ment level is high. Table 7 depicts the comparative analysis between the existing works and 
our proposed work.

Table 3  Statistical analysis of isolated digits using decision level fusion classification by X2 distribution test 
– F03 speaker (6% speech intelligibility)

Isolated digits Observed fre-
quency (O)

Expected fre-
quency (E)

(O-E)2 (O-E)2/E

One 84 100 256 2.56
Two 76 100 576 5.76
Three 67 100 1089 10.89
Four 53 100 2209 22.09
Five 76 100 576 5.76
Six 100 100 0 0
Seven 100 100 0 0
Eight 86 100 196 19.6
Nine 100 100 0 0
Zero 86 100 196 19.6

∑
(O − E)2∕E = 86.26
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4  Conclusion

Since the speeches uttered by dysarthric people are severely distorted and degraded, it has 
become essential to improve the intelligibility of dysarthric spoken utterances. Subjective 
analysis of recognizing dysarthric spoken words reveals that human manual recognition is 
complex, especially those uttered by speakers with low speech intelligibility. The system 
uses perceptual features, speech enhancement techniques and statistical modelling meth-
ods. The proposed decision-level fusion system comprising features, models and speech 
enhancement techniques could improve accuracy for recognizing isolated digits uttered by 
dysarthric speakers. Accuracy is 81% for the decision-level fusion classifier for identifying 
numbers spoken by the dysarthric speaker with 6% speech intelligibility. However, this sys-
tem has provided 99% accuracy in recognizing the isolated digits uttered by the dysarthric 
speaker with 95% speech intelligibility. Experimental results surpass the manual recogni-
tion of numbers uttered by a speaker with deficient speech intelligibility. However, manual 
credit has 100% accuracy for recognizing isolated digits spoken by a dysarthric speaker 
with 95% speech intelligibility. This system would provide accuracy if the system is trained 
using the database containing a more significant number of utterances spoken by more dys-
arthric speakers. This system can act as a translator for caretakers to understand dysarthric 
speakers’ speeches to provide them with the necessary assistance. A robust speech transla-
tor may be designed to convert unintelligent spoken utterances into intelligible ones and 
interpret speeches uttered by dysarthric speakers that can be understandable. This work 
emphasizes the need for more efficient speech enhancement techniques to improve speech 
quality. It is proposed to strengthen the selection of features, speech enhancement and 
modelling techniques for the system’s performance improvement.
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Table 4  Statistical analysis – Performance of the Decision level Fusion system – Perceptual features and 
clustering – F05 speaker (95% speech intelligibility)

Isolated digits Observed fre-
quency (O)

Expected fre-
quency (E)

(O-E)2 (O-E)2/E

One 45 45 0 0
Two 51 51 0 0
Three 47 47 0 0
Four 57 60 9 0.15
Five 57 57 0 0
Six 59 61 4 0.066
Seven 44 46 4 0.087
Eight 54 54 0 0
Nine 51 51 0 0
Zero 64 66 4 0.06

∑
(O − E)2∕E = 0.363
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Fig. 22  Comparative analysis – Experimental and subjective assessment – F03 dysarthric speaker (6% 
speech intelligibility)

Fig. 23  Comparative analysis – Experimental and subjective assessment – F05 dysarthric speaker (95% 
speech intelligibility)
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