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Abstract
Orthogonal Frequency Division Multiplexing (OFDM) systems are prone to signal cor-
ruption caused by strong and frequent impulses, which can be further exacerbated by mul-
tipath fading. Recent evolutions highlight the efficacy of a deep neural network (DNN) 
receiver in intrinsically estimating channel state information and recovering data explicitly, 
even without presuming the signal-to-noise ratio (SNR) level. However, the conventional 
DNN-based receiver, trained on data generated from computer simulations with WINNER 
II channel model and additive white Gaussian noise (AWGN), is susceptible to substan-
tial performance degradation when subject to impulse noise. To address this challenge, 
this paper proposes fine-tuning the DNN model using impulse noise-laced data samples 
during subsequent training. The proposed method aims to enhance representation learn-
ing and improve the robustness of the receiver against impulse noise. The efficacy of the 
DNN-based receiver is assessed by comparing its bit error rate (BER) performance to that 
of a compressive sensing-based receiver, enabled by the consensus alternating direction 
method of multipliers (ADMM). Remarkably, the proposed DNN-based receiver achieves 
BER performance comparable to the clipping-featured receiver, which requires knowledge 
of the SNR value, an assumption relaxed by our enhanced DNN approach. Furthermore, 
extensive simulations demonstrate the promising robustness of the deep learning-based 
approach against impulse noise model mismatches between training and testing scenarios.
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1 Introduction

Deep learning (DL) adopts a deep neural network (DNN) to encapsulate data represen-
tations at various layers, which could be facilitated through a diverse array of machine 
learning (ML) techniques such as supervised ML, unsupervised ML, and reinforcement 
learning. One of the most remarkable DL paradigms in communication systems is the 
DNN-based codec (i.e., encoder and decoder) presented in [23], which harnesses inher-
ent expressiveness of deep architectures to exhibit competitive system performance to the 
result driven by communication theory-based algorithms. As a remarkable instance, a data-
driven DNN model proposed in [32] indirectly addresses the challenges posed by multipath 
fading in Orthogonal Frequency Division Multiplexing (OFDM) systems while simulta-
neously recovering the transmitted symbols, in contrast with the inevitability of channel 
state information estimation in conventional communication systems receivers; indeed, 
the findings from extensive simulations highlight that the DNN-based receiver exhibits 
performance comparable to that of the minimum mean-square error (MMSE) estimator. 
Alternatively, a model-driven DL approach was presented in [7], where the receiver archi-
tecture is composed of two primary entities—a channel estimation subnet and an OFDM 
signal detection subnet—both realized through DNNs. Further exploration of the DL realm 
extends to the integration of a deep unfolding approach, as elucidated in [33], demonstrat-
ing the effectiveness of applying DL to realize an equalizer in underwater acoustic OFDM 
systems. An analogous neural networking receiver to tackling issues such as limited pilots 
and short cyclic prefixes (CPs) was laid out in [17]. A robust DNN-based precoder in mas-
sive Multiple Input Multiple Output (MIMO) systems was introduced in [26] to effectively 
mitigate the harmful effects stemming from imperfect channel state information (CSI).

The quest for optimal performance in communication systems is often hindered by the 
complex nature of ambient noise present in real-world physical channels. This complexity 
arises from the difficulty in accurately modeling such noise, leading to received signals of 
substantial magnitude and unpredictability [5, 21, 24, 31]. The presence of non-Gaussian 
impulse noise further compounds this challenge, jeopardizing the guaranteed quality of 
service typically established under the assumption of a stationary Gaussian random pro-
cess as the predominant source of interference. A notable example of combatting impulse 
noise is the application of a fuzzy median filter, as demonstrated in millimeter wave MIMO 
systems [21]. Adding to that challenge is the inherent vulnerability of DNNs to rare adver-
sarial perturbations [11], including impulse noise. This prompts a rigorous study on how 
DNNs can be harnessed to effectively address the negative impact of non-Gaussian noise 
in communication systems. Drawing inspiration from the domain of image processing, an 
innovative approach was introduced in [2], leveraging Artificial Intelligent Neural Net-
works so as to expand feature dimensions to train a fully connected (FC) neural network 
for binary classification—specifically detecting impulse occurrences in OFDM blocks. 
Unlike this approach, our proposed DNN-based receiver, following the pioneering work 
of [32], obviates the need for the otherwise inevitable multipath fading channel estima-
tion, thereby focusing on the process of explicit data recovery. The realm of OFDM chan-
nel estimation under impulsive noise scenarios was explored through a denoising autoen-
coder DNN in [18]. Additionally, the synergy of a Convolutional Neural Network (CNN) 
and Long Short-Term Memory (LSTM) was harnessed in [19] to estimate communication 
channels within spatio-temporal impulsive noise channels; however, enhanced reliability 
in this context often yields at the cost of using partial channel statistics. In the domain of 
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power line communication systems, [25] introduced a DNN-based approach for evaluating 
model parameters, albeit with the inadvertent assumption of an impulse noise model as a 
Gaussian mixture model (GMM). Analogously, [6] proposed a GMM-based wireless chan-
nel estimator trained on imperfect training data. Furthermore, a notable investigation by He 
et al. [13] delved into a CNN-based learning algorithm tailored for OFDM systems, with 
an aim at estimating parameters crucial for impulsive noise suppression. Going beyond the 
scope of FC neural network models, the field of Polar codes drove the application of an 
LSTM neural network decoder in [30]. This decoder adeptly addresses memory impulse 
noise, exhibiting superior system performance and latency results compared to established 
decoding techniques. Notably, multipath fading channels were not considered in those sys-
tems studied in [13, 25, 30].

This paper presents an in-depth analysis of the impact of impulse noise on the bit error 
rate (BER) performance of a DNN-based receiver in OFDM systems undergoing mul-
tipath fading channels. Notably, the DNN-based receiver operates without prior knowl-
edge of impulse statistics, fading coefficients, or the Signal-to-Noise Ratio (SNR) level. 
Our approach involves a two-stage training process: the initial stage involves modeling 
OFDM signaling within fading channels, simulated based on specific channel statistics in 
AWGN. The subsequent stage fine-tunes the model by integrating training data infused 
with impulse noise. This sophisticated DNN model aims to mitigate the detrimental impact 
of impulse noise across all subcarriers, a challenge often overlooked yet critical for robust 
data recovery. Remarkably, even in the face of inherent disparities between training and 
testing datasets, our experimental outcomes substantiate the efficacy of our approach in 
combating the adverse effects of impulse noise on data recovery. This further reinforces 
the resilience of our proposed DNN-based receiver. Beyond harnessing the power of deep 
learning for targeted impulse noise attenuation, our work importantly establishes a crucial 
connection between optimal clipping thresholds—quintessential in governing the BER per-
formance of clipping-featured receivers facing impulse noise—and a computationally effi-
cient resolution of this challenge via second-order cone programming (SOCP) formulation. 
To pursue this optimization solution in a distributed manner, we employ the consensus 
alternating direction method of multipliers (ADMM) algorithm [3]. Particularly notewor-
thy is the fact that the conventional clipping-featured receiver relies on the SNR level to 
calibrate the clipping threshold judiciously. However, as highlighted in [28], its efficacy in 
suppressing impulse noise becomes compromised when the threshold is measured amidst 
substantial deviations from the true SNR value. In contrast, our subsequent BER perfor-
mance comparison—benchmarked against the performance achieved through convex pro-
gramming introduced in [4]—serves as a compelling evidence to the effectiveness of our 
DNN-based receiver. Intriguingly, our DNN-based receiver excels while circumventing the 
reliance on assumed SNR levels and CSI, thereby emphasizing its pragmatic adaptability.

The contribution of this paper is highlighted in the following list:

• In pursuit of a versatile model adaptable to diverse real-world scenarios, we advance 
the training paradigm of a pre-trained DNN by incorporating the principles of repre-
sentation learning. This strategic enhancement entails refining the model’s efficacy 
through the integration of impulse noise-laced training data in the secondary training 
stage. This innovation empowers the DNN’s adaptability to unforeseen impulse noise 
challenges, a cornerstone for robust communication performance.

• Diverging from the system described in [32], we judiciously incorporate inter-block 
interference into the framework via an additional CP. This strategic inclusion underpins 
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our effort to synergize impulse noise mitigation with OFDM data detection, which we 
ingeniously formulate as a convex optimization problem. This formulation culminates in 
the emergence of a second-order cone programming approach, elegantly addressing the 
impulse noise corruption.

• Building on the above formulation, our research contributes a meticulous exposition of the 
consensus ADMM algorithm’s application. Our approach harnesses the efficiency of this 
algorithm to derive optimal solutions.

• We rigorously subject the trained DNN-based receiver to diverse impulse noise contexts, 
revealing its robustness against the challenges posed by impulse noise and noise model 
mismatches under specific conditions. Notably, the BER performance of our DNN receiver 
closely aligns with its conventional clipping-featured counterpart, a benchmark receiver 
assuming the knowledge of critical impulse noise model parameters.

This paper is organized as follows: the problem statement and the system framework are 
reviewed in Sect. 2 subsequently, and the details of the proposed schemes are manifested in 
Sect. 3. Section 4 will present the simulation results, in terms of bit error rate, and a conclu-
sion is drawn in Sect. 5.

Notation: The Hermitian operator is denoted by (⋅)H . For a complex-valued x, the real 
and imaginary parts are defined as ℜ{x} and ℑ{x} , respectively. The indicator function 1(y) 
returns one if the condition y is satisfied and zero otherwise. The �2-norm of an N-by-1 vector 
x is expressed as ‖x‖2 = (

∑N

k=1
�xk�2)

1

2 . Referencing the i-th element of vector u is convention-
ally accomplished by using (u)i.

2  System Model

2.1  OFDM Block Formation and Fading Channel Modeling

The input bit stream is initially divided into groups based on the alphabet size of Quadra-
ture Phase Shift Keying (QPSK) modulation, assuming Gray mapping. These partitions are 
then passed through the QPSK modulator, resulting in output symbols denoted as Xm . Here, 
the superscript m signifies the QPSK symbol index, which corresponds to two-bit partition 
um = [(um)2 (um)1] . Refer to Fig. 1 for a visual representation of the process. Once N modu-
lated symbols are collected, they are arranged into a vector X = [X0,X1,… ,XN−1]

T . Let us 
define �N = e−j2�∕N , where j is the imaginary unit. The Fast Fourier Transform (FFT) matrix 
F (of size N × N ) is formulated as follows:

After undergoing an Inverse FFT (IFFT), the time-domain signal block 
x = [x0, x1,… , xN−1]

T can be written as follows:

Specifically, the element xk is expressed by the following:

(1)F =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 … 1

1 �N �2
N

… �N−1
N

1 �2
N
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2(N−1)

N

⋮ ⋮ ⋮ ⋱ ⋮

1 �N−1
N

�
2(N−1)

N
… �
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N

⎤
⎥⎥⎥⎥⎥⎦

.

(2)x = FHX .
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where m is the sub-carrier index for the IFFT implementation (over which the symbol Xm 
is transported) and N is the IFFT size. For a sufficiently large IFFT size N, the temporal 
sequence xk (0 ≤ k ≤ N − 1) is modeled by an independent, identically distributed (i.i.d.) 
Gaussian random vector, with each entry xk characterized by a mean of zero and a variance 
of Es–which is identical to the modulated symbol energy, i.e., E(|Xm|2) for all m–by invok-
ing the central limit theorem.

To preempt inter-block interference, the insertion of a CP is executed at the output 
of the parallel-to-serial converter. This CP, with a length denoted as Lp , is intentionally 
chosen to exceed the delay spread of the multipath fading channel, ensuring Lp ≥ L . The 
Channel Impulse Response (CIR) characterizing the effect on the OFDM symbol is suc-
cinctly encapsulated by a CIR vector, represented as follows

Given the premise of precise time and frequency synchronization at the receiver, the intri-
cate time-domain representation of the received signal sequence, after removal of the CP, 
can be elegantly captured as:

In this context, the operator ⊗ is used to denote the N-point circular convolution. At each 
discrete time instance indexed by k, the in-phase and quadrature-phase components of the 
received signal rk are represented as rkI and rkQ , respectively. To account for the additive 
interference, the sequence of received signals is expressed as yk = hk ⊗ xk + 𝜂k . The term 
�k encompasses noise contributions originating from diverse sources, as elaborated upon in 
the following:

(3)xk =
1√
N

N−1�
m=0

Xme
j
2�mk

N , k ∈ {0, 1,… ,N − 1} ,

(4)h = [h0, h1,… , hL−1] .

(5)rk = hk ⊗ xk = rkI + jrkQ (0 ≤ k ≤ N − 1) .

(6)�k = ik + �k .

Fig. 1  OFDM System model
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Here, �k symbolizes the AWGN, characterized by a flat single-sided power spectral density 
(PSD) with amplitude N0 . Moreover, the subsequent subsection delves into the formulation 
of the remaining impulse noise term ik.

2.2  Memoryless Impulse Noise Modeling

One of the most popularly used statistical models to construct the memoryless impulse 
noise is the GMM. For instance, Bernoulli-Gaussian (B-G) model [8], where, in addition 
to AWGN, the impulse occurrence ik = bkĩk is taken into account and characterized by an 
inherent Bernoulli random variable bk ∈ {0, 1} with the probability of impulse occurrence 
denoted by P(bk = 1) = pb . Further, the impulse noise sequence ĩk (k = 0,… ,N − 1) is 
also an independent and identically distributed (i.i.d.) Gaussian random process with mean 
zero and variance N0

2
Γ (per dimension), where the impulse-to-Gaussian ratio Γ , a strength 

indicator of the impulse noise, is the mean power ratio between the impulse noise ĩk and 
the AWGN noise �k , and abbreviated by IGR. As a consequence, the probability density 
function (PDF) of the noise sample �k (a two-state Gaussian mixture model) is written as 
follows:

where

is the PDF of a circular symmetric Gaussian random variable z, the mean and variance 
of which are denoted by �z and �2

z
 , respectively. From the description of the noise model 

in  (7), it is worth noting that sophisticated receivers require precise knowledge of the 
underlying model parameters such as pb , Γ , and N0 to realize system performance gain. 
Another widely adopted GMM but with infinite states is Middleton Class-A (MC-A) noise 
model [20]. The PDF of the i.i.d. noise sample �k is expressed as follows:

where �� = e−A
A�

�!
 and �� = N0(1 +

�

ΛA
) . Typically, A is referred to as the impulsive index 

and Λ is the ratio between the AWGN’s mean power, and that of the impulsive noise.
Aside from the aforementioned Gaussian mixture models, the symmetric alpha-stable 

( S�S ) distribution [22], defined by the following characteristic function

is commonly used as well, where the characteristic exponent � (0 < 𝛼 ≤ 2) intimates the 
degree of impulsiveness: the PDF induced by the S�S distribution is yielded by the inverse 
Fourier transform of (9), as expressed in the following:

(7)PBG
�k
(x) = (1 − pb) CN

(
x;0,N0

)
+ pb CN

(
x;0,N0(1 + Γ)

)
,

CN
(
z;�z, �

2
z

)
=

1

��2
z

e
−

|z−�z |2
�2z

(8)PMC−A(x) =

∞∑
�=0

�� CN(x;0,��) ,

(9)�(t) = e−�|t|� ,

(10)P(x;�, �) =
1

2� ∫
∞

−∞

�(t)e−jtxdt =
1

2� ∫
∞

−∞

e−(�|t|�+jtx)dt .
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Empirically, a smaller � signifies more impulsive behavior and vice versa. The particular 
case with � = 2 corresponds to Gaussian distribution while Cauchy distribution is associ-
ated with the special setting of � = 1 . A scale parameter � (𝛾 > 0) is in regards to driving 
the dispersion; for instance, the variance of Gaussian distribution ( � = 2 ) is measured by 
2� . Since the variance of this impulse noise distribution is infinite–thanks to its heavy tails 
in the context of 𝛼 < 2 , the geometric signal-to-noise ratio (G-SNR), defined as

is a metric substituting for SNR. Moreover, A0 = 1 and Cg ≈ 1.78 are used in (11) [10].
It is imperative to stress that the proposed DNN-based receiver, devoid of prior knowledge 

regarding the specific impulse noise model under consideration, is purposefully subjected to 
testing. This approach, resonant with real-world scenarios, underscores the resilience of our 
receiver against the unexpected variability in impulse noise models. Subsequently, the entail-
ing BER performance results (refer to Sect. 4) reinforce its remarkable adeptness in mitigat-
ing the adverse effects of impulse noise, notwithstanding the pervasive presence of model 
mismatches.

2.3  Compressive‑Sensing Based Receiver

This subsection initiates by shedding light on the viability of a benchmark receiver rooted in 
compressive sensing, strategically applied within impulse-corrupted OFDM systems. A nota-
ble facet of this benchmark involves harnessing consensus Alternating Direction Method of 
Multipliers (ADMM), a paradigm of distributed processing. Delving into the mechanics of 
this framework, we subsequently elucidate its derivation. Notably, the efficacy of this bench-
mark receiver thrives contingent upon the availability of CSI and SNR level-a caveat intrin-
sic to this compressive-sensing based receiver. Ultimately, we will assess the efficacy of our 
proposed DNN-based receiver through extensive computer simulations. We will compare its 
performance with that of the compressive-sensing based counterpart in terms of BER.

In accordance with established conventions (cf. (6)), the impulse noise instances are col-
lated and structured into a vector format denoted as i = [i0, i1,… , iN−1]

T . Similarly, the 
AWGN noise samples are organized as � = [�0,… , �N−1]

T . Successively, the vector form of 
the received signal sequence can be analogously written as follows:

where the composite non-Gaussian interference vector is represented by

and H denotes an N-by-N circulant matrix with the transposed form of h (cf. (4)) serving as 
its first column. The concatenated output of the IFFT is represented as x = [x0,… , xN−1]

T . 
It is crucial to emphasize that achieving robust OFDM detection against gross errors 
through �1-�2 optimization [4] cannot be guaranteed solely based on an isolated OFDM 
block (subsequent to CP removal). This limitation emerges due to the inherent deficiency 
in the rank of the N-by-N matrix H , which is formed using elements that are randomly 
generated. Furthermore, in contrast to the strategy presented in [1], which relies on null 
subcarriers exclusively reserved for sparse signal recovery as a means to overcome this 

(11)G-SNR =
1

2Cg

⎛
⎜⎜⎝

A0

C
1

�
−1

g �
1

�

⎞
⎟⎟⎠

2

,

(12)y = Hx + � ,

(13)� = i + � ,
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dimensional challenge, the proposed benchmark receiver directly addresses the broader 
context of impulse noise mitigation in generic OFDM transmission. Of paramount impor-
tance, the proposed approach does not hinge on a specific estimation phase and is not con-
tingent upon the use of reserved null subcarriers, as highlighted in [1].

Recall that the DNN receiver developed in [32] considers a data transmission frame com-
prising two distinctive OFDM blocks. The first block is exclusively composed of pilot sym-
bols, while the second is allocated for the transmission of actual data. Importantly, the CIR 
is assumed not to vary within the time span of a frame. However, rather than discarding the 
potentially valuable information embedded within, the innovative impulse noise mitigation 
approach introduced in this paper takes a step further by exploiting the corrupted CP-length 
signals situated between the two OFDM blocks. This strategic incorporation serves as a coun-
termeasure against the rank deficiency challenges typically encountered in compressive sens-
ing scenarios. It is worth noting that a similar mechanism was employed in [27], although its 
application was limited to scenarios involving AWGN. In congruence with the architecture 
outlined in [27], and harnessing this additional CP segment to avert rank deficiency issues, 
it is of utmost significance to underscore that this section of the paper (distinctively disre-
garded in preceding studies such as [27]) is dedicated to the realization of impulse noise miti-
gation through the prism of convex programming. Notably, the forthcoming passages provide 
a meticulous delineation of the relevant mathematical notations.

The p-th transmission frame is defined by two consecutive OFDM blocks: X(2p) and 
X(2p + 1) , identified by their indices as (2p) and (2p + 1) , respectively. Analogously, the (2p)-
th received signal block, subsequent to CP removal, is expressed as follows:

where the time-domain signal vector is encapsulated as x(2p) = FHX(2p) , and the matrix 
H

T
 is structured as a N-by-(N + Lp) Toeplitz matrix, with the first row corresponding to the 

CIR vector–[h, 0,… , 0] , while the first column marked by [h0, 0,… , 0]T . To seamlessly 
integrate the concept of CP insertion with the underlying OFDM block, a crucial step 
entails the construction of the (N + Lp)-by-N matrix I

E
 . This is accomplished by appending 

a submatrix ĨLp
 beneath an N-by-N identity matrix IN , where ĨLp

 is crafted through the 
extraction of the initial Lp rows from IN . This intricate process culminates in the synthesis 
of the composite matrix I

E
= [IT

N
Ĩ
T

Lp
]T in (14).

As opposed to the utilization of a single OFDM block-time observation, as implicated 
in (14), this paper considers the signal sequence with respect to the p-th transmission frame, 
which now extends in length to M ≜ 2N + Lp instead of 2N. This sequence is expressed in 
vector form as follows:

where the matrix H
T
 takes on the form of a M × (M + Lp) Toeplitz matrix. The first 

row is represented by [h, 0,… , 0] of size M, and first column adopts the configuration 
[h0, 0,… , 0]T of size (M + Lp) . Simultaneously, the matrix I

E
= I2 ⊗ I

E
 is an expansion 

of I
E
 as defined in  (14)), encompassing a two-by-two identity matrix I2 and the Kro-

necker product denoted by ⊗ . Stacking two transmitted signal blocks yields a tall vector 
x(p) = [xT (2p + 1) xT (2p)]T ; accordingly, the additive noise sequence in regards to the p-
th frame can be represented as another tall vector �(p) , which is further decomposed into 
�(p) = i(p) + �(p).

(14)y(2p) = H
T
I
E
x(2p) + �(2p) ,

(15)
y
F
(p) =H

T
I
E
x(p) + �(p)

=� x(p) + �(p) ,
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Crucially, in the absence of interference, the composite channel matrix (presented as 
a tall matrix) denoted by � = H

T
I
E
 enables the representation of the received sequence 

as a simple product of � and the transmission frame x(p) (refer to (15)). This lays the 
groundwork for the formulation of the subsequent convex optimization problem. Of 
notable significance is the incorporation of inter-block interference amidst two con-
secutive OFDM block-time observations, a distinct hallmark setting the formation (15) 
apart from the architecture presented in [32]. This distinctive inclusion essentially paves 
the way for the implementation of a compressive sensing-based receiver in the ensuing 
discourse.

Leveraging the underpinning structure outlined in  (15) and and its resonance with 
sparse impulse noise (gross errors), a strategy rooted in second order cone programming 
(SOCP) strategy [4] is harnessed to facilitate the recovery of the transmitted signal vec-
tor x(p) . This task can be expressed by the subsequent formulation:

Given the potential proliferation of the unknown variables at hand, the endeavor to esti-
mate the OFDM signal vector x(p) in conjunction with the AWGN noise vector �(p) can 
be a computationally demanding task. To alleviate this computational burden, a series of 
mathematical transformations are invoked, as detailed in the following discourse.

It becomes evident that the null space of the tall matrix � featured in (15) is indeed 
present. From this perspective, the column space of � is effectively denoted as U , while 
the complementary orthogonal space is represented as U⟂ . Furthermore, the establish-
ment of an orthobasis for the column space U⟂ manifests as the matrix Q . In conse-
quence, the orthonormal projector onto U⟂ can be succinctly expressed as PU⟂ = QQH . 
In this regard, the SOCP (as presented in  (16)) can be alternatively formulated as 
follows:

Notably, the equivalence between (16) and (17) hinges on the deliberate pursuit of impulse 
noise mitigation. This is predominantly realized through the initial step of pre-multiplying 
the received signal vector y

F
(p) by the matrix QH . The resolution of the SOCP problem 

depicted in  (16) can be facilitated by employing the widely utilized CVX [12] software 
package, as exemplified in [29]. In marked contrast, this paper focuses on incorporating the 
consensus ADMM-based distributed optimization algorithm [3] as the backbone for imple-
menting impulse noise suppression. This novel approach harnesses its inherent parallelism 
to enhance convergence speed by strategically decomposing the optimization problem into 
a series of sub-problems. The ensuing mathematical derivation intricately unfolds in the 
following passages.

In the first hand, two auxiliary variables z1 and z2 are introduced to enable the paral-
lelism for solving (17), as written in the following:

(16)
min

x̃(p),
̃
�(p)

‖y
F
(p) − � x̃(p) −

̃
�(p)‖1

subject to ‖̃�(p)‖2 ≤ 𝜆; �
H ̃�(p) = 0 .

(17)
min
̃
i(p)

‖̃i(p)‖1

subject to ‖QH(y
F
(p) −

̃
i(p))‖2 ≤ 𝜆 .
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Given the global variable z2 , the local variables {̃i(p), z1} are considered as a group to be 
optimized, reflecting the essence of implementing the consensus ADMM. In regards to the 
newly formulated optimization problem by (18), the augmented Lagrangian is laid out as 
follows:

where 𝜌 > 0 is the penalty parameter, and �1 and �2 are dual variables.
The scaled dual form of ADMM execution is carried out by setting �i = �i∕� for 

i ∈ {1, 2} . After � iterations (a positive integer � ≥ 1 ), the update for the i-th entry of impulse 
noise vector estimate ̃i(p) , i.e., (̃i(p))i for i ∈ {1, 2,… ,M} is yielded–in closed form–by the 
following:

Successively, the update for z1–by minimizing  (19) while subjecting ‖z1‖2 to within the 
Euclidean ball ‖z1‖2 ≤ �–can be yielded in closed formed, and the result is expressed as 
follows:

With the availability of updates ̃i
𝛾+1

(p) as well as z�+1
1

 , the proceeding of ADMM is carried 
out continually and the global variable z2 is updated by the following:

where the local variables {̃i(p), z1} are updated by the latest iterates, as shown in  (20) 
and  (21), respectively. Finally, the two dual variables �1 and �2 are updated in the 
following:
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Denote the primal solutions by ̃i
∗

(p) , z∗
1
 and z∗

2
 ; likewise, the dual solutions are indicated by 

�∗
1
 and �∗

2
 . As expressed by the following, the necessary and sufficient optimality condition 

for the ADMM problem (17) are primal feasibility:

and dual feasibility:

where �(⋅) indicates the subdifferential operator.
The stopping criterion for the consensus ADMM is contrived by first measuring the 

primal and dual residuals; in a fashion similar to [3], one can obtain the primal residual as 
follows:

Noteworthily, the iterate z�+1
2

 aims to minimize L𝜌(
̃
i
𝛾+1

(p), z
𝛾+1

1
, z2,�

𝛾

1
,�

𝛾

2
) , and, to attain 

that goal, it can be verified that the following condition always holds:

indicating that ��+1

1
 and ��+1

2
 satisfy (26) all the time. Furthermore, the dual residual, after 

a few mathematical derivations, is yielded to be

The termination criterion is employed as follows:

where �pri and �dual are feasibility tolerances for the primal and dual feasibility condi-
tions (25) and (26), respectively. These tolerances are designed to vary with iterations such 
as

where an absolute and relative criterion is used for adapting feasibility tolerances. The 
absolute tolerance �abs is set to be 10−4 whereas the relative stopping criterion �rel is chosen 
at 10−2 in the following simulations.

It is worth noting that setting the parameter value of � in (17)–while attempting to mini-
mize the �1-norm of impulse noise estimate ̃i(p)–critically impacts the governance of clipping, 
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which in turn affects the BER performance. The optimal value of � can however be empiri-
cally searched as this compressive sensing-based receiver, serving as a benchmark receiver, 
assumes not only the SNR level but also the statistics of impulse noise as well.

3  Neural Network Receiver

In this research endeavor, we emphasize harnessing the potential of artificial intelligence for 
the development of DNN-based receivers, eliminating the need to assume the prior knowledge 
of impulse noise models, related statistics, or SNR levels. This approach obviates the need 
to assume impulse noise models, associated statistics, or SNR levels. The subsequent section 
will provide an elaborate account of the architecture of our enhanced OFDM model, complete 
with pertinent mathematical representations. By capitalizing on proliferative training data 
generated through simulation processes, the DNN model is trained by treating OFDM mod-
ulation, multipath fading channels, and impulse noise as black boxes. Ultimately, the DNN 
model demonstrates its capability to effectively recover binary data sequences in real-world 
scenarios. The efficacy of this novel approach is substantiated by a meticulous comparative 
analysis, specifically evaluating the BER performance of our designed DNN-based receiver 
against a benchmark counterpart. Section 4 elaborates on the detailed insights of this assess-
ment through the presentation of experimental outcomes

The DNN architecture comprises an input layer, multiple hidden layers, and an output 
layer, where neurons are fully connected between consecutive layers. The activation func-
tion employed at the output of the preceding hidden layer is the Rectified Linear Unit (ReLU) 
function, mathematically represented as follows:

Remarkably, the ReLU operation bears resemblance to soft thresholding, a technique com-
monly employed in signal processing and optimization tasks. This similarity becomes 
apparent, especially when disregarding the implicit sign implementation in (20), highlight-
ing the intriguing connection between deep learning and signal processing paradigms. 
The Sigmoid function, serving as the nonlinear activation function at the output layer, is 
expressed as

Referring to the weight matrix connecting the i-th and (i + 1)-th layers as denoted by �(s)

i+1,i
 , 

the output of the (i + 1)-th layer is formulated as follows:

where u(s)
i

 signifies the input of the i-th layer, LD denotes the total number of layers in the 
DNN, and Ns represents the number of sub-systems. Figure 2 provides a visual representa-
tion where the DNN encompasses a total of five layers, with three hidden layers and eight 
sub-systems. It is noteworthy that each of these eight sub-systems processes identical 
received samples (following the removal of Cyclic Prefix) which spans a temporal duration 
equivalent to twice the length of an OFDM block, as input. Utilizing the notation deline-
ated in (34), this alignment is denoted as u(1)

1
= u

(2)

1
= … = u

(8)

1
 , indicating the synchrony 

in their input sources. Furthermore, the activation functions f (i)(⋅) , where 

(32)ReLU (x) = max(0, x) .

(33)�(x) =
1

1 + e−x
.

(34)u
(s)

i+1
= f (i)

(
�
(s)

i+1,i
u
(s)

i

)
, i ∈ {1, 2,… , LD − 1} and s ∈ {1, 2,… ,Ns} ,
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i ∈ {1,… , LD − 2} , are element-wise ReLU  (32), while f (LD−1)(⋅) employs the element-
wise Sigmoid function. Finally, the collective vector [(u(1)

LD
)T (u

(2)

LD
)T …(u

(Ns)

LD
)T ]T , namely 

the output of the DNN, represents the estimation of the transmitted OFDM data block. The 
parameter set for which the DNN is trained, optimizing the specified metric (as detailed in 
the following passage), is succinctly summarized as {�

(s)

i+1,i
} , where 

i ∈ {1, 2,… , LD − 1}, and s ∈ {1, 2,… ,Ns}.
In contrast to the employed mean-squares error (MSE) loss function, namely 

L2 =
∑NTrain

k=1
‖X̂(k)

− X(k)‖2
2
∕NTrain as employed in [32], where NTrain represents the scale of the 

training dataset, X̂
(k) signifies the prediction generated by our proposed DNN, and X(k) indi-

cates the ground truth corresponding to training dataset k , we opt for the cross-entropy loss 
function as the focal point of the cost function in this paper. The choice of the cross-entropy 
loss function is motivated by its suitability for classification tasks, as underscored in prior 
research [9]. Additionally, our simulation results, as presented in the following, validate its 
superiority—particularly when faced with instances of unforeseen impulse noise occurrences.

For the sake of conciseness and notational clarity, we omit the superscript (k) which cor-
responds to the training dataset index in the subsequent discussions. The ultimate layer, which 
is fully connected, directs crucial output information to an In-phase and Quadrature-phase 
(I/Q) softmax layer. This specialized layer computes probabilities for each transmitted two-bit 
binary partition and adopts a vector configuration (specifically, a four-by-one vector), as elabo-
rated in the ensuing description:

In the context of QPSK modulation demapped using Gray mapping, the probabilities asso-
ciated with the I/Q components can be derived from the aforementioned equation (35), pre-
sented here in the subsequent vectorized form:

(35)[P((ûm)1 = 1) P((ûm)1 = 0) P((ûm)2 = 1) P((ûm)2 = 0)]T .

Fig. 2  DNN model
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Guided by standard practices, the process of normalization ensures that the subse-
quent summations attain a unity value: P((ûm)1 = 1) + P((ûm)1 = 0) = 1 , and similarly, 
P((ûm)2 = 1) + P((ûm)2 = 0) = 1 . In the context of each trained OFDM block, the adept-
ness of our DNN model in minimizing the cross-entropy loss function is succinctly demon-
strated, as articulated in the subsequent expression:

Derived from the cross-entropy loss function Lc outlined in  (37), the evolution of the 
weights and biases within the DNN model transpires through the realization of a stochastic 
gradient descent method, or its relevant extension, operating on incoming batches of the 
training dataset. The initial phase of training the DNN model is characterized by the pur-
suit of minimizing the loss function Lc , amid the presence of data-corrupting interference 
solely attributed to AWGN.

However, in response to the challenge posed by non-Gaussian impulse noise, this study, 
following the lead of [14], undertakes a refinement of the previously established DNN 
model. This evolution involves strategically interleaving the training data with instances 
of impulse noise subsequent to the initial training phase. This strategic interleaving ena-
bles the systematic fine-tuning of the parameters of the DNN model. This iterative process 
continues until the value of the loss function  (37) reaches a point of marginal diminish-
ment, indicating the enhanced robustness of the proposed DNN model to non-Gaussian 
disturbances.

It is noteworthy that the learning rate, which is subject to experimentation in the subse-
quent section, is deliberately decreased over the course of training. This deliberate reduc-
tion in the learning rate is driven by the objective of attaining convergence toward an opti-
mal solution within the intricate domain of DNN modeling, wherein the interplay between 
model complexity and convergence efficiency is meticulously balanced.

4  Simulation Results

The simulations adopt the B-G and S�S impulse noise models (as described in Sect. 2.2). 
In contrast to previous studies, such as the work in [28], we vary the IGR within the range 
of SNR values relevant to our investigation. The DNN’s input consists of received data 
from a frame, comprising one pilot block and one data block. Each block contains 64 
QPSK symbols, aligned with an FFT/IFFT size of N = 64 . The pilot symbols remain fixed 
during training and validation. As in [32], the CP length is set to Lp = 16 . Moreover, the 
wireless channel dataset is generated following the new radio model (WINNER II [16]), 
resulting in a multipath channel with 24 paths, which varies from one frame to another. 
Notably, the received signal, conditioned on channel gains h(i)

k
 , where k ∈ {0, 1,… , L − 1} , 

derived from the i-th channel realization, where i ∈ {1, 2,… ,Nd} , in a dataset of size Nd , 
follows a Gaussian distribution with a mean of zero and a variance of 

(36)

�
P

�
ℜ{X̂m} =

−Es√
2

�
P

�
ℜ{X̂m} =

Es√
2

�
P

�
ℑ{X̂m} =

−Es√
2

�
P

�
ℑ{X̂m} =

Es√
2

��T

.

(37)

Lc = −
1

N

N−1∑
m=0

1∑
q=0

[
1((um)1 = q) logP((ûm)1 = q) + 1((um)2 = q) logP((ûm)2 = q)

]
.
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�2
ri
=
�∑L−1

k=0
�h(i)

k
�2
�
Es . In this regard, signal-to-Noise ratio (SNR) is defined as the ratio of 

the averaged received signal power over the dataset of interest to the variance of AWGN, 
namely ( 1

Nd

∑Nd

i=1
�2
ri
)∕N0 . SNR values are expressed in decibels (dB) for the following sim-

ulations. It is pivotal to highlight that while the compressive sensing-based receiver lever-
ages channel state information and AWGN power levels to generate BER curves, our 
DNN-based receiver operates without presuming any prior knowledge of these parameters.

Figure 3 presents the BER performance outcomes of the trained model, building upon 
experiments from [32]. In contrast to their study, which focused exclusively on AWGN, we 
extend our investigation to incorporate moderate impulse noise, characterized by a proba-
bility of impulse occurrence pb = 0.001 with variances ranging from 0.02 to 2.5. The DNN 
model is composed of five layers, with neurons allocated as follows: 256, 500, 250, 120, 
and 16. Notably, every 16 bits of the transmitted data are independently predicted prior to 
concatenation as a whole (128 bits.) Training involves 5,000 epochs, each comprising 50 
batches (with 500 training realizations per batch). We employed the Adam optimizer [15] 
with a learning rate of 10−4 . For specific system parameter values, please refer to Table 1. 
Analyzing Fig. 3 reveals that as �2

I
 , representing impulse noise power, grows, the BER per-

formance stabilizes at lower SNR values; for instance, at �2
I
= 2.5 , the BER curve becomes 

notably flat from as early as 15-dB SNR. Conversely, the curve for �2
I
= 0.02 exhibits 

gradual tilting. However, even in the latter scenario—moderate impulse probability cou-
pled with minimal power intensity—the BER remains significantly higher than 10−3 . This 
performance gap persists even as SNR ascends to 30 dB (see solid line marked by “ ◻”). 
Our experimental insights underscore a critical point: although the trained model excels 
in the presence of AWGN only—where the BER declines to less than 10−3 at SNR lev-
els below 30 dB—its effectiveness diminishes when faced with the unforeseen presence 
of impulse noise. This observation highlights the formidable challenge of mitigating the 
impact of impulse noise without enhancements to the model. Notably, the dash-dotted line 

Fig. 3  BER performance of the DNN model (trained in the context of AWGN only) in the B-G model 
( pb = 0.001)
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marked by “ ◦ ” aligns with findings in [32], revealing BER performance comparable to that 
of the MMSE receiver.

In response to this shortcoming, we adopt a successive fine-tuning approach for the 
trained model parameters. This strategy is employed once the value of the loss func-
tion (37) has reached a plateau, and no further decline can be achieved by increasing the 
number of training epochs. In our study, this point is observed at 5,000 epochs. Beginning 
with the model parameters obtained from the initial structure, this enhanced method yields 
a refined DNN model through fine-tuning. This process occurs at a fixed training SNR 
level of 25 dB.

The fine-tuning process incorporates the following key adjustments: the learning rate 
is reduced to one-fifth of its most recent value after every 25 epochs, eventually reach-
ing a minimum value of 10−5 . Simultaneously, the training dataset, distinct from the pre-
vious experiment, considers impulse occurrences with a probability set at 0.005 and an 
average power of 0.2. The outcomes of these refinements under error-prone conditions are 
displayed in Fig.  4. In comparison to the original DNN model, the BER curves derived 
from the incorporation of fine-tuning (indicated by solid lines) exhibit an earlier descent 
than their counterparts (represented by dash-dotted lines) across a comprehensive range of 
�2
I
 strengths. For instance, considering the instance where �2

I
= 0.02 (highlighted by “  

 ◻ ” on the curves), 
a noteworthy SNR improvement of over 10 dB is evidenced. This observation underscores 
the affirmative impact of incorporating the fine-tuning technique into the DNN model. The 
discerned superiority of the refined DNN model over the original version can be attributed 
to the transfer of knowledge from the pre-trained model—leveraging learned parameters as 
initializations—which is then subjected to fine-tuning for tackling more intricate learning 
tasks, such as addressing anomalous attacks.

Furthermore, the receiver employing clipping (indicated by the dashed line marked 
with “ ◦ ” in Fig. 4), with an optimal threshold determined via linear programming (as 
discussed in Sect.  2.3) through an exhaustive exploration of the parameter � in  (16), 

Fig. 4  BER performance of the refined DNN model (with fine-tuning) in the B-G model ( pb = 0.001)
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slightly outperforms the refined DNN-based receiver. However, it is worth noting that 
the clipping-featured receiver necessitates the assumption of known SNR values. In 
contrast, the refined DNN receiver does not assume knowledge of the impulse noise sta-
tistics or SNR values from the testing data.

Notably, even under relatively mild conditions, such as pb = 0.001 and �2
I
= 0.02 , the 

achieved BER performance in the preceding experimental findings reaches a saturation 
point around 30-dB SNR. This is particularly significant when considering the instances 
where pb is substantially elevated, highlighting the limitations of the preceding DNN 
model. This issue is prominently depicted in Fig. 5, where the DNN model encounters 
heightened instances of anomalous occurrences, notably at pb = 0.01 across the entire 
range of presented �2

I
 magnitudes. This is observable through the consistent BER levels 

(indicated by the dash-dotted lines) that persist even as the SNR value surpasses 25 
dB. This behavior indicates that the DNN-based receiver becomes overwhelmed by the 
influx of impulse arrivals within the data frame duration.

To overcome this shortcoming, we enhance the DNN model by augmenting the net-
work depth from five to six layers. Additionally, we meticulously determine the number 
of neurons in each layer empirically as follows: 256,  550,  832,  280,  128 and 16. The 
fine-tuning process remains consistent with the strategy outlined earlier. The resulting 
BER outcomes are depicted in Fig. 5, with each solid line corresponding to a distinct �2

I
 

level. A noteworthy observation emerges: the lower the average power of the impulse 
noise, the earlier the departure of BER curves between the two compared DNN models 
as the SNR grows. Strikingly, for �2

I
 values of 0.1 and 0.02, the ’deeper’ neural network 

model induces a consistent downward trajectory of BER curves as SNR progressively 
increases.

Of notable significance, the BER performance achieved remarkably converges with out-
comes obtained from the clipping-featured receiver (as indicated by the dashed line marked 
by “ ◦”), attesting the efficacy of our proposed DNN framework against impulse noise, 

Fig. 5  BER performance of the proposed DNN model (with fine-tuning) in the B-G model with a growing 
pb at 0.01
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even in hostile scenarios. In summation, this notable performance enhancement is adapted 
through a strategic trade-off, judiciously balancing computational complexity to enrich the 
prowess of representation learning.

To further amplify the robustness claims of our proposed DNN-based receiver—relax-
ing its assumptions on the specifics of the driving impulse noise model—we carry out a 
pivotal experiment. In this experiment, we intentionally replace the interference model in 
the testing phase with the symmetric alpha-stable distribution (as defined in (9)), thereby 
introducing a deliberate model mismatch. This strategic maneuver investigates the efficacy 
of the receiver in the face of variations stemming from the impulsiveness of interference. 
This exploratory path involves a meticulous modulation of the magnitude of the � param-
eter, as delineated in (10). Specifically, we scrutinize the outcomes for varying values of 
� , specifically 1.4, 1.6, and 1.8, throughout our simulations, as detailed below. Notably, 
the performance outcomes detailed within Fig. 6 unequivocally resonate with our central 
assertion: the devised DNN model consistently outperforms its counterpart. This superior-
ity becomes particularly evident as the performance loss incurred by the clipping-featured 
receiver—developed based on assuming the Gaussian mixture noise model—becomes 
substantial due to its susceptibility to a model mismatch. The stark divergence from the 
assumed S�S model becomes an essential factor responsible for this phenomenon. This 
disparity is acutely illustrated when considering an instance with � set at 1.8: the BER per-
formance curve dictated by the clipping-featured receiver (as denoted by the dash-dotted 
line marked by “ ◻ ”) exhibits minimal downward movement, starkly contrasting with the 
trajectory observed with our proposed DNN model. As the BER derived from our DNN 
receiver steadily declines amidst growing G SNR values, the gap in performance loss with 
regard to the clipping-featured counterpart magnifies significantly.

In pursuit of a comprehensive assessment, we extend our evaluation by comparing our 
DNN-based receiver with a peer model proposed in [2], which enhances performance 

Fig. 6  BER performance comparison of the trained DNN model (with fine-tuning) and a clipping-featured 
receiver in realistic scenarios in the presence of model mismatch, where � values in the S�S model are var-
ied
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through the integration of convolutional coding. To facilitate a thorough, equitable com-
parative analysis, we conduct simulations within a coded OFDM framework encompassing 
1,024 sub-carriers, out of which 256 are dedicated to pilots. The code rate is set at 1/2, 
with a constraint length of 7 and generator matrix defined by [171 133] . Channel decoding 
is implemented via a Viterbi decoder. Further augmenting the simulation settings is the 
channel model, which comprises ten paths with path arrival times conforming to a Poisson 
distribution with a mean of 1 ms, whereas the path amplitudes follow the Rayleigh fading 
distribution, reflecting an exponentially decreasing average power profile. It is noteworthy 
that the same strategy is employed, enabling the retraining of our proposed DNN to adapt 
to the unique characteristics of this channel model. The performance disparity between our 
DNN receiver and the counterpart in [2], within the B-G model, is depicted in Fig. 7. Nota-
bly, across all scenarios, the divergence between comparative curves becomes more pro-
nounced as the SNR value grows. A discernible 0.5 dB SNR gain (see those lines marked 
by “ × ”) is observed at a BER level of 10−4 when pb = 0.06 . Their performance loss can 
be attributed to the quality of channel estimation—a crucial factor impacting zero-forcing 
frequency domain equalization, known for its susceptibility to noise enhancement. This is 
corroborated by our observation that the solid line representing our DNN-based receiver 
consistently falls below the dash-dotted line, even when limited to the AWGN scenario 
(marked by “ ◻”). The impact of adopting blanking operation there in scenarios with higher 
pb values, such as 0.1, can further contribute to a degraded BER performance.

Our exploration further extends to the MC-A model, the outcomes of which are plotted in 
Fig. 8. The BER performance aligns with the trends exhibited in Fig. 7. Particularly notable 
is its marginal yet consistent superiority compared to the counterpart across various impul-
sive indices A, especially when the power ratio between AWGN and moderate impulse noise 
remains constant (e.g., Λ = 0.5 ). This persistence in performance gain further solidifies the 
versatility and efficacy of our DNN-based receiver across diverse impulsive environments.

Fig. 7  BER performance comparison of the trained DNN model with the one proposed in [2] at 
SIR = 0 dB
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5  Conclusion

In summary, we have delved into the formidable implications of impulse noise on the 
bit error rate (BER) performance of a deep neural network (DNN) receiver tailored for 
Orthogonal Frequency Division Multiplexing systems in the presence of multipath fad-
ing. Notably, our study encompasses a scenario where the precise impulse noise statis-
tics remain elusive to the DNN receiver, mirroring real-world uncertainties, and extends 
to instances where the ambient noise power level remains unchartered. Empirical 

Fig. 8  BER performance comparison of the trained DNN model with the one proposed in [2] in the MC-A 
model with Λ = 0.5

Table 1  The hyperparameters of the DNN

Parameter Value

Activation function ReLu
Loss function Cross entropy
Epoch index AWGN: 1–2000/ with impulse noise: 2001–5000
Batch number per epoch 50
Training set of each batch 500
Bits of each training set 128
Initialization method Xavier initialization
Learning rate Initialized at 0.001 and continually shrunk to be 

1/5 of its latest value after every 25 epochs
Optimization method Adam
Power level of AWGN in training mode 5.45 × 10−5

Probability of impulse noise occurrence in training mode 0.001
Power level of impulse noise in training mode 2
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revelations emphasize the vulnerability of a DNN model exclusively trained to contend 
with additive white Gaussian noise, rendering it susceptible to the covert yet detrimen-
tal anomalies introduced by impulse occurrences. Consequently, a critical facet of this 
study emerges—enriching the DNN’s capacity for representation learning by enabling 
adaptive responses to nuanced data variations, effectively rejuvenating the initial train-
ing model. In this endeavor, the prominent clipping-featured receiver, emanating from 
the compressive sensing paradigm, emerges as a pertinent benchmark for BER perfor-
mance comparison against our DNN receiver. Of paramount significance, our investi-
gation unveils a pivotal nexus between optimal clipping thresholds—a cornerstone of 
the compressive sensing-based clipping-featured receiver—and the efficient resolu-
tion of this task through a second-order cone programming realized by the consensus 
alternating direction method of multipliers (ADMM). Nonetheless, it is imperative to 
acknowledge that the conventional clipping-featured receiver’s efficacy in setting the 
clipping threshold is engaged with an assumption about the signal-to-noise ratio level-a 
presumption that our proposed DNN receiver manages to circumvent. Our simulation 
results elegantly demonstrate the prowess of the proposed DNN receiver, aligning it 
commendably with its clipping-featured peer in moderate environments and even sur-
passing it slightly in more hostile scenarios. Moreover, our DNN receiver underscores 
robustness in the face of impulse noise model mismatches, further attesting to its practi-
cality and adaptability.
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