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Abstract
Reconfigurable Intelligent Surface (RIS) can enhance the performance of wireless com-
munication systems in scenarios where there is an obstruction in the direct Line-of-Sight 
between transceivers. In this paper, we propose a double RIS assisted wireless commu-
nication system with no direct link present between source and destination with first RIS 
 (R1) near to the source, second RIS  (R2) near to the destination, and both RIS will inde-
pendently assist the communication between source and destination. The analysis includes 
moment generating function-based symbol error rate evaluation and the derivation of sim-
plified closed-form expression for the outage probability (OP) in terms of the Q-function 
over Rician and Rayleigh fading channels. A fair comparative performance evaluation, con-
sidering an identical number of RIS elements in two systems, is conducted against a single 
RIS-assisted system with the RIS positioned midway between the source and destination. 
The analytical findings are corroborated through Monte Carlo simulations and an in-depth 
examination of the energy consumption gain reveals that the proposed double RIS-assisted 
system surpasses the single RIS-assisted system in terms of SER and OP while exhibiting 
lower energy requirements.

Keywords Reconfigurable intelligent surface (RIS) · Outage probability · Moment 
generating function (MGF) · Symbol error rate

1 Introduction

Reconfigurable Intelligent Surface (RIS) play a pivotal role in advancing wireless com-
munication for the next generation [1]. RIS can efficiently manage dynamic wireless envi-
ronments and provide additional transmission gains, particularly when a direct source-
to-destination connection faces obstruction [2]. With the help of passive metamaterial 
reflective elements, RIS introduces controllable phase shifts to incident electromagnetic 
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waves through a controller connected between the RIS and the source [3]. These intelli-
gent phase shifts constructively enhance the signal-to-noise ratio (SNR) at the desired user, 
transforming the random wireless channel into a deterministic entity and allowing RIS to 
create a truly smart radio environment [1, 4].

1.1  Related Works

In the literature, extensive studies on single RIS-aided systems have proven that RIS is 
a potential energy-efficient technology [5–11]. RIS-assisted single input single output 
(SISO) system will provide a low bit error rate even in low SNR regimes and outperforms 
the conventional relay schemes in terms of SER and outage probability [5, 6]. Extensive 
research has delved into the application of RIS to enhance energy efficiency (EE) across 
various communication scenarios, including broadcast and multi-user uplink systems [7]. 
RIS has proven beneficial in supporting ultra-reliable, low-latency scenarios with reduced 
energy requirements, extended coverage, and minimized latency [8]. Integration with mul-
tiple access schemes, such as rate-splitting multiple access and non-orthogonal multiple 
access (NOMA), has been explored to enhance overall throughput, secrecy and energy effi-
ciency [9–11].

Recent research has highlighted the superior capacity of multi-RIS systems compared 
to single RIS systems while the configurations with a direct link between source and des-
tination in multi RIS systems show further increase in average achievable rate gains and 
improved outage probabilities compared to single RIS setups [12–14]. However, practical 
scenarios may not guarantee such direct links. In [15], the authors have focused on improv-
ing outage probability by selecting the RIS with the highest instantaneous SNR among 
multiple RIS, but the selection strategy of RIS and location of RIS were not covered. More-
over, a multi-RIS aided system will also enhance the physical layer security [16]. How-
ever, resource allocation and energy efficiency become significant concerns when using 
multiple RISs to meet the desired Quality of Service (QoS) [17] and challenges such as 
reliable channel status information and increased computational complexity with a grow-
ing number of RIS were noted [18]. In response to these considerations, a novel double-
RIS-assisted system was introduced, placing one RIS near the source and another near the 
destination [19]. This configuration demonstrated higher beamforming gain and improved 
wireless communication system secrecy compared to single RIS-assisted systems [20]. 
However, the double-RIS-assisted system in [19, 20] suffered from high path loss due to 
double reflection, potentially deteriorating signal power and overall performance. To over-
come this issue, we propose a parallel double-RIS system, where two RISs aid communi-
cation simultaneously.

Motivated by the above considerations, in this paper, we consider a double RIS-assisted 
wireless system where two RISs aid communication simultaneously, with  R1 placed near 
the source and  R2 placed near the destination, without a direct link between the source and 
destination. The proposed system addresses challenges associated with double reflection, 
offering promising prospects for practical deployment. For the proposed system, MGF-
based SER analysis is developed and a simple expression in terms of Q-function is derived 
to calculate OP. Additionally, our study considers the dissipated power at the transceivers 
and RIS circuitry to perform energy consumption gain analysis and showcases the supe-
riority of the proposed double RIS system compared to a baseline single RIS system. All 
analytical results undergo rigorous verification through Monte Carlo simulations, ensuring 
the robustness and reliability of our findings.
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The next section introduces the system model under consideration. Section 3 presents 
the analysis of SER and the outage probability of the proposed system. Section 4 pro-
vides theoretical and simulation results. Finally, Sect. 5 concludes the paper. The list of 
symbols and parameters used in the paper are given in Table 1.

2  System Model

As shown in Fig.  1, we consider a double-RIS-assisted system consisting of a single 
antenna source (S) that communicates with a single antenna destination (D), with the 
assistance of R1 and R2. The number of reflecting elements in R1 and R2 are N1 and N2 
respectively. The reflecting elements of each RIS are programmable with the help of 
RIS controller and it communicates with the source through a separate backhaul link to 
coordinate transmission and information exchange, such as channel state information 
and RIS phase shifts. The direct link between source and destination is blocked due to 
obstacles. The source and destination are in the far field of R1 and R2 [8]. It is assumed 
that the fading channel is quasi-static and flat, with no interference [1]. Further, we 
assume that the cascaded links from source to destination via each RIS are independent.

Then, the received signal at the destination via two independent paths (S-R1-D and 
S-R2-D) is expressed as follows:

Table 1  List of symbols and parameters

Symbols and parameters Description

�[X] Mean of random variable X
� [X] Variance of random variable X
M� (X) Moment generating function of random variable X
t Non-centrality Parameter of non-central chi-square (NCCS) distribution
v2 Power in the LoS component
2�2 Power in the non-LoS component
�2

D
Noise Power at the destination

K = v2∕2�2 Shape parameter of Rician fading
L1∕2(x) Laguerre polynomials of degree 1/2; L1∕2(0) = 1

Q1∕2(z) Generalized Marcum Q-function with fractional order
Q(z) Generalized Marcum Q-function with an integer order
N1,N2 Number of reflecting elements in RIS-1, RIS-2
N Total number of reflecting elements in a single or double RIS system
GE Energy consumption gain
P Transmit power of the source
Pi,P

S
c
andPD

c
Dissipated circuit powers at ith RIS element, source, and destination

� Operating Wavelength
� Path loss at a reference distance of 1 m
ϱ Path-loss exponent
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For simplicity, we assume that each RIS have the same number of elements, i.e., 
N1 = N2 = Nd , then Eq. (1) modified as:

In Eq. (2), �1,i and �2,i are the phase shift introduced by the i th element of RIS-1(R1) 
and RIS-2(R2) respectively; P is the transmit power of the source, x denotes the transmitted 
signal and n ~ CN (0, �2

D
 ) stands for additive white Gaussian noise. The channels from S to 

the i th element of R1 and i th element of R1 to D are h1,i = d
−ϱ∕2

SR1,i
�1,ie

−j�1,i and 

g1,i = d
−�∕2

R1,iD
�
1,i
e−j�1,i respectively. Similarly, h2,i = d

−ϱ∕2

SR2,i
�2,ie

−j�2,i and g2,i = d
−�∕2

R2,iD
�
2,i
e−j�2,i 

are the channels from S to i th element of R2 and i th element of R2 to D respectively. 
Here�1,i,�2,i , �1,i and �2,i denotes the amplitudes of channel coefficients and�1,i , �2,i , �1,i and 
�2,i denotes the phase of the corresponding channel, and denotes the path loss coefficient. 
The distances from S to the i th element of R1 and R2 are denoted as dSR1,i

 and dSR2,i
 respec-

tively. Similarly, the distances from i th element of R1 and R2 to D are denoted as dR1,iD
 and 

dR2,iD
 respectively. Then the Eq. (2) can be written as,

(1)y =
√
P

�
N1�
i=1

h1,ie
j�1,i g1,i +

N2�
k=1

h2,ke
j�2,k g2,k

�
x + n.

(2)y =
√
P

�
Nd�
i=1

h1,ie
j�1,i g1,i +

Nd�
i=1

h2,ie
j�2,i g2,i

�
+ n.

(3)

� =

P
����
∑Nd

i=1
d
−ϱ∕2

SR1,i
�
1,i
d
−ϱ∕2

R1,iD
�
1,i
ej(�1.i−�1,i−�1,i) +

∑Nd

i=1
d
−ϱ∕2

SR2,i
�
2,i
d
−ϱ∕2

R2,iD
�2,ie

j(�2,i−�2,i−�2,i)
����
2

�2
D

Fig. 1  Proposed Double RIS-assisted wireless communication system
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Under the far-field assumption we can writedSR1,i
= dSR1

 , dSR2,i
= dSR2

 , dR1,iD
= dR1D

 
anddR2,iD

= dR2D
 . Moreover, in the proposed system, R1 and R2 are deployed symmetri-

cally such that dSR1
= dR2D

 anddSR2
= dR1D

 , then we havedSR1
dR1D

= dSR2
dR2D

= dt . By 
assuming that the perfect knowledge of CSI  at each RIS [13], i.e., �1.i = �1,i + �1,i and 
�2,i = �2,i + �2,i then Eq. (3) is modified as Eq. (4).

Here ,C = A + B,A =
∑N

i=1
�1,i�1,i,B =

∑N

i=1
�2,i�2,i and � =

P

�2
D
dtol

�  stands for average 
SNR.

3  Performance Analysis

This section focuses on deriving mathematical expressions for the symbol error rate (SER) 
and outage probability (OP) of the proposed system. The analysis considers independ-
ent and identical fading for each communication channel. It begins with assumption of 
a Rician1 distribution for all communication links, and subsequently adjusts the derived 
expressions to accommodate the Rayleigh2 fading scenario.

3.1  SER analysis

In preparation for the analysis of SER of the proposed system, it is essential to compute the 
statistical parameters of received SNR for Rician and Rayleigh fading scenarios. In Eq. (4), 
�1,i and �1,i follows Rician distribution with mean and variance given by 
E[a(1,i)] = E[( �)(1,i)]=v(p∕2)s(L)(1∕2)(−v

2∕(2s2)) and 

V[a(1,i)] = V
[
(�)2

(1,i)

]
= v2 + 2s2 − p∕2s2(L(1∕2)(−v

2∕(2s2)))

Where K =
Powerinlineofsight(LoS)component

Powerinnon−LoS(NLoS)component
=

v2

2�2
 denotes the shape parameter and the statis-

tical parameters of product of �1,i, �1,i and all other random variables are obtained in 
Table 2.

The mean and variance of the product of independent and identical distributed Rican 
random variables�1,i , �1,i and�2,i , �2,i follows Rician distribution with statistical properties 
as shown in Table 2. With the assumption ofNd ≫ 1,A , B follows Gaussian distribution as 
per central limit theorem and C = A + B , also follows Gaussian with statistical mean and 
variance as shown in Table 2. Then � , the square Gaussian random variableC , follows a 
non-central chi-square distribution with one degree of freedom (DoF) [21] and the MGF of 
� is given as [22],

(4)� =
P
�∑Nd

i=1
�1,i�1,i +

∑Nd

i=1
�2,i�2,i

�2

�2
D
dtol

�
= (A + B)2� = C2� .

1 Rician fading will be suitable for the scenarios with strong LoS Path such as indoor area.
2 Rayleigh fading will be suitable for the scenarios with no LoS Path and non-LoS paths such as outdoor 
environment.
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In Eq.  (5), t =
√
�[C]2 = Nd��

2
�
L1∕2

�
−

v2

2�2

��2

 denotes the non-centrality parameter 
of the NCCS. Now the MGF of received SNR for the proposed system is written as,

From (5), the average SER of M-ary phase shift keying (MPSK) signaling is calculated 
as [22]:

By substituting Eq. (6) in Eq. (7) the closed form expression for the for average SER of 
MPSK can be given as

(5)M� (s) =

(
1

1 − 2s� [C]�

) DoF

2

× exp

(
st2

1 − 2s� [C]�

)
,

(6)

M� (s) =

⎛⎜⎜⎜⎜⎝

1

1 − s

�
Ndv

2 + 8Nd�
2 − Nd�

2�4

�
L1∕2

�
−

v2

2�2

��4
�
�

⎞⎟⎟⎟⎟⎠

1

2

× exp

⎛
⎜⎜⎜⎜⎝

sNd
2�2�4

�
L1∕2

�
−

v2

2�2

��4

�

1 − s

�
Ndv

2 + 8Nd�
2 − Nd�

2�4

�
L1∕2

�
−

v2

2�2

��4
�
�

⎞⎟⎟⎟⎟⎠

(7)Pe =
1

�∫
(M−1)�∕M

0

M�

(
−sin2(�∕M)

sin2�

)
d�

Table 2  The derivation of statistical Parameters of random variables A,B and C

a We assume all the channels are follows the same distribution with identical statistical parameters.
b If Xand Y  are independent random variables, then �[XY] = �[X]�[Y] and 
� [XY] = �[X]

2
� [Y] + �[Y]

2
� [X] + � [X]� [Y]

Statistical parameter Rician Rayleigh i.e.,K = 0

�
[
�1,i

]
= �

[
�1,i

]
= �

[
�2,i

]
= �

[
�2,i

]a √
�

2
�L1∕2

(
−

v2

2�2

) √
�

2

�
[
�1,i

]
= �

[
�1,i

]
= �

[
�2,i

]
= �

[
�2,i

]
v2 + 2�2 −

�

2
�2

(
L1∕2

(
−

v2

2�2

))2 1 −
�

4

�
[
�1,i�1,i

]
= �

[
�2,i�2,i

]
�

2
�2

(
L1∕2

(
−

v2

2�2

))2 �

4

�
[
�1,i �1,i

]
= �

[
�2,i �2,i

]b
2�2 −

�2

4
�4

(
L1∕2

(
−

v2

2�2

))4

+ v2 1 −
�2

16

�[A] = �[B] Nd�

2
�2

(
L1∕2

(
−

v2

2�2

))2 Nd�

4

� [A] = � [B]
Nd

[
2�2 −

�2

4
�4

(
L1∕2

(
−

v2

2�2

))4
]
+ Ndv

2 Nd

(
1 −

�2

16

)

�[C] = �[A] + �[B]
Nd��

2

(
L1∕2

(
−

v2

2�2

))2 Nd�

2

� [C] = � [A] + � [B]
2Nd

[
2�2 −

�2

4
�4

(
L1∕2

(
−

v2

2�2

))4
]
+ 2Ndv

2 2Nd

(
1 −

�2

16

)
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By substituting  � = (M − 1)�∕M in Eq. (8), we will get the upper bound of Pe as follows:

for binary PSK (BPSK), i.e. for M = 2, Eq. (8) and Eq. (9) are simplified to Eq. (10) and 
Eq. (11) which will give expressions to evaluate the average SER and upper bound of SER 
respectively.

By substituting  � = 1∕2 in Eq. (10), we will get the upper bound of Pe for BPSK signaling 
scheme as follows:

(8)

Pe =
1

� ∫
(M−1)�∕M

0

⎛
⎜⎜⎜⎜⎝

1

1 +
sin2(�∕M)

�
Ndv

2+8Nd�
2−Nd�

2�4

�
L1∕2

�
−

v2

2�2

��4
�
�

sin2�

⎞
⎟⎟⎟⎟⎠

1

2

× exp

⎛
⎜⎜⎜⎜⎝

−sin2(�∕M)Nd
2�2�4

�
L1∕2

�
−

v2

2�2

��4

�

sin2�

1 +
sin2(�∕M)

�
Ndv

2+8Nd�
2−Nd�

2�4

�
L1∕2

�
−

v2

2�2

��4
�
�

sin2�

⎞
⎟⎟⎟⎟⎠
d�.

(9)

Pe ≤ (M − 1)

M

⎛⎜⎜⎜⎝
1

1 +
sin2(�∕M)NsΩ

4
� ((Γ(1+2∕�))2−Γ((1+1∕�))4)�
sin2((M−1)�∕M)

⎞⎟⎟⎟⎠

1

2

× exp

⎛⎜⎜⎜⎜⎝

−sin2(�∕M)Nd
2�2�4

�
L1∕2

�
−

v2

2�2

��4

�

sin2((M−1)�∕M)

1 +
sin2(�∕M)

�
Ndv

2+8Nd�
2−Nd�

2�2

�
L1∕2

�
−

v2

2�2

��4
�
�

sin2((M−1)�∕M)

⎞⎟⎟⎟⎟⎠
,

(10)

Pe =
1

� ∫
�∕2

0

⎛⎜⎜⎜⎜⎝

1

1 +

�
Ndv

2+8Nd�
2−Nd�

2�4

�
L1∕2

�
−

v2

2�2

��4
�
�

sin2�

⎞⎟⎟⎟⎟⎠

1

2

× exp

⎛⎜⎜⎜⎜⎝

−Nd
2�2�4

�
L1∕2

�
−

v2

2�2

��4

�

sin2�

1 +

�
Ndv

2+8Nd�
2−Nd�

2�4

�
L1∕2

�
−

v2

2�2

��4
�
�

sin2�

⎞
⎟⎟⎟⎟⎠
d�,
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For the Rayleigh fading scenario one can get the expressions for SER by simply substitut-
ing v2 = 0 , �2 =

1

2
 in Eq. (7). For an instance the expression to evaluate average SER of M-ary 

phase shift keying (PSK) signaling is given as,

3.2  Outage Probability Analysis:

The probability that the received SNR is less than a specified threshold �th is known as outage. 
As we mentioned, in previous section, � follows a NCCS distribution and hence outage prob-
ability can be expressed as [15]:

The closed form expression for the outage probability for a threshold �th in terms of 
Q-function3 with integer order of 1 is given as [27],

(11)

Pe ≤ 1

2

⎛⎜⎜⎜⎜⎝

1

1 +

�
Ndv

2 + 8Nd�
2 − Nd�

2�4

�
L1∕2

�
−

v2

2�2

��4
�
�

⎞⎟⎟⎟⎟⎠

1

2

× exp

⎛⎜⎜⎜⎜⎝

−Nd
2�2�4

�
L1∕2

�
−

v2

2�2

��4

�

1 +

�
Ndv

2 + 8Nd�
2 − Nd�

2�2

�
L1∕2

�
−

v2

2�2

��4
�
�

⎞⎟⎟⎟⎟⎠
.

(12)Pe =
1

� ∫
(M−1)�∕M

0

⎛
⎜⎜⎜⎝

1

1 +
sin2(�∕M)Nd(16−�2)�

4sin2�

⎞
⎟⎟⎟⎠

1

2

exp

⎛
⎜⎜⎜⎝

−
sin2(�∕M)Nd

2�2�

4sin2�

1 +
sin2(�∕M)Nd(16−�2)�

4sin2�

⎞
⎟⎟⎟⎠
d�

(13)Pout = Pr(γ < 𝛾th) = 1 − Q 1

2

(√
t2

� [C]
,

√
𝛾th

𝛾� [C]

)

Fig. 2  Simulation Setup: a Single RIS b Double RIS

3 MATLAB lacks direct support for special functions with fractional orders like the Marcum Q function.
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Substituting the corresponding values of � [C] , t gives the closed-form expressions to 
evaluate outage probability.

(14)Pout = 1 −

(
Q

(√
�th

�� [C]
−

√
t2

� [C]

)
+

(√
�th

�� [C]
+

√
t2

� [C]

))

Fig. 3  Bit error rate of single RIS 
and proposed double RIS system 
versus P for varying N and K = 0  
assuming BPSK

Fig. 4  BER performance of 
proposed double RIS systems 
versus P with varying K assum-
ing BPSK
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4  Simulation Results

In this section, we present theoretical and simulation results of SER and outage probability 
for the single and proposed double RIS system with same number of RIS element in both 
systems i.e., N = N1 + N2 to validate the analytical framework. The path-loss at a reference 
distance of one meter for a carrier frequency of 3 GHz is, � = (�∕4�)2 = −42 dB and the 
noise power at destination is set as �2

D
=−94 dBm, and the path loss exponent for all the 

link is set to 3. The values of Pi,P
S
c
 and PD

c
 are set as 7.8, 10 and 10 milliwatt respectively 

[12]. The simulation setup for the single RIS and proposed system are shown in Fig.  2. 
In both systems, source and destination are separated by d = 100 metre apart and h = 5 
meter. In the single RIS, d1 is fixed at 50 metre and for proposed system, d1, d2 are fixed as  
d1 = d2 = 5 metre in such a way that dSR1

dR1D
= dSR2

dR2D
 . The Path loss exponent set � = 3 

and �th = 10dB[14] and system operates at a bandwidth (BW) of 10 M Hz.
In Fig. 3, we plot BER of the proposed system under BPSK signalling scheme while 

varying the parameter N and fixed Rician K factor (K = 0) using Eq. (10). Where the solid 
curves and markers represents the theoretical and simulations respectively. The results 
unequivocally demonstrate a substantial enhancement in error performance compared to a 
single RIS system. For example, achieving a target BER of  10–6 with a single RIS system 
demands transmission powers (P) of approximately 47 dBm, 42 dBm, and 36 dBm for 
corresponding values of N set at 64, 128, and 256. In contrast, in the double RIS system, 
the same BER of  10–6 attainable with lower transmission powers of 35 dBm, 28 dBm, 
and 22 dBm for N values of 64, 128, and 256, respectively. This observation underscores 
the superiority of the proposed system in achieving superior BER performance compared 

Fig. 5  Symbol error rate of proposed double RIS systems versus P for different modulation order in M-ary 
PSK K = 1 , N = 128
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to the base line single RIS system, demanding significantly reduced transmission power. 
Moreover, the figure also confirms that the special case of Rician channel with K = 0 is 
equivalent to Rayleigh fading scenario.

In Fig. 4, we examine the influence of the Rician K factor on the BER performance of 
the proposed system. The simulations are performed with a fixed number of reflecting ele-
ments, N = 128, and �2 = 1∕2 . As the Rician K factor, representing the power in the LoS 

Fig. 6  Outage probability of single RIS and proposed double RIS systems versus P for varying , K = 0

Fig. 7  Outage probability of pro-
posed double RIS systems versus 
P for varying K , N = 128
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component, increases, the severity of fading diminishes, resulting in an enhancement of 
BER performance, as visually depicted in Fig. 5. The plotted results illustrate that, for a 
fixed K value, an incremental increase in the transmitted power corresponds to a gradual 
reduction in the BER. This observation aligns with the expected behavior, indicating that 
higher transmit power contributes to improved communication reliability, particularly in 
scenarios characterized by Rician fading.

Figure 5 illustrates the Symbol Error Rate (SER) of the proposed system as a func-
tion of P for different M-ary PSK signaling schemes, incorporating simulations with 
N = 128, K = 1 using Eq.  (10). The simulations are conducted with. The results dem-
onstrate that, with increasing modulation order (M), the SER performance deteriorates. 
This behavior aligns with the expectations observed in conventional wireless systems 
without RIS. In general, higher modulation orders entail a greater sensitivity to channel 
impairments, leading to increased symbol error rates.

In Fig. 6, we compare the outage probability of both systems with K = 0 , while vary-
ing the parameter N. It can be inferred from Fig. 6 that the theoretical results match with 
simulation counterparts. As anticipated, in both systems, there is a notable reduction 
in outage probability for a fixed N as P increases, we observe sharp decrease in outage 
probability. For example, for N = 128, in the single RIS system, the outage probability 
decreases by a factor of 10 as P transitions from 29 to 31 dBm, and by a factor of 100 
as P changes from 32 to 33 dBm. In the proposed system, under the same N , the outage 
probability decreases by a factor of 10 from 16 to 18 dBm and by a factor of 100 from 
20 to 21 dBm. The presented results underscore the efficiency of the proposed system, 
which exhibits a more pronounced reduction in outage probability for the same changes 
in transmitted power, particularly in comparison to the single RIS system. Moreover, in 
Fig. 6, K = 0 in a Rician channel mimics Rayleigh fading behaviour.

Figure 7 shows the impact of Rician K factor on the outage probability of proposes 
system for N = 128 and �2 = 1∕2 . Notably, as we maintain a fixed transmission power 
P , the outage probability consistently decreases with an escalation in the Rician K fac-
tor. This trend suggests that higher K values, indicative of a strong Line-of-Sight (LoS) 
component, improves the system’s resilience against fading conditions.

Table 3  Evaluation of GE

a Amount of transmit power is converted to linear scale while calculat-
ing the energy consumption gain.

N System Pa(dBm) to 
achieve a BER 
of  10–6

E(Joule) =
P+NPi+P

S
c
+PD

c

b×B

GE

64 Single RIS 47 5.063 ×  10–6 J 13.7
Double RIS 35 3.681 ×  10–7 J

128 Single RIS 42 1.686 ×  10–6 J 10.2
Double RIS 28 1.649 ×  10–7 J

256 Single RIS 36 5.997 ×  10–7 J 3.59
Double RIS 22 2.175 ×  10–7 J
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4.1  Analysis of Energy Consumption Gain ( G
E
):

Energy consumption gain ( GE ), serves as a valuable metric to assert the energy efficiency 
of the proposed system in comparison to a baseline system. In order to substantiate a claim 
of enhanced energy efficiency, GE should exceed one. The definition of GE , as outlined in 
reference [25], involves the ratio of energy consumed by the baseline system to achieve a 
target BER and the energy consumed by the proposed system to achieve the same BER. 
and expressed as follows:

The energy consumed by the system is calculated using the formula, Ptotal∕R [26]. In the 
context of an RIS-aided system, PTotal = P + NPi + PS

c
+ PD

c
 is the total amount of power 

consumed by the system to achieve a target BER, where R= b × B is the rate at which bits 
are transmitted, b is denoting the bits per symbol (for BPSK, b = 1 ) and B representing the 
system’s bandwidth.

Table 3, clearly highlights the enhanced energy efficiency of the proposed system com-
pared to the single RIS system across all values of N. However, as N increases, there is a 
noticeable decrease in GE . This decline is attributed to the concurrent rise in power con-
sumption ( NPi ) associated with the increasing number of reflecting elements.

5  Conclusion

In conclusion, this paper introduces and analyses the double RIS-assisted system. By 
strategically placing the first RIS  (R1) near the source and the second RIS  (R2) near the 
destination, both independently contribute to communication improvement, especially in 
scenarios without a direct line between the source and destination. The analysis incorpo-
rates moment generating function (MGF)-based symbol error rate (SER) evaluations for 
Rician and Rayleigh fading channels. A simplified closed-form expression for outage prob-
ability (OP) is derived using the Q-function. Through rigorous comparative evaluations, 
considering an equal number of RIS elements in single and double RIS systems, the pro-
posed approach demonstrates superior performance in terms of SER and OP, all validated 
through Monte Carlo simulations. Additionally, an in-depth exploration of energy con-
sumption gain reveals that the proposed system outperforms the single RIS system in terms 
of energy efficiency also.
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