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Abstract
Human vision cannot analyze the huge amount of information hidden in color images. 
Thus, amongst the research being developed currently, Color Image Segmentation (CIS) 
has become more vital. As each pixel in the image constitutes a different color complexion, 
which is tedious for estimating, CIS is a challenging process; also, it is a time-consum-
ing process. Hence, this work proposes novel thresholding utilizing the Chaotic Logistic 
Fertile Field optimization Algorithm (CLFFA) approach and segmentation utilizing the 
Radial Kernel Watershed Basis Segmentation (RKWBS) technique for reducing time con-
sumption. Utilizing the Contrast Limited Recursive Least Square Histogram Equalization 
(CLRLSHE) algorithm, the input image’s contrast is enriched initially. Then, the Sobel 
edge detection detects the edges from the preprocessed image. Also, the CLFFA algo-
rithm finds the optimal threshold value. After that, by thresholding the edge detected image 
grounded on RKWBS, the image is segmented quickly. Lastly, for removing the unwanted 
information in the segmented image, morphological operations are executed in it. Experi-
ments were executed and analogized with the prevailing frameworks for proving the pro-
posed mechanism’s efficacy. The outcomes proved the efficacy regarding segmentation 
accuracy, computational time, et cetera.

Keywords Contrast Limited Recursive Least Square Histogram Equalization 
(CLRLSHE) · Chaotic Logistics Fertile Field Algorithm (CLFFA) · Radial Kernel 
Watershed Basis Segmentation (RKWBS) · Color Image Segmentation · Sobel edge 
detection

1 Introduction

As the computational complexity is caused by the non-linear operations that are involved 
in mapping the colors betwixt spaces, image segmentation by color features and textures 
has become a relatively, recent topic that has been addressed [12]. Segmentation, which 
is a low-level operation for analyzing the given color image spontaneously, is a significant 
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technique in digital image processing along with computer vision [14]. Image segmentation 
not only distinguishes interesting objects as of the background but also identifies them in 
an image [18]. Grouping the pixels in an image, which are of the same values, into several 
meaningful homogeneous regions is done in the image segmentation process [10]. To 
segment the image, numerous prevailing works have been developed. The region-based 
system, threshold-based approach, edge-based framework, neural network-based model, et 
cetera are some of the popular researches [15]. In edge detection-centric segmentation, the 
pixels present on the edge of an image are founded. Here, the segmentation boundary is 
generally identified via high gray gradient locations [6]. Sobel operator, canny, Laplace 
operator, fuzzy logic, and so on are some of the edge detecting tools. The regions are 
grown corresponding to the neighbouring pixels’ similarity with the seed pixel in region-
based segmentation. Some region-based segmentation techniques are watershed algorithm, 
split and merge algorithm, region growing system, and level set algorithm. For segmenting 
the image in neural network-centric techniques, the neurons in the neural networks are 
wielded.

The most popular image segmentation processing is grounded on thresholding-centered 
methodologies. Selecting a set of TVs utilizing several characteristics defined from images 
is involved in thresholding techniques [21]. Global thresholding, local thresholding, and 
adaptive thresholding are the three classifications of thresholding. By weighing the his-
togram intensity and computing the neighbouring pixels’ intensity, correspondingly, the 
threshold in global thresholding and adaptive thresholding can be computed. When more 
than one TV is required to segment illuminated images, the local threshold is wielded [19]. 
The techniques for finding the threshold in segmentation are grounded on entropy function 
or optimization frameworks. Otsu, Tsallis, Masi’s, and Kapur’s Entropy (KE) functions are 
the entropy-based approaches. Particle Swarm Optimization (PSO), Spider Monkey Opti-
mization (SMO), Differential Evolution (DE), Grey Wolf Optimization (GWO), et cetera 
are several optimization-centered models [8]. But, after a certain limit, these approaches 
have constraints; thus, an enhanced technique is required for the CIS. Superior outcomes 
will be attained at the segmented output image when more information about the color 
image is given [5]. Thus, for enriching the accuracy in image segmentation and select-
ing the optimal threshold, a proper technique is required by the system. Therefore, a novel 
methodology for CIS is proposed grounded on CLFFA optimization and RKWBS segmen-
tation approaches.

1.1  Problem Definition

Certain negative outcomes are still required to be resolved although various methodologies 
have been developed for CIS grounded on heuristic algorithms. Some of such outcomes are 
given further,

• In the field of computer vision together with image processing, image segmentation 
remains challenging. Since the Region of Interest (RoI) varies for applications and the 
amount of extraction of RoI is tedious, there is no common approach to segment the 
images.

• The variation in color along with texture is dominant in color images actually. Thus, 
for segmenting the image into meaningful regions in a fast, robust, accurate, along with 
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automated way utilizing the image information like texture, color, together with inten-
sity, an efficient image segmentation model is significant.

• When the number of thresholds is higher and color images that enclose more informa-
tion are even worse, Multilevel Thresholding (MT) becomes more complicated together 
with time-consuming.

• As the color images comprise ‘3’ components (Blue, Green, and Red) and every single 
pixel embeds dissimilar color components, the CIS becomes more complex along with 
challenging than the gray-scale images. Moreover, when the threshold level rises, the 
computational complexity enhances exponentially.

• Also, color satellite images contain fuzzy boundaries, complex backgrounds, along 
with poor resolution, which is tedious when compared with natural color images.

• To resolve the entire optimization issues, no approach is available. It recommends that 
an optimization framework may perform well for one sort of issue; also, it does not 
perform well to resolve various sorts of issues. Thus, creating and modifying novel 
optimization approaches is necessary.

• Pixel-centric segmentation frameworks are effective only for high-resolution images. It 
did not provide better outcomes for the low-resolution image.

To resolve these issues, the proposed model aims in developing an efficient technique 
for CIS grounded on an optimal TV.

The balance part of the paper is arranged as: the related works are explicated in 
Sect. 1.2; the proposed methodology is described in Sect. 2; the results along with discus-
sions are elucidated in Sect. 3; finally, the paper is winded up with future work in Sect. 4.

1.2  Related Works

Zou et al. [25] presented a framework grounded on Shannon entropy difference along with 
Dynamic synergic entropy for automatic thresholding of image. The final segmentation 
threshold taken was the threshold linked with the maximum dynamic synergic entropy. The 
model had enhanced segmentation accuracy together with flexible adaptivity of selecting 
threshold. But, the guiding edge image was not computed by the model; also, the image 
was made inferior to other compared techniques owing to the changed contour.

Li et  al. [16] developed a strategy for CIS with multi-level thresholds. The technique 
was grounded on the Logistic model and Chaotic map-centric Barnacles Mating Optimizer 
(LCBMO), which produced the high-quality optimum outcome. By the implementation of 
Masi entropy as the objective function, the optimal threshold was selected. The model’s 
significance was validated by the Wilcoxon rank-sum test along with the Friedman test. 
However, the computational complexity made the segmentation process slower.

Chouksey and Jha [7] introduced the multiverse optimization for CIS grounded on Vari-
ational Mode Decomposition (VMD). Grounded on Tsallis along with KE functions that 
developed the image segmentation, the optimal threshold was determined. The outcomes 
proved the model’s reliability regarding various computational parameters. However, 
owing to the stochastic characteristics of the meta-heuristic algorithm, the performance 
was not well at times.

Dinkar et al. [9] proffered a multilevel threshold image segmentation grounded on the 
Opposition-based Laplacian Equilibrium Optimizer (OB-L-EO). With the hybridization 
of the changing acceleration coefficient, the Opposition Based Learning (OBL) technique 
was applied. Otsu’s interclass variance function, which achieved optimal TVs for image 
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segmentation, was included. Grounded on the mean value of interclass variance together 
with Peak Signal-to-Noise Ratio (PSNR), the OB-L-EO algorithm displayed superiority 
over the previous approaches. But, the model could not segment the highly illuminated 
images accurately.

Kandhway and Bhandari [13] established Spatial context-centric optimal multilevel 
energy curve thresholding for image segmentation. Here, with Otsu threshold criteria, the 
Cuckoo Search (CS) system was amalgamated, which executed MT over the energy curve. 
The numerical and visual analysis outcomes exhibited that the model was more efficient 
together with accurate when analogized with other techniques for color image MT. How-
ever, the salt and pepper noise present in the image could not be removed by the approach 
that results in reducing the output image quality.

Abdel-Basset et al. [1] propounded an Equilibrium Optimization Algorithm (EOA) for 
MT image segmentation issues. Owing to the capability in addressing the huge-scale issue 
with higher efficacy, the approach was enhanced on a meta-heuristic equilibrium system. 
On the Berkeley Segmentation Dataset (BSD), the experiments were executed,also, it was 
analogized with the seven conventional mechanisms. Concerning the metrics utilized for 
estimating the segmented image quality, the EOA exhibited enhanced performance. But, 
in Standard values along with Central Processing Unit (CPU) time for the large threshold 
levels, the performance was poor for some frameworks.

Bhandari et al. [3] introduced an electromagnetism-like mechanism for efficient optimal 
MT of image. Here, for MT-centric CIS, Renyi’s entropy was amalgamated with Electro-
magnetism-like Mechanism Optimization (EMO). For validating the model’s efficiency, 
experiments were conducted on the standard daily-life color images. But, when analogized 
with the Bat Optimization Algorithm (BOA), the Mean Square Error of the EMO was high. 
This affected the segmented image’s quality.

Mishra and Panda [17] established a framework for CIS by the usage of Entropy-Based 
Thresholds. The optimal thresholds were computed with the aid of the BOA, which seg-
mented the image. By the amalgamation of entropy-centric objective functions with BOA, 
the optimal TVs were attained. The superior performance of the technique on PSNR along 
with CPU time proved the CIS’s efficacy. However, the precision of optimization was 
lower; hence, the results were affected.

Xu et al. [23] developed a mechanism for Unsupervised CIS with a Color-alone feature 
centered on RG Pulse Coupled Neural Network (CRG-PCNN). The color information was 
entrenched into the PCNN’s linking part by a Linking Control Unit (LCN) for effective 
image segmentation. The experimental analysis was executed on the BSD, which exhibited 
that the system’s segmentation accuracy was higher when analogized with the other tech-
niques. But, when analogized with the RG-PCNN and PCNN frameworks, the technique’s 
computational cost was high, which made the process slow.

Feng et al. [11] presented a CIS framework grounded on region salient color along with 
Fuzzy C-Means (FCM) approach. Convex hull theory grounded on Harris corner detection 
was utilized for identifying the objects in the image. For the segmentation of the back-
ground and the object, the FCM approach along with the noise correction technique was 
wielded on the object along with the background. The performance evaluation displayed 
that the system had high segmentation accuracy and lower computational costs. The mod-
el’s accuracy would be affected when changes occur in the color region space owing to the 
hue coordinate sensitivity.

Xing and Jia [22] introduced an approach for multilevel CIS. Here, the segmentation 
procedure was grounded on the Gray Level Co-occurrence Matrix (GLCM); also, for 
the optimization of GLCM, the Levi flight Salp Swarm Algorithm (LSSA) was utilized. 
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Then, the Levy flight strategy enhanced the optimization of the SSA approach. The 
segmentation quality was evaluated through the experiments. Also, the GLCM-LSSA 
approach’s segmentation capability was enhanced than other mechanisms. But, the 
GLCM could not identify the texture of the object.

Bhandari et al. [2] propounded an image segmentation model grounded on the mul-
tilevel three-dimensional (3D) Otsu function. For the simplification of the exhaustive 
search for the optimal threshold vector in 3D space, the Cuttlefish Algorithm (CFA)-
centered 3D Otsu thresholding technique was enforced by the model. The quantita-
tive and visual analyses were performed and established that the suggested algorithm 
outperformed the conventional segmentation algorithms. The quantitative and visual 
analyses were performed and established that the mechanism was superior to the other 
conventional segmentation models. However, the time complexity issue caused the 
model to perform slower, which is the limitation here.

Shubham and Bhandari [20] propounded a system for color image MT for natural 
along with satellite images centered on various entropies. Grounded on Masi entropy 
that handled the additive/non-extensive information concurrently, the TV was com-
puted. When analogized with Renyi’s, Tsallis, along with KE functions, the experi-
ments conducted on the BSD showed better accuracy of color appearance after the 
presented model’s segmentation. However, fuzzy boundaries, complex background, 
together with the poor resolution were included in the color satellite images. This was 
tedious for accurate segmentation.

Zhao et  al. [24] established a system for CIS centered on hybrid schemes. Here, 
for the optimization of fuzzifiers and cluster centers alternatively, the Alternate PSO-
centric adaptive Interval Type-2 Intuitionistic FCM clustering (A-PSO-IT2IFCM) 
approach was utilized. Experiments on Berkeley, as well as UC Merced Land Use 
datasets, exhibited that better segmentation outcomes were attained by the algorithm-
determined fuzzifiers and cluster centers. However, the solution quality of the optimi-
zation of cluster centers was not good, which affected the outcomes.

Borjigin and Sahoo [4] established a scheme for CIS centered on entropy along with 
a 2D histogram. For RGB color image, the threshold computation model was based on 
Gray Level & Local-Average histogram (GLLA) and Tsallis-Havrda-Charv´at entropy. 
By the updation of the PSO mechanism, the optimal TV was selected. The experi-
ments executed on the images of BSDS300 displayed better performance of the pre-
sented model than the compared schemes. But, the Global consistency error of the 
strategy was higher than the Shannon entropy, which affected the segmentation pro-
cess’s accuracy.

2  Proposed RKWBS Methodology for Image Segmentation

Since more information is provided by the color images than the gray images, one of 
the vital tasks in image processing is the CIS. But, the implementation of segmentation 
becomes a more complicated and time-consuming process when more thresholds 
are available. Thus, to resolve these issues, novel CLFFA and RKWBS techniques 
are proposed for identifying an optimal threshold. Figure  1 depicts the proposed 
technique’s block representation.
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2.1  Input Image

From the Berkeley Segmentation image dataset, the input data is collected initially. The set 
of color images is enclosed by the dataset, which is indicated as,

where, Bs signifies the complete dataset and cn symbolizes the n number of color images in 
the dataset.

2.2  Preprocessing

The approach utilized for cleaning the data of the input color image ci to attain more 
precise results is named preprocessing. By enriching the image’s contrast utilizing the 
CLRLSHE algorithm, the input image is preprocessed in the proposed approach. Here, for 
enriching the image appearance together with the CIS’s outcomes, the contrast is enriched. 
The prevailing Contrast Limited Adaptive Histogram Equalization (CLAHE) technique has 
the difficulty in selecting the clip limit of the image. The modified CLAHE is termed the 

(1)Bs =
{
c1, c2, ..., cn

}
or ci, i = 1, 2, ..., n

Fig. 1  Block diagram of the proposed color image segmentation process
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CLRLSHE technique. The image quality is decreased by the improper selection of param-
eters. Thus, to overcome the limitation of the CLAHE algorithm, the clip limit is selected 
centered on the Recursive Least Square (RLS) of an image. The CLRLSHE process is 
examined further,

The input color image ci is divided into several overlapping regions initially. After that, 
the histogram of each region is measured as,

wherein, the number of pixels present in x and y dimensions are denoted as Hx and Hy , the 
average number of pixels is indicated as Havg , and the gray level regions are exhibited as 
HG . Next, the contrast limit Hl was computed utilizing the clip limit value as,

Here, Hclip signifies the clip limit value, and in the proposed system, Hclip is selected 
grounded on the RLS of the given image as follows,

where, the variable length of each region is depicted as j , the weighting factor is signified 
as � , and the estimated least squares at the time m are specified as y(m) . If the numbers 
of pixels are larger than the clip limit value, then the given pixels are clipped. Thus, a 
contrast-enhanced image �c is attained.

2.3  Gradient Calculation

Moreover, from the contrast-enhanced image, �c gradient magnitudes are computed 
grounded on Sobel edge masks. The regions of high special frequency are highlighted 
by the Sobel filter. This defines the object’s edges present in the image. To highlight the 
changes in the horizontal and vertical orientations, the Sobel filter utilizes a pair of kernels. 
The gradient approximations are given by the kernels convolved with the input image. The 
gradient magnitude ||�c|| and the angle of orientation (�) of the edge are mathematically 
represented as,

where, the gradient’s measurement in the horizontal and vertical orientation is denoted as 
�ci , �ck , correspondingly. Therefore, the object’s edges present in the image are detected and 
the output image is epitomized as �e.

(2)Havg =
Hx ⋅ Hy

HG

(3)Hclip = Hl × Havg

(4)Hclip(j) =

j∑
m=1

�(j,m).(y(m))2

(5)||�c|| =
((

�ci

)2
+
(
�ck

)2)1∕2

(6)� = cos−1

⎛
⎜⎜⎜⎝

�ci��
�ci

�2
+
�
�ck

�2

⎞⎟⎟⎟⎠
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2.4  Optimum Threshold Selection

By utilizing the CLFFA approach, the optimum threshold is selected as of �c in the pro-
posed mechanism’s third phase. The conventional Fertile Field optimization Algorithm 
(FFA) is grounded on the dispersal of seeds, natural factors like the wind and animals, 
and the plant’s growth in fertile fields. In the field, finding the most fertile point is equal 
to finding the optimal TV. But, FFA suffers from the problems of slow and premature con-
vergence. To resolve this issue, the Chaotic Logistic operation is adapted for updating the 
wind dispersion. Thus, the local optimum problem and slow or premature convergence are 
efficiently avoided by the proposed CLFFA technique. Moreover, the model’s global detec-
tion ability is also enhanced. The steps involved in CLFFA are as follows.

Initialization All the parameters like initial seed population L∞ (Here the population of 
seeds is the pixels ra present in the image �c ), number of plants N , number of plants that 
survived in all iterations as , and count of generated seeds in each cycle g are initialized. 
Then, the random distribution of seeds is given as,

where, Δ() denotes the random seed distribution function, p() denotes the probability of 
distribution of seeds, d denotes the integral factor, and � denotes the random selection of 
seeds.

Fertility evaluation Here, the best seeds, which fell on the most fertile land, are selected. 
The seeds fall in the fertile region likely to grow, mature, and reproduce. Thus, finding the 
region with a more fertile point is equivalent to attaining the optimal value for threshold-
ing. The segmentation accuracy is considered the seeds’ fitness here. The fertility point is 
estimated utilizing the objective function,

where, the best of the distributed seeds, which fell on the fertile land and survived, are 
exemplified as Fbest() . The seeds are selected if Fbest

(
Δ
(
ra
)) ≥ TV  , where TV  is the thresh-

old value. The sorted seeds �s that is, the selected thresholds are denoted as,

wherein, so specify the seeds in the fertile points and capable of generating the next genera-
tion. Other seeds are discarded from the process.

Seed Generation The seeds that fell on the most fertile land have become mature and 
ready for pollination. When compared with the plants grown in low fertile regions, the 
matured plant grown in the most fertile land has more seeds. Thus, the most fertile plant 
that is, the optimal TV is measured as,

wherein, R() indicates the fertility rate value of a plant-centered on the number of seeds 
produced, the attained value is regarded as the optimal TV � . Therefore, W specifies the 
most fertile plant with more seeds attained. However, if the selected plant does not reach 
the TV, the seeds generated in the fertile plants are considered for further process as,

(7)Δ
(
ra
)
=

L∞

∫
�=1

p
(
ra�

)
dra

(8)Fbest

(
Δ
(
ra
))

= Fbest

{
Δ
(
r1
)
,Δ

(
r2
)
, ...,Δ

(
rq
)}

(9)�s =
{
s1, s2, ..., so

}
or s

�
, � = 1, 2, ..., o

(10)R
(
s
�

)
= arg max

(
s
�

)
= � , s

�
∈ �s
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Here, the seeds generated on the most fertile plant W is indicated as �z . After that, the 
seeds �z enter the life cycle.

Dispersion by external forces: The seeds �z may fall near the most fertile plant or 
carry away by external forces like wind or birds. The seeds’ distribution away as of the 
plant is represented as,

where, the count of dispersed seeds in distance d as of the mother plant is indicated as �z , 
the seed dispersed by the wind to the position e is illustrated as �e, and the seeds dispersed 
by the birds along with animals are depicted as � . The wind-dispersed seeds are computed 
by chaotic logistics represented as,

where, the displaced seed position is specified as �e+1 , the constant term value is indicated 
as ℜ . After that, the life cycle continues by selecting the most fertile plant, which is grown 
on the land with the most fertility point. Lastly, the optimal TV � is attained after a number 
of life cycles. The pseudocode for the proposed CLFFA system is given as,

(11)W =
{
�1,�2, ...,�u

}
or �z, z = 1, 2, ..., u

(12)ln
(
Δra

)
= � − �ed

(13)�e =
�e+1

ℜ
(
1 − �e

)
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2.5  Color Image Segmentation

Here, utilizing the novel RKWBS algorithm, the TV is matched with the Pixel Value (PV) 
of the edge detected image for the detection of only the foreground. Watershed transform 
is one of the gradient-centric approaches. The object border in the image is highlighted 
as dams and catchment basins are the segmented areas. But, unwanted contours like over-
segmentation are added by the topological gradient. This can reduce the segmentation 
accuracy. To resolve this issue, the radial basis kernel function is wielded for measuring 
the distance transform instead of the Euclidean distance. The RKWBS process is given as 
follows,

Utilizing the distance transform, the segmentation grounded on the watershed system is 
measured. For image segmentation, the distance transform is amalgamated with the water-
shed transform. Here, to calculate the color similarity of the 2 regions, the distance trans-
form is computed centered on the radial kernel function. The watersheds in the two regions 
merged are grounded on the equation,

where, the kernel function is indicated as �() , � signifies the variance, which is a constant 
value, ‖‖�u − �u+1

‖‖2 represents the distance betwixt the seed color pixels and the neighbor-
ing pixels corresponding to it. Here, grounded on the optimal TV, the seed PV is selected. 
The two regions are merged otherwise not merged if the TV � = �u . Here, the distance is 
the similarity to PVs. More similarity is attained if the distance is less.

The distance transformed image’s complement is taken so that the light pixels present in 
the image display higher elevation and the dark pixels display lower elevation. The inverted 
distance transformed image is denoted as,

where, the output image after complementing the PVs is indicated as � . Then, to the seg-
mentation region, the watershed is applied. Therefore, the PVs other than the pixels in the 
segmented region are converted to 0, and the final watershed (i.e., segmented) is illustrated 
as,

where, the segmented image is specified as � , the merged region formed by the watershed 
transform is indicated as shed(�) . Hence, by utilizing the proposed RWKBS algorithm, the 
segmented image is attained. The pseudocode for the proposed RKWBS system is given 
below,

(14)�
�
�u, �u+1

�
= e

�
−
‖�u−�u+1‖2

2�2

�

(15)� = −
[
�
(
�u, �u+1

)]

(16)� = shed(�)
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2.6  Morphological Processing

By morphological operations like opening, erosion, reconstruction, closing, and dilation 
processes, the unwanted flaws present in the segmented image are mitigated. A small tem-
plate called Structuring Element (SE) is utilized by the morphology process. This is analo-
gized with the corresponding neighbour pixels in all locations of the image. Some morpho-
logical operations check whether the SE fits in the neighbourhood, and other operations 
check whether SE intersects the segmented image.

Opening For eliminating the unwanted small objects in the image, the opening morpho-
logical operation is executed. Moreover, it preserves the size and shape of bigger objects 
present in the image. An opening operation is described as the erosion operation led by the 
dilation operation. The opening operation of the image � by SE M is illustrated as,

where, the opening operator is indicated as ◦ , the dilation and erosion operations are speci-
fied as ⊕,⊗ , correspondingly. Thus, the obtained image is signified as E.

Erosion By implementing the erosion process, the segmented image’s boundary E is 
computed. The SE M is eroded with the image E as,

(17)𝜀◦M = (𝜀 ⊕ M)⊗M
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Here, the output binary image produced by the erosion process is specified as bimage . 
The gaps and holes betwixt the pixels are increased and the minute objects are disposed of 
owing to the erosion process.

Reconstruction Grounded on morphological dilation and marker image, the edge con-
tour of the image is preserved in the reconstruction process. The process of joining pixels 
continues till the value change in the image is stopped here. The reconstruction operation 
is given as,

where, the morphologically reconstructed image is exhibited as Γ , the reconstruction oper-
ation is specified as ∪ , and � symbolizes the marker image, which is taken by reducing the 
constant PVs of the image bimage.

(18)(E⊕M) = bimage

(19)Γ =
[
bimage ⊗M

]
∪ 𝜗

Fig. 2  Sample images outcome of the experimental analysis. (a) Input images. (b) Preprocessed images 
using CLRLSHE. (c) Sobel edge detected images. (d) Segmented images using the RKWBS algorithm. (e) 
Output images after morphological operations
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Closing The closing process is adverse to the opening process. For enhancing the color 
of the border of the segmented image and lightening the background present betwixt the 
segmented images, the closing operation is performed. The closing process is also the 
amalgamation of dilation and erosion operations and is epitomized as,

where, the closing operator is indicated as ∙ , which reduces the small holes present in the 
image. Therefore, the output image attained after the closing operation is signified as �.

Dilation After the erosion process, dilation is performed to fill the gaps and holes, and 
thicken the lines. The dilation procedure applied to the image bimage is,

(20)Γ ∙M = (Γ⊗M)⊕M

Fig. 3  FNR and FPR analysis for the proposed RKWBS algorithm

Fig. 4  MCC and NPV metrics analysis
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Here, the dilated output image is specified as Φimage . Thus, the gaps betwixt the pixels 
are intersected grounded on the dilation procedure. Therefore, the segmented output image 
is attained for the given input image centered on the RKWBS system.

3  Results and Discussion

The proposed CIS approach’s performance is evaluated in this part. In the working 
platform of PYTHON, the experiments were executed. For the processing of the proposed 
mechanism, the data is gathered from the Berkeley Segmentation Dataset (BSD300). The 
CIS utilizing the BSD300 is displayed further (Fig. 2).

3.1  Database Description

For testing the proposed CIS technique’s efficiency, the Berkeley Segmentation Dataset 
(BSD300) is gathered from openly available sources. 200 test images and 400 training 

(21)𝜒 ⊗M = Φimage

Table 1  Comparative analysis between the proposed RKWBS and the prior techniques

Performance metrics Proposed RKWBS Watershed Levelset Region growing

Accuracy 97.7272 94.4444 93.421 91.8032
Precision 98.2142 96.1052 94.5346 93.6666
Recall 98.8023 94.5945 91.3043 90.6926
F-Measure 98.5074 93.3333 89.3617 87.8156
Specificity 98.8023 94.5945 91.3043 90.1012

Fig. 5  Accuracy analysis
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images are comprised in the dataset of which 100 test images and 200 training images are 
color images. The test images and training images are divided into 4 and 8 classes, corre-
spondingly with 25 images in each class.

3.2  Performance Analysis

Here, in comparison with the prevailing algorithms like Watershed, level set, and region 
growing, the proposed CIS algorithm RKWBS’s performance is evaluated regarding preci-
sion, f-measure, computation time, False Positive Rate (FPR), Negative Predictive Value 
(NPV), accuracy, recall, specificity, False Negative Rate (FNR), along with Mathew’s Cor-
relation Coefficient (MCC).

Regarding FNR and FPR, the experimental analysis of the proposed RKWBS system is 
analogized with the prevailing algorithms like a watershed, Level set, and region growing 

Fig. 6  Proposed RKWBS algorithm performance analysis based on Precision

Fig. 7  Recall metric analysis
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in Fig.  3. The rate at which the given model failed to predict the actual positive values 
and actual negative values accurately is termed FPR and FNR, respectively. A better 
model predicts only a few false output values. Here, the FNR achieved by the proposed 
RKWBS is 0.0019%, which is lower than the conventional models. Moreover, 0.0446% is 
the FPR value attained by the proposed framework, while the prevailing techniques attain 
the FPR of 0.0622%, 0.0736%, and 0.829 for the watershed, level set, and region growing 
approaches, correspondingly. Hence, it is concluded that the output’s accuracy will not be 
affected when utilizing the proposed RKWBS algorithm.

Figure 4 exhibits the experimental evaluation of the proposed and prevailing algorithms 
grounded on NPV and MCC. To verify whether the background is not segmented as an 
object, the NPR is computed. Thus, the prediction of NPV should be higher as possible. 
When analogized with the other conventional models, the NPV of the watershed algorithm 
is higher. But, the NPV of the proposed RKWBS is 0.49%, which is higher than the 
watershed technique. Moreover, the proposed system’s MCC is 5.8% higher than the 
Watershed model and 13.18% higher than the region growing system. Higher values 
are produced by the MCC only when the prediction outcomes are better. Therefore, 

Fig. 8  Graphical representation of F-Measure analysis

Table 2  Experimental analysis 
of the proposed segmentation 
technique in terms of time taken 
for the computation

Algorithms Computa-
tional time 
(ms)

Proposed RKWBS 54,345
Watershed 61,481
Levelset 74,234
Region Growing 84,746

Table 3  Comparing the accuracy 
performance of the proposed 
method with the prevailing works

Algorithms Accuracy (%)

Proposed RKWBS 97.7272
BGGMM + FS [10] 96.68
RSCFCM [20] 82.03
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in the foreground and background identification, the proposed model outperforms the 
conventional approaches (Table 1).

Concerning precision, f-measure, accuracy, recall, along with specificity, the 
proposed RKWBS’s performance assessment is analogized with the conventional 
frameworks. The outcomes display that when analogized with the other mechanisms, 
lower performance is shown by the region growing approach that is, the region growing 
algorithm attains a specificity of 90% (approximately), which is 8.8% lower than the 
proposed system. Thus, from the table, it is displayed that the proposed model is 
superior to the prevailing approaches.

In Fig.  5, the segmentation accuracy of the proposed RKWBS system is evaluated 
and analogized with the prevailing models. Without any modification, the watershed 
algorithm attains an accuracy of 94.44%, which is 1.09% higher than the Level 
set approach and 2.87% higher than the region growing algorithm. However, after 
modification (RKWBS), the watershed model attains an accuracy of 97.7272%, which 
is better than the watershed segmentation alone. Thus, it is proved that the segmentation 
outcomes are predicted accurately by the proposed RKWBS system.

In a segmented image, to verify how many objects are segmented correctly, 
precision is computed. Figure  6 evaluates the precision of the proposed segmentation 
in comparison with the proposed system before modification and the prevailing 
frameworks. The precision attained by the proposed RKWBS is 2.1% higher than the 
conventional watershed model and 3.89% higher than the level set approach. Thus, the 
proposed mechanism exhibits better performance when analogized with the prevailing 
systems.

Figure  7 exhibits the performance evaluation of the proposed RKWBS and the 
prevailing techniques grounded on recall. For identifying how many objects are segmented 
out corresponding to the obtained output image, the recall metric is evaluated. Here, poor 
performance is revealed by the RG model. This means in the segmented output image, 
more background is segmented along with the foreground. However, a higher value of 
98.80% is attained by the proposed RKWBS. This means that almost all of the foreground 
is segmented from the background.

Regarding F-Measure, the performance assessment of the proposed RKWBS and the 
conventional approaches are depicted in Fig. 8. A measure that combines precision and 
recall to attain the average rate of such measures is named F-measure. Better outcomes 
are given by a system that possesses a high f-measure value. The proposed RKWBS 
algorithm has the highest average rate of 98.50%, while the prevailing approaches 
attain 93.33%, 89.36%, and 87.81% for the watershed, Level set, and RG techniques, 
correspondingly, which are lower. Thus, the RKWBS algorithm gives the most accurate 
segmentation of objects.

The computational time analysis of the proposed RKWBS in comparison with the 
conventional watershed, level set, and RG algorithms is explicated in Table  2. The 
time taken by the system for segmenting the given input image is named computational 
time. Here, the proposed RKWBS algorithm runs 7136  ms faster than the watershed 
algorithm and 30,401 ms faster than the RG algorithm. Therefore, it is proved that the 
proposed RKWBS is time efficient.

The comparison of the accuracy attained in the proposed RKWBS algorithm with 
the prevailing Bounded Generalized Gaussian Mixture Model and Feature Selection 
(BGGMM + FS) algorithm and Region Salient Color and FCM (RSCFCM) algorithm 
are explicated in Table  3. The proposed RKWBS attains a higher accuracy (97.72%) 
than the other ‘2’ prevailing frameworks. This proves the proposed RKWBS’s efficacy.
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4  Conclusion

This paper proposes a novel mechanism for CIS grounded on the optimal threshold 
selection and RKWBS algorithm. By enhancing the contrast centered on the CLRLSHE 
approach, the input image is pre-processed initially. Then, the CLFFA algorithm selects 
the optimum threshold required for image segmentation; also, the segmentation process is 
preceded by the proposed RKWBS technique. Experimentally, the proposed framework’s 
performance is evaluated on the BSD300 images. The outcomes attained exhibited that the 
proposed RKWBS model outperformed the prevailing mechanisms. The proposed model 
attains a higher segmentation accuracy of 97.72%, while the prevailing approaches attain 
94.44% for the watershed, 93.42% for the Level set, and 91.80% for RG, correspondingly. 
Moreover, when analogized with the conventional techniques, a lower run time is achieved 
by the proposed system. Therefore, from the overall assessment, it is proved that the pro-
posed CIS model gives the most accurate segmentation outcome; also, it is a time-efficient 
model. The objects are successfully segmented here; however, it could not identify the 
object. Thus, for segmented object identification, an advanced system will be included with 
the proposed CIS model in the future.
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