
Vol.:(0123456789)

Wireless Personal Communications (2023) 133:1599–1618
https://doi.org/10.1007/s11277-023-10830-5

1 3

A Comprehensive Review of Categorization and Perspectives 
on State‑of‑Charge Estimation Using Deep Learning Methods 
for Electric Transportation

Kaushik Das1 · Roushan Kumar1 

Accepted: 21 December 2023 / Published online: 24 January 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Lithium-ion batteries are an excellent choice for electric transportation because of their 
high energy density, minimum self-discharge, and prolonged cycle life. The performance 
of electric transportation depends on the battery management system (BMS) for efficient 
functioning in vehicles. The state of charge (SOC) is one of the crucial BMS parameters 
to indicate the available charge in the vehicle. A reliable and accurate SOC prediction is 
crucial for an effective electric vehicle operation but SOC estimation is challenging since 
it depends on multiple variables including ambient temperature, battery age, charging, and 
discharging current. The data-driven techniques use an approach to run sophisticated algo-
rithms on a vast quantity of measured battery data to understand its behavior. Lithium-
ion battery state of charge assessment poses a complex difficulty. Temperature and aging 
affect the non-linear connection between voltage and SOC, accurate current measurement 
is an essential parameter that requires rigorous calibration to manage inaccuracies. Estima-
tion is further complicated by hysteresis effects during charge and discharge cycles, differ-
ent C-rate dependencies, and state of health parameters. To solve critical challenges, the 
paper highlights the recent advancements in model-based approaches, coulomb counting 
techniques, and machine learning methodologies. By summarizing the basic principles and 
presenting a comprehensive overview of SOC estimation through deep learning, the review 
paper aims to serve as a valuable resource for researchers, and practitioners in the field of 
battery management systems for electric transportation applications.
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1 Introduction

Lithium-ion batteries (LIB) have found increasing usage in the past two decades in con-
sumer electronics, power backup, and grid-scale energy storage, electric vehicles [1, 
2] are at the forefront of decarbonizing society and a viable alternative to carbon-based 
energy resources [3, 4]. While a long way to go to achieve parity with carbon-based 
energy resources on energy and power densities [5, 6], life, reliability, safety, etc. Numer-
ous research works [7] have been undertaken on non-Edisonian approaches [8] to unlock 
its properties and understanding from different aspects [9, 10]. Due to complexities in the 
possible manufacturing process [11], manufacturing of battery packs [12] from the cell, 
wide properties, and various possible applications at wide operating and environmen-
tal conditions [13, 14], multi-scale integrated computational modeling and data-driven 
methods are used. It is a non-measurable state estimation approach widely required in the 
process–structure–property–performance of a lithium-ion battery [15]. The electrochemi-
cal performance characteristics [16] of LIB, including energy density, power density, and 
capacity [17], which are highly dependent on the electrode structure produced during the 
manufacturing process, are used to define its performance [18]. Lithium-ion battery het-
erogeneous nature of electrochemical behavior which includes several different recharge-
able cell types, provides a problem when it comes to formulating predictions and estimates 
about their state [19]. It is resilient, non-linear, time-varying, and has properties, making an 
exceptionally difficult task with the final result obtained indirectly, based on the measure-
ment of other parameters varies in accuracy because of varied estimation methods, battery 
models, and optimization methods [20].

Among several LIB states, state of charge is a vital aspect and the main barrier to 
adopting LIB-based electric vehicles [9] as an alternative to conventional internal com-
bustion engine vehicles. The precise estimation of the state of charge is vital in extending 
cell life and guarantee its safe operation [21]. State of charge is not a tangible parameter 
but rather it is a co-state within the battery management system that cannot be directly 
captured through measuring instruments. Numerous researchers have proposed different 
methods for estimating SOC but a significant portion of them lack precision and they are 
categorized into online and offline approaches. For real-time state estimation, online meth-
ods can be employed, however, due to rigorous experimental protocols or expensive pro-
cessing requirements, offline approaches are not suited for battery operations. Model-based 
methods, coulomb counting, Kalman filters, electrochemical methods, hybrid methods, and 
machine learning approaches are used to calculate state of charge estimation.

The challenges associated with accurate state of charge estimation in LIB are due to the 
non-linear relationship between voltage and SOC due to operating temperature and aging. 
Operating temperature depends on the current drawn from the battery and it requires robust 
thermal compensation techniques such as air or liquid cool techniques. Capacity degra-
dation of the battery pack over time is age age-related variations known as cycle index 
introduces erroneousness in the system. Accurate current measurement is vital but prone 
to errors and requires frequent calibrations. Charge and discharge cycles of the battery 
pack are further complicated due to hysteresis effects and the state of health of the bat-
tery reflecting its overall condition also depends on SOC estimation. Open circuit voltage, 
C-rate dependency, and precise calibration add to the complexity of the SOC estimation. 
Researchers employ different state estimation methods to handle the challenges striving to 
enhance SOC prediction accuracy for diverse applications.
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The objective of the paper is to provide emphasis on the state of charge estimation 
methods with enhanced accuracy, extended life, and system reliability via proper prognos-
tics and diagnostics. The objective also covers the identification of performance param-
eters of artificial intelligence algorithms and deep learning methods used for SOC estima-
tion with different quantum of data such as voltage, current, temperature, and impedance. 
The novelty of the research work is to ease and standardize SOC investigations through a 
simple systematic approach for commercial lithium-ion batteries. The goal of the review 
is to understand different estimation methods with advantages and limitations for lith-
ium ion battery which is essential for safe and efficient operation across a wide range of 
applications.

The remainder of the paper is structured as the state of charge estimation methods with 
findings and limitations of different techniques described in Sect.  2. Different state of 
charge estimation methods, their performance characteristics, and process flow diagrams 
are described in Sect. 3. Section 4 summarizes different deep learning methods with mul-
tiple operating profiles, different types of cells used for electric vehicle applications, the 
advantages and disadvantages of different deep learning methods, and different cell assem-
bly patterns. Section  5 covers key issues and challenges whereas Sect.  6 covers conclu-
sions, future work, and recommendations.

2  Related Works

The shortcomings of the nonlinear battery model are solved using the long short-term 
memory neural network model by Almaita et  al. can adapt to the complexity [22]. The 
accuracy of the model is compared with findings from the feed-forward neural network 
and deep feed-forward neural network [23, 24] topologies under three distinct time series. 
It was shown to be less superior due to the uncertainty of the estimate process [25]. The 
battery dynamics could be self-learned by an artificial neural network (ANN) [26], which 
made it possible to compete with conventional SOC estimating methods [13, 27]. Addi-
tionally, the ANN’s assessment is more reliable because its inputs exclude the prior SOC 
level [28]. For the SOC estimate of lithium-ion batteries in hybrid and electric cars are 
compared a trade-off analysis between five alternative ANN designs [29] and found that 
the nonlinear autoregressive exogenous model architecture performed for estimation error, 
training time, and computing cost.

State estimations are examined with ensemble bagging, linear regression, Gaussian pro-
cess regression (GPR), support vector machine (SVM) [19], and ensemble boosting [30]. It 
determined that out of six algorithms, ANN and GPR are the best ones based on MSE and 
RMSE of (0.0004, 0.00170) and (0.023, 0.04118), respectively, and used that information 
to enhance the battery’s performance parameter [31]. To create training and testing data-
sets a mechanism is proposed as a recurrent neural network based on a genetic algorithm 
called a gated recurrent unit network that was tested under four dynamic driving condi-
tions at five different temperatures [32]. The authors concluded that it achieves high robust-
ness and accuracy with the proposed method. An adaptive H-infinity filter method and long 
short-term memory network [33, 34] modeling were proposed and the advantage of the 
suggested synthetic method is that it can increase the application efficiency of the proposed 
algorithm [35] by avoiding the precise battery modeling and taxing model parameter iden-
tification tasks required for conventional observers or filters [36].
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J. Hong et al. reviewed studies to predict SOC with the actual driving cycle of electric 
vehicles [27, 37] using intricate mathematical formulas, but machine learning (ML) was 
not used, and the temporal attention long-short-term memory model was found to predict 
SOC more correctly than other models. The SOC of the hidden drive cycles [38] during 
training may be predicted by a deep neural network (DNN) with enough hidden layers [30]. 
They established that adding hidden layers to a DNN (up to 4 hidden layers) reduces error 
rates and enhances SOC estimation while adding hidden levels beyond that raises error 
rates. The current deep learning (DL) based approaches for SOC estimates have several 
research gaps [39]. It is noted that the nonlinear LIB configuration [26, 40] makes it chal-
lenging to model accurately and it is also challenging to evaluate the internal environments 
of a LIB [41, 42] and this can vary between laboratory conditions and real-world condi-
tions [43]. These discrepancies can increase the LIB’s instability, therefore, more develop-
ment is needed to achieve improved SOC estimate accuracy in EV LIBs [44].

Without the use of feature engineering or adaptive filtering proposed a self-supervised 
learning [45] for end-to-end SOC estimation and demonstrated that the deep learning-
enabled transformer model [46, 47] achieves the lowest mean-absolute-error (MAE) of 
0.7% and root-mean-square-error (RMSE) of 1.2% on the test dataset at various ambient 
temperatures [45, 48]. The temporal convolution network (TCN) technique was initially 
developed to estimate SOC [30, 49] at several drive cycles, including highway fuel econ-
omy test (HWFET), unified cycle driving schedule (UCDS) also known as LA92, urban 
dynamometer driving schedule (UDDS), and US06 drive cycles at 1 C and 25°Celsius, and 
it was discovered that TCN design obtained an accuracy of 99.1%. With help of a recurrent 
neural network with long-short-term memory (LSTM), introduced a unique machine learn-
ing-enabled approach for conducting real-time multi-forward-step SOC prediction (LSTM) 
[27, 50]. The long training module demonstrates that the offline LSTM based model is 
capable of performing quick and accurate multi-forward-step battery SOC forecasts.

3  Methods

SOC is represented by the percentage of the total battery available charge over the battery’s 
residual charge under particular operating conditions such as variable load and tempera-
ture. The traditional approach, the adaptive filter methods [51], the deep learning methods, 
the nonlinear observer, and the hybrid algorithm are the five categories into which SOC 
estimation methodologies are divided. Lithium-ion battery state of charge estimation is a 
critical task considered in electric vehicles, renewable energy, and portable gadgets appli-
cations. For SOC estimation variety of techniques are used and each has unique advan-
tages and limitations. The traditional mathematical modeling approach offers precision 
but necessitates a thorough comprehension of the battery’s features required to explain 
the battery’s electrochemical behavior. Deep learning techniques use neural networks to 
learn complicated associations from data sets and produce accurate SOC predictions. For 
real-time application filter techniques such as Kalman filter or extended Kalman filter tech-
niques integrate mathematical models with annotations and they are resistant to errors and 
address non-linear dynamics in battery systems. Hybrid approaches combine many tech-
niques to make use of their benefits, frequently employing mathematical models for pre-
liminary estimation and deep learning for refinement.

The supreme methods used in SOC estimation are data-driven, direct measurement 
[52], and model-based approaches. It also covers the combination of two or more of 
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these methods. Direct measurement-based approaches are open‐circuit voltage and 
coulomb counting methods. The model-based method makes use of complicated math-
ematical equations, internal electrochemical processes, electrical characteristics [53] of 
the components utilized to describe them, and in-depth knowledge of the electrochem-
istry domain to model SOC [54]. The equivalent circuit model [55], electrochemical 
model, sliding mode observer, electrochemical impedance model, Kalman filters, Luen-
berger observer, and other prominent model-based approaches are depicted in Fig. 1. It 
explains the different states of charge estimation methods such as conventional math-
ematical modeling, deep learning algorithm, filter algorithm, non-linear, and hybrid 
algorithm.

Although the model-based method yields dependable and accurate models, it calls 
for in-depth domain expertise, meticulous feature engineering, and a lengthy develop-
ment period. It also does not scale up different cell chemistry or foam factors, which 
results, in alterations in the cell chemistry or foam factor requiring a re-development of 
the separate model. Cell irregularities such as inconsistent manufacture, erratic operat-
ing circumstances, cell deterioration, etc. [42, 56] are not considered in the model-based 
approach. Due to these inadequacies, researchers are now shifting their attention toward 
a model-less or data-driven approach for SOC estimation. The temperature, current, and 
voltage of the cells are measured under various operating and environmental circum-
stances and across various cell chemistry, form factors, and manufacturers are directly 
used to predict the SOC. There are several techniques for data-driven SOC estimation 
[57], including, among others, fuzzy logic, wavelet neural networks, support vector 
machines, extreme learning machines, nonlinear autoregressive with exogenous input 
neural networks, and artificial neural networks (ANN) [58]. The specific mathematical 
expression represented through Eqs. 1 and 2 explains the percentage of the battery capa-
bility [31] in the current state to the battery capacity at full charge as follows.

Conventional method

Adaptive filter algorithm

Learning algorithm

Nonlinear observer

Hybrid algorithm

Ampere-hour counting method

Open circuit voltgae method

Impedance and IR method

Electrochemical method

Model-based method

SOC estimation method
classification

Kalman filter

Extended Kalman filter

Adaptive extended Kalman

Fast Kalman filter

Unscented Kalman Filter

Sigma point Kalman filter

Particle filter

Hardy InfinityArtificial Neural Network
method

Support Vector Machine method

Extreme Machine Learning method

Genetic Algorithm method

Fuzzy logic method

Discharge experiment method

Non-linear Observers method

Proportional-integral
Observer method

Sliding Mode Observer method

Luenberger observer method

Nonlinear robust observer
method

Cubature Kalman filter

Fig. 1  Different state of charge estimation methods cover conventional mathematical modeling, deep learn-
ing algorithms, filter algorithms, non-linear and hybrid algorithms
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The following function can also serve as a representation of the definition of SOC.

where  SOCcurr signifies the SOC data at the time ‘t’,  SOC0 represents the initial SOC value, 
i(Ɛ) represents current at a time ‘Ɛ’, and ‘Cn’ is the nominal capacity.

With the fast-expanding need for robots that can learn to solve a wide range of com-
plicated issues, machine learning [59], data science, and artificial intelligence (AI) help 
accelerate and simplify the process. Due to excellent learning capabilities from data, deep 
learning technology interpreted in terms of the universal approximation theorem [60], or 
probabilistic inference, originated from ANN and was introduced by Geoffrey E. Hinton. 
It has gained popularity in the computer world and is regarded as a foundational technol-
ogy of the current fourth industrial revolution [61, 62]. It is extensively used in a variety of 
application fields, including healthcare, image identification, text analytics, cybersecurity, 
and many more. Figure 2 illustrates the different artificial intelligence and deep learning 
algorithms covering supervised, unsupervised, and hybrid technology used for the SOC 
estimation approach. Artificial intelligence and deep learning algorithms play an important 
role in improving SOC estimation accuracy. In the supervised learning approach through 
convolutional neural network (CNN), recurrent neural network (RNN), self-organizing map 
(SOM), and linear regression are employed to model the complex relationships between 
input data voltage, current, temperature, and SOC. Unsupervised learning techniques auto 
encoders (AE), restricted Boltzmann machine (RBM), and generative adversarial network 

(1)SOCcurr =
Ccurr

Co

× 100%

(2)
SOCcurr = SOCO −

t

∫
0

i(�)d�

Cn

AI ML  DL

Hybrid Discriminative
(supervised) 

Generative
(unsupervised)  

DBN

BM
GAN

RBM

AE RNN

LSTM

GRU

BiLSTM

CNN

RBFN

MLP

SOM

RBN

DBM

CNN+LSTM

AE+SVM

GAN+CNN

DRL

Model 
Based

Model 
Free

RBM-DBM

AE-DBM

Fig. 2  Different artificial intelligence and deep learning algorithm covers supervised, unsupervised and 
hybrid technology used for the SOC estimation approach
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(GAN) help to identify patterns and similar battery behaviors that enhance SOC estima-
tion. Hybrid approaches combine multiple reinforcement learning algorithms for their 
adaptability and performance in dynamic and uncertain environments.

In essence, deep learning (DL) is a neural network with three or more layers that imi-
tates how the system learns specific input and output information [63]. Data science, which 
also encompasses statistics and predictive modeling, contains DL as a key component [64]. 
Data scientists who are responsible for collecting, analyzing, and interpreting vast volumes 
of data find it highly helpful because DL makes the process quicker and simpler [65, 66]. 
DLs are considered a means to automate, predict, and analyze at multiple levels. Unsuper-
vised learning is used in DL algorithms, which are built in a hierarchy of increasing com-
plexity and abstraction in contrast to typical linear ML algorithms. Its algorithms automate 
feature extraction and can ingest and analyze unstructured data, including text and pictures, 
eliminating the need for human experience [67]. It eliminates the data pre-processing that 
is generally necessary with ML since it can learn any function with accurate data using 
different universal approximation theorems, DL has emerged as a topic of interest for aca-
demics studying energy storage [68] during the past several years. Figure 3 explains the 
performance characteristics of the machine learning algorithm with deep learning methods 
on the parameters of the amount of data used for the algorithm.

An example of how DL modeling using massive volumes of data might improve perfor-
mance when compared to conventional machine learning (ML) techniques [69]. In essence, 
without further processing like the use of adaptive filters, DL [70, 71] may be used to 
directly predict the link between individual cell signals (voltage, current, and temperature) 
and SOC [72, 73]. This does away with the requirement for manual feature engineering, 
which still yields accurate SOC estimate results but requires a lot of effort and in-depth 
domain expertise. Deep neural networks (DNN) and long short-term memory (LSTM) 
are introduced in the groundbreaking research by authors to estimate SOC from cell tem-
perature, voltage, and current without the use of extra filters [74]. Figure 4 illustrates the 
process flow diagram of the deep learning technique for calculating SOC in lithium-ion 
batteries used in two-wheel electric vehicles. It covers data collection, data pre and post-
processing, feature engineering, model training, testing, and model prediction. Data pro-
cessing requires voltage, current, temperature, capacity, cycle life, and time.

Fig. 3  Performance characteristics of machine learning algorithm with deep learning methods on the 
parameters of the amount of data used for the algorithm
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The final step is model evaluation, the predicted SOC values are compared with the 
actual SOC values in the test set using the root mean square error equation (RMSE). The 
mean error equation (MAE), or the mean square error (MSE) to evaluate the model accu-
racy, and the RMSE, mean error, and MSE [75, 76] are shown in Eqs. (3)-(5).

where ‘N’ represents number of data points, SOCpre represents the predicted SOC value 
through the model in the deep learning method, and SOCact is the actual SOC value in 
the test set. The smaller the error obtained from the above formula, the higher the model 
accuracy.

4  Findings and discussions

Table  1 lists different deep learning methods applied for the state of charge calculation 
with multiple operating profiles. Different data-driven methods are used to calculate the 
SOC of LIB, taking advantage of the accessibility of charging-discharging data and hard-
ware computing capability. It is still difficult to choose the discriminative features and best-
supervised machine learning models for a precise estimate of battery statuses.

(3)RMSE =

√√√
√ 1

N

N∑

K=1

(
SOCpre − SOCact

)2

(4)MAE =
1

N

N∑

K−1

|||
SOCpre − SOCact

|||

(5)MAE =
1

N

N∑

K−1

(
SOCpre − SOCact

)2

Fig. 4  Process flow diagram of deep learning method for estimating SOC in the LIBs used for two-wheel 
electric vehicles
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Electric cars employ three different types of battery cells: pouch cells, prismatic cells, 
and cylindrical batteries. Additionally, coin cells are utilized for testing in research and 
development. Because cylindrical cells are already self-contained in a shell that provides 
adequate mechanical resistance, they are the most affordable configuration to manufac-
ture. Prismatic cells have a range in size from 20 to 100 times that of cylindrical cells and 
require less material for the casing often deliver more power and store more energy for the 
same volume. Better heat management than cylindrical cells is also made possible by the 
thickness and form of the casing. Compared to other cell types, pouch cells are designed to 
give greater power. They are also highly effective at utilizing available space however have 
the lowest mechanical resistance of all cell types because of their flexible plastic hous-
ing. Table 2 summarizes the different types of cells used in lithium-ion batteries for elec-
tric vehicles and allied applications. Nickel Manganese Cobalt (NMC) batteries provide 
an excellent mix of power and energy. Three lithium compounds: lithium nickel–cobalt-
aluminum (NCA), lithium cobalt oxide (LCO), and lithium iron phosphate (LFP), play a 
crucial part in the electrification revolution’s drive to reduce carbon emissions. Table  3 
lists the advantages and limitations of different deep learning methods LSTM, RNN, SVM, 

Table 2  Summarizes different 
types of cells used in lithium-ion 
batteries for electric vehicles and 
allied applications

References Cell type Application

[31] NMC EV
[22] LFP PV power plant
[26] LFP EV
[29] LFP General
[32] NMC EV
[33] NMC & LFP General
[45] NMC EV
[30] NMC EV
[37] NMC General
[78] NMC & NCA EV
[20] LFP General
[32] NMC General
[15] NCA & NMC General
[28] LCO General

Table 3  List the advantages and limitations of different deep learning methods used for SOC calculation for 
electric vehicle applications

Methods Advantages Disadvantages

LSTM Selective storage of data
Successful tracking of long-term dependency

Complex training execution
Difficulty to accelerate training

RNN Efficient for data with sequential properties Gradient disappearance
SVM Good accuracy in a high dimensional system

Quick and accurate estimation
High complex computation
Lack of sparseness

BP-NN Flexible and simple execution
Reasonable accuracy

Lower operating efficiency
Poor stability

RVM Better sparsity
Avoids overfitting and under fittings

High computational load
Lack of stability
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and RVM are used for SOC calculation for electric vehicle applications. It is observed that 
SVM has good accuracy in a multi-dimensional system with quick and accurate SOC esti-
mation but it has high complex computation and lack of sparseness.

The typical two-wheel electric vehicle batteries are lithium-ion batteries, lead-acid bat-
teries, nickel metal hydride batteries, and ultra-capacitors. These batteries work well at 
high temperatures, have outstanding specific energy, and have a low self-discharge rate. 
Table  4 explains the typical lithium-ion battery used for mass production of two-wheel 
electric vehicles in India by different manufacturers such as Ather, OLA, Tork KRATUS, 
TVS, Hero Electric, Okinawa, and Ampere Magnus. Typical battery configurations are 
48 V–72 V with 1–2 KWh for normal use in two-wheel electric vehicles to up to 5 kWh for 
high-performance vehicles.

Lithium-ion batteries now hold the top spot in battery technology for their energy den-
sity of 150–265 Wh/kg. However, they are under a lot of stress due to thermal runaway and 
they burst and expend all the stored energy. For this reason, BMS is frequently needed to 
keep them under check. It covers the fundamental components of the conventional BMS as 
well as the fundamentals of different states of BMS. Four lithium-ion battery packs used in 
a sequence manner are handled by BMS. A cell monitoring mechanism measures the volt-
ages of all the cells and balances them is known as balancing. A microcontroller unit man-
ages telemetry data, switch activation, and cell balancing (active and passive) strategy. The 
balancing mechanism limits the cell capacity and impedance of battery packs therefore, 
a charge differential between cells builds up over aging. A weaker set of cells will charge 
more quickly than others in the series if they have less capacity. To prevent overcharging 
of the weaker cells, the BMS must prevent other cells from charging. On the other hand, 
if a cell discharges more quickly, there is a chance that it will go below the minimum volt-
age. A BMS without a cell balancer would need to cut off the power early in this situation. 
The higher SOC cell will be discharged by a circuit at the same rate as the other cells in a 
series. Figure 5 illustrates the typical two-wheel electric vehicle lithium-ion cell (18,650) 
as an individual cell, battery bank, and battery management system. The individual cylin-
drical cell 18  mm in diameter and 65  mm in length acts as an energy storage unit and 
comprises a cathode, anode, and electrolyte. Multiple cells are grouped to form a battery 
pack and these cells are strategically connected in series and parallel configurations within 
the battery pack. BMS monitors individual cell parameters, manages charge balancing, 
safeguards against overcharging and over-discharging, and communicates with peripherals 
devices. Figure 6 illustrates the two-wheel electric vehicle battery in assembly with a cylin-
drical cell, with a prismatic cell used in the OLA S1 Pro battery bank. It provides a visual 

Table 4  Typical lithium-ion battery used for mass production of two-wheel electric vehicles in India

S. No Vehicle Battery type Cell type Power (peak)

1 Ather 450x 3.70 kWh NMC cylindrical (21,700) 5.4 kW
2 Ola S1 Pro 3.97 kWh NMC cells (18,650) 5.5 kW
3 Simple One (4.80 + 1.6) kWh NMC cells
4 Tork KRATUS R 4.00 kWh NMC cells 7.5 kW
5 TVS iQube 4.56 kWh NMC cells 6.7 kW
6 Hero Electric NYX 1.53 kWh × 2 NMC cells (18,650) 2.7 kW
7 Okinawa Lite 1.25 kWh NMC cells (18,650) 0.7 kW
8 Ampere Magnus 2.29 kWh NMC cells (18,650) –
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representation of different battery assembly configurations and highlights the diversity in 
battery pack design used in two-wheel electric vehicles providing technological choices to 
vehicle manufacturers.

Rechargeable batteries are used in electric transportation usually referred to as traction 
batteries to power electric motors. Lithium-ion batteries are frequently created with higher 
energy capacity and lower specific charge density. Deep cycle batteries are made to provide 
power for extended periods, they set themselves apart from starting, lights, and ignition 
batteries. For electric transportation systems, compact and lightweight batteries are prefer-
able as they impact less on the weight of the vehicle and hence increase vehicle perfor-
mance. Electric vehicle batteries are distinguished by their relatively high power-to-weight 
ratio, energy density, and specific energy. Battery technologies today have substantially 
lower specific energies than liquid fuels, which frequently affects the vehicle drive range. 
Table 5 illustrates different lithium-ion battery cell specifications based on manufacturer, 
model number, foam factor, electrochemistry used, weight in grams, diameter in millim-
eters, height in millimeters, nominal capacity, and nominal voltage used in two-wheel elec-
tric vehicles.

Among all two-wheel electric vehicle manufacturers, battery packs are predominantly 
made with cylindrical NMC cells with very few exceptions for pouch cells due to foam 
factor and other chemistry. Typically cells are used for 3C or higher discharge rating, 
because of the high discharge current required for a short duration during two-wheel elec-
tric vehicle operation and state of charge estimation is a vital parameter. Table 6 presents 

Fig. 5  Typical two wheel electric vehicle energy system components a Lithium-ion cell (18,650), b cell lot 
(18,650), c battery management system (BMS)

Fig. 6  A two-wheel electric vehicle battery in assembly a with cylindrical cell, b with prismatic cell, c Ola 
S1 Pro battery
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an analysis of BMS functionalities as essential, desirable, and non-essential available in 
typical two-wheel electric vehicle batteries cell voltage level monitoring, I/O current moni-
toring, charging and discharging control, cell balancing (active/ passive), thermal manage-
ment system, and user interface attributes.

5  Key issues and challenges

Literature present on DL methods, few standard profiles are used for estimation, which may 
not ensure reliable SOC estimation under various actual EV driving conditions, which is a 
typical case of “covariate shift” concerning ML and is susceptible to algorithm failures. 
This presents a significant issue because LIB has a long cycle life and the DL prediction 
model requires making thousands of extrapolation forecasts. Under the effect of variables 
such as cumulative error and random noise, the outcome of the prediction is extremely 
likely to be incorrect. The demand is more than what the current technologies can handle, 
particularly when trying to solve the issue of long-term prediction of batteries with numer-
ous formulations. Most of the literature presents, only ideal constant current—constant 
voltage charging protocols, which are rare in a real-life scenario and differ within various 
regions, drivers, and durations. The actual effect of partial charging, over-charge, partial 
discharge, or the effect of temperature during charging is not considered for verifying the 
performance of the DL model.

Most of the literature mainly focuses on datasets of the cell containing only one 
particular cell model or set up for particular charging methods and patterned discharg-
ing mode with very few done for comparative analysis on different datasets obtained 
from different cell chemistry, different charging methods, different discharging methods 
(UDDS, DST, UNIBO, HWFET, NRDC, US06, FUDS, etc.). Also, drive cycles are pre-
dominantly designed for high-end EVs (four wheels) with hardly any analysis or refer-
ence for two-wheel electric vehicle at the same time country-specific or geographical-
specific need is not exploited in the available literature. Less research and developments 
happened on the prediction of future SOC trends using DL methods, making it crucial 
to precisely measure the existing SOC as well as to anticipate the impending SOC based 

Table 6  An analysis of BMS functionalities available in typical two-wheel electric vehicle batteries

BMS function Essential Desirable Non-essential

Cell/ series level monitoring Yes – –
I/O current & voltage monitoring Yes – –
Charging/ discharging control Yes – –
Cell/ battery level protection – Yes –
Cell balancing & equalization(active/ passive) – Yes –
Thermal management Yes – –
Temperature control Yes – –
Data acquisition & Storage – Yes –
Communication & Networking – Yes –
Fault diagnosis & Assessment – – Yes
Power management & Control – – Yes
User interface – Yes –
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on the current driving data. Additionally, once the SOC is precisely calibrated, it may 
be determined via Ah counting, which is quick and accurate, thus the live SOC calcula-
tion based on neural networks is not required. The need for a collaborative estimation 
and prediction model through DL is fewer studies, whereas SOC is related to other indi-
rectly measurable states.

6  Conclusions and recommendations

In this paper, numerous SOC estimating methodologies are critically analyzed about their 
underlying assumptions, accuracy, execution, advantages, and limitations. With the help 
of model-based and data-driven estimates are extensively studied in the field of SOC pre-
diction. In terms of SOC estimates, both model-based and data-driven techniques have 
produced noteworthy outcomes. After conducting a comprehensive examination a model-
based approach is the most optimal method for achieving superior performance as long as 
the system behavior is known ahead of implementation. Whereas the data-driven method 
could perform better than model-based solutions if the system is not well understood. To 
get the best results from both strategies, several researchers have been attempting to com-
bine both approaches as hybrid models. Nevertheless, different research and developments 
are happening and moving towards data-driven algorithm-based SOC estimation because 
of technological advancements such as fast processing processors, high-capacity storage 
devices, and the availability of big data.

The findings list different recommendations that will substantially enhance the future 
methodology for estimating SOC. In a real-world application, LIB may be exposed to addi-
tional environmental dynamics that are possible to replicate in a laboratory. The findings 
of the SOC estimation should thus be further examined in light of numerous uncertainties, 
such as temperature, age, and noise effects. The electrochemical battery model needs to 
be thoroughly investigated in terms of capacity loss, temperature failure, internal reaction 
kinetics, and mechanical fatigue. The enhanced fusion rule combining data set and sensor 
information under various operating conditions in the fusion model covers battery cathode 
chemistry and battery aging. Additional research is needed for the state of charge estima-
tion techniques employed in the real-time battery management system and the different 
optimization strategies required to lower the computational complexity of the processes.
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