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Abstract
Data Aggregation for IoT-WSN, based on Machine Learning (ML), allows the Internet of 
Things (IoT) and Wireless Sensor Networks (WSN) to send accurate data to the trusted 
nodes. The existing work handles the dropouts well but is vulnerable to different attacks. In 
the proposed research work, the Data Aggregation (DA) based on Machine Learning (ML) 
fails the untrusted aggregator nodes. In the attack scenario, this paper proposes a Machine 
Learning Based Data Aggregation and Routing Protocol (MLBDARP) that verifies the 
network nodes and DA functions based on ML. This work is to authenticate the nodes 
to support the MLBDARP, a novel secret shared authentication protocol, and then aggre-
gate using a secure protocol. MLBDARP types of the ML algorithm, such as Decision 
Trees (DT) and Neural Networks (NN). ML helps determine the probability of a successful 
Packet Delivery Ratio (PDR). This proposed ML model uses predictability value, Energy 
Consumption (EC), mobility, and node position. Simulation results proved that the pro-
posed protocol of MLBDARP outperforms Differentiated Data Aggregation Routing Pro-
tocol (DDARP) and Weighted Data Aggregation Routing Protocol (WDARP) with Quality 
of Service (QoS) parameters of Network Throughput (NT), Routing Overhead (RO), End-
to-End Delay (EED), Packet Delivery Ratio (PDR) and Energy Consumption (EC).
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1  Introduction

The most critical application of ML, for example, at Amazon, IBM Watson, Azure, Google 
Cloud, and Microsoft, is Data Aggregation (DA) in edge computing, which collects a max-
imum of users along with their data [1–3]. Moreover, they pose a risk to the privacy of the 
users [4–6]. As shown in Fig. 1, Machine Learning (ML) helps the AN collect the value 
updates instead of accurate data [7–9]. For example, the online user sends the data of the 
local ML to the firms, which trains the system to predict the user’s interest in the future. 
Hospitals offer updates of ML on healthcare records to the World Health Organization 
(WHO) for new diagnostic systems, and financial corporations record the transaction log to 
improve the scam [10, 11]. Moreover, the users are disturbed about the information which 
the companies are taking to improve their expected results [12–14].

To increase security, companies like Google [15] and Apple [16, 17] have implemented 
a randomized response system which injects noise into users’ data with the help of a ran-
domized method. Although, they provide weak privacy since the aggregator controls the 
users’ data when it receives a high volume of noisy data [17, 18]. Different secure algo-
rithms have been proposed by researchers, which are based on secure computation [17, 
19–21], Dining Cryptographer networks (DC-nets) [5, 22–24], Homomorphic Encryption 
(HE) [25–31] and Differential Privacy (DP) [5, 32–34].

Moreover, the existing secure algorithms, such as DC-nets and HE, accept high Com-
putation Overhead (CO). Hence, this work cannot apply these algorithms to real-time chal-
lenges where nodes’ communication and CO are essential. On the other hand, the DP pro-
tocols are lightweight compared to others, but they are not secure as the malicious node 
fails during execution. A recent researcher [5] considers node failure vulnerable to attacks 
where Malicious Nodes (MN) communicate updates of the parameter such that they are 
considered abnormal by the Aggregator Node (AN).

To remove the ambiguity in the current work, this work emphasizes performing DA 
using ML in a more real-world system, as shown in Fig. 1. The MNs transmit the param-
eters’ incorrect updates to ANs to perturb the complete updates of parameters by AN. 
Although disobeying such a method usually gains nodes [17, 35], A selfish MN, for exam-
ple, avoids the AN by sending an incorrect update of local ML on network traffic data, pre-
venting other nodes from following the same routing path [35–37]. In the other example, 

Fig. 1   ML-based data aggregation
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an application developer uses the data to increase the common application’s rank in the 
stores [17]. Also, to reveal other nodes’ data privacy, the MN terminates and gets involved 
secretly with the nodes, and the aggregator becomes malicious [17, 35, 62].

For the practical scenario of IoT-WSN, this work proposes a protocol called Machine 
Learning Based Data Aggregation and Routing Protocol (MLBDARP), which verifies the 
node’s DA based on ML and prevents the nodes and network from malicious attacks. It 
also defends against colluding nodes and AN, resulting in the discontinuation of MNs. The 
main objective of the proposed protocol is to authenticate the node’s data using a protocol 
based on secured sharing and aggregate updates of nodes’ parameters in a secure manner 
with the help of a secure DA protocol. It is not the direct method; the following difficul-
ties have been overcome: First, verifying nodes’ data without revealing it to the malicious 
aggregator and other nodes is challenging. Secondly, it is challenging to implement a pro-
tocol for DA that takes care of both agreement attacks and MN failures. To address the 
tests stated above, the following vital contributions are completed:

1.	 In this paper, a Secret Shared Authentication Protocol (SSAP) is made to check the 
validity of the node’s data in a safe mode. When a node updates the parameter for the 
aggregator, it shares the proof with the aggregator and the neighbouring nodes. With the 
help of transmitting a few bytes of data to the neighbouring nodes, the AN authenticates 
the node’s data without fully knowing the data.

2.	 This work proposes a protocol that securely performs the DA method and ANs param-
eter updates and prevents them from colluding with other nodes and MN failures. The 
proposed protocol neither implements computational encryption nor depends on secure 
communication paths. In other words, this research says that each node locally generates 
a secret code, which this work call a key, for encrypting its parameter updates, and the 
AN can know about the parameter updates without having the critical information.

3.	 In this article, the IoT-WSN was implemented, which protects the node data from mali-
cious attacks in DA based on ML. The simulation results proved that the proposed 
protocol preserves node data security and allows for acceptable overhead.

IoT-WSNs are those networks in which the performance of the link is not secure, and the 
resources available to the nodes are limited. So, the routing in IoT-WSN is a challenging 
task since nodes carry the data packets until they find the trusted forward nodes that carry 
them to the desired destination (sink node) with a minimum End-to-End Delay (EED).

These protocols are classified as infrastructure-based and infrastructure-less-based rout-
ing protocols. In the former case, the infrastructure must help the nodes pass the data pack-
ets to the sink. In the latter case, there is no infrastructure, and the communication time is 
used to forward the network data. This article proposes a novel infrastructure-less protocol 
for IoT-WSN, the improved version of the protocol discussed [38]. The proposed protocol 
uses the ML methodology to train itself on factors like buffer size, node acceptance and 
speed, hop count, EC, and Packet Delivery Ration (PDR). The method is accomplished 
based on network routing, and a mathematical model is formed which computes the prob-
ability that a node will successfully PDR to the sink node. The computed value is used for 
the decision on the next hop.

This article is structured as follows: Sect. 2 discusses the related works. In Sect. 3, the 
proposed MLBDARP is explained. Protocol implementation, simulation results, and their 
comparison with the existing protocols are described in Sect. 5. Finally, the paper is con-
cluded in Sect. 6.
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2 � Literature Review

The multi-node computation [39] developed a security protocol based on the Basal Met-
abolic Rate (BMR) algorithm, which prevents malicious and corrupted nodes. Research 
by [20] discusses secure third-party computations where users and servers are malicious 
or untrusted. Although the researchers in [19] and [21] measured the invalid data of the 
MNs in the computation algorithm, researchers in [40] and [41] implemented protocols in 
insecure networks. Moreover, these protocols have high CO because the nodes share the 
secured data with other nodes, which confirms their robustness. IoT-WSN has a resource 
limitation. When the server is reliable and functions well, even when the other nodes are 
MN, the Prior protocol [17] prevents the node’s data security. Although, work considers 
the situation with passive servers.

DC-network-based research [23, 24, 42] allows the nodes to privately share their data 
with the help of pairwise cloaking inputs without one-to-one communication. Moreo-
ver, it is susceptible to untrusted nodes, which corrupt the data and block communication 
[5]. Also, the research [42] implemented a novel DC-net that recognizes dishonest nodes 
with a very high probability with the help of a further round. Similarly, [22] discusses the 
implementation of public-key encryption and data proofs to detect the misbehaviour of the 
nodes. It requires a high concentration of CO. On the other hand, our proposed work is 
lightweight in that the failures are set up without iterations.

HE performs low when a node fails, but it has a high CO [28, 29], and [31]. The authors 
in [25–27] implemented an encryption method and differential confidentiality for comput-
ing statistics and operational failures. Although, these researchers accept trusted agents, 
which are not present in the IoT-WSN scenario. The research work in [43] discusses secure 
computation, in which each node communicates with a server but cannot control failures. 
Research-based DP [44] implements an intelligent system that gathers the nodes’ data and 
provides DP. The authors [32] proposed the PrivEx system, which aggregates the statis-
tics from anonymous networks. The research work in [33] uses an Enhanced File Transfer 
(EFT) encryption algorithm to enhance DP for the aggregated results. The research work in 
[45] presents PrivCount, which aggregates across relays and private results differentially.

Moreover, these algorithms are completed when nodes discontinue the recovery pro-
cess. The proposed work in [5, 34] has considered failures, but they are vulnerable to mali-
cious attacks. On the other hand, this proposed protocol considers the failures, authenti-
cates the nodes, and prevents the IoT-WSN from malicious attacks.

Various routing processes have been suggested in the current research work. The most 
important ones are discussed. In [46], the author proposed an algorithm where the trans-
mitter node sends many copies of the network that it plans to send to the sink. It is done 
by sending a data copy to each node with which it connects. This process is repeated until 
a copy of the data is delivered to the sink. It has a high PDR rate and high resource con-
sumption. In [47], the Hop protocol is proposed, in which the context of the nodes is stored 
in the identity table, and the history table saves characteristics from the identity table of 
neighbouring nodes. The idea is that the transmitted node passes the copies of data, and 
the PDR is computed. In [48], the author proposes a routing protocol that uses contex-
tual information to select the next hop. The Markov predictor determines the next best hop 
based on the node’s behaviour information. In [49], the routing protocol depends on com-
puting the delivery predictability table, which keeps track of the successful PDR from the 
transmitter to the sink node. The packet is forwarded to the nodes with high predictability 
values. In [38], an improvement is presented using a weighted function to compute the 
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node’s delivery probability. In [50], a Distance Routing Protocol (DRP) is proposed that 
relies on encounters and the node’s distance from the sink node to select the next hop. The 
ratio of these two variables decides the selection of the next hop.

In the research work mentioned in [63], the authors have applied Fuzzy Logic (FL) to 
WSN and shown that it improves energy performance. In [64], authors have discussed a 
method in which the training time is reduced, resulting in improved presentation and net-
work overhead. The proposed research in [65] is a practical route assessment to minimize 
the communication between the Sensor Nodes (SN), thereby reducing EED and EC and 
increasing the WSN’s lifetime. In [66], problems related to routing are addressed; hence, 
the network lifetime improvement is shown when two problems are addressed. The authors 
in [67] have proposed adaptive Routing for In-Network Aggregation (RINA) for WSNs. 
Q-learning forms a routing tree using residual energy, increasing the distance between 
nodes and link strength and, thus, the network lifetime. The proposed research in [68] dis-
cusses improved network performance, secure routing services, and reduced EC. In [69], 
the detection and removal of the MN from the network are discussed with secure routing 
and less EC. The research based on the researchers’ particulars of data collection is sum-
marised in Table 1.

This proposed work ML is useful to DA and routing, and it has shown improvement not 
only in terms of the five major QoS parameters ((i.e.,) NT, EED, PDR, EC, and RO) but 
also in terms of security, computation, and RO, and this proposed work has outperformed 
other existing research works.

3 � Proposed Machine Learning Based Data Aggregation and Routing 
Protocol (MLBDARP)

The MLBDARP consists of DA and routing algorithms based on ML, and the same has 
been discussed in Sects. 3.1 and 3.2.

3.1 � Proposed MLBDARP

Let us take the example of a company that aggregates the user’s activities for training the 
Recommender System (RS), which can predict the user’s future interests. Each user has a 
record of their actions saved on their device and has personal information, like, their job, 
health, and lifestyle. Despite sending the exact data in DA based on ML, the user only 
requires updated parameters that contain minimum data compared with their exact data. 
The aggregator receives the user’s variable updates and calculates the variable portion’s 
weighted averages for training the recommender using Stochastic Gradient Descent (SGD). 
Even though each user parameter update contains less information than the activity data, 
some studies [12, 13] have revealed that variable updates allow attackers to obtain precise, 
private data.

3.1.1 � Internet of Things‑Wireless Sensor Network Attack Model

ML-based DA has the following challenges:

a.	 Malicious Nodes: Nodes that are supposed to be malicious achieve the protocol hon-
estly, as shown in the current work [5, 20, 33]. This work says that nodes honestly per-
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form calculations and communication, as mentioned in the proposed SSAP and Secure 
Aggregation of Data Protocol (SADP). Also, MN is transmitting abnormal parameter 
updates to the AN to perturb the aggregated results (i.e.,) the complete update of the 
parameter. For example, a researcher is transmitting anomalous data to the online store 
of the application to improve the application’s rank [17]. Conversely, MN is a protocol 
failure that prevents AN from receiving complete parameter updates [5]. Also, MNs 
collude with other nodes and the aggregator to disclose the node’s data privacy [20, 32].

b.	 Untrusted Aggregator: Like research [5, 33], it firmly performs the algorithms if we sup-
pose the AN is malicious. The MN’s false aggregator methods reveal a specific node’s 
data security [52].

Hence, based on ML, developing a security-aware method for protected DA is much 
necessary. As a result, in this paper, a DA algorithm based on ML is designed in a real-
time case where the MNs that perform trust and untrustworthy aggregators are identi-
fied earlier.

3.1.2 � Aim of Protocol Design

The main goal of the protocol design is to keep the node’s updated parameters from 
being shown to other nodes and the untrusted aggregator during the DA process and to 
let the AN figure out how many updates there have been.

So, our proposed methods provide the following features:

a.	 The protocol is to identify the validity of the node’s parameter updates and defend 
against malicious attacks. As a result, no one interferes with the complete updates of 
parameters.

b.	 The protocol is to aggregate the node’s parameter update securely even if MN discon-
tinues or plans to continue with the malicious aggregator and other nodes. A node’s 
parameter updates are not shown to other nodes, and the aggregator computes the full 
update of the parameter even though MN discards or attacks secretly.

Generally, a node’s parameter update is valid only if it transmits accurate updates. 
Also, the updates of a node’s parameters are not revealed to other nodes, even if MN 
discontinues or plans to work with a malicious aggregator and other nodes; their vari-
able updates are collected securely.

3.1.3 � Secret Sharing

Suppose that the data represented as D is classified into ‘n’ data parts 
D1,D2,D3,…… ,Dn . The (k, n) secret sharing allows the attackers to attack the data 
only when the attacker knows k or more data segments. With the help of (k-1) data sets, 
it is not possible to determine D [5, 53]. A secret sharing method contains a sharing pro-
cess, for example, SS.share(D, k, n) →

{
Dj�

}
j[1,2,...,n]

 , which has input data D and pro-
duces a group of shares Dj. With the help of secret sharing, this work implements a 
novel SSAP (Sect. 3.1.6).
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3.1.4 � Computational Diffie‑Hellman (CDH) Problem

Assume a group G with a generator g , and a, b� z . The CDH problem in G is calculating 
gab Without the help of the knowledge of aorb [54, 55]. The researchers [54–56] have 
shown that the CDH problem is computationally uncompromising in polynomial time. 
Apart from these researches, this proposed algorithm is CDH protected when revealing 
node’s information in the proposed algorithm is difficult compared to the CDH problem 
(Sect. 3.1.7).

3.1.5 � Design of Proposed MLBDARP

The basic idea of the proposed protocol is that each node (ui) transmits the encrypted 
value updates and SSAP evidence to the AN. The AN authenticates the data and then 
knows the updates to values. Therefore, the proposed protocol has two essential points, 
as shown in Fig. 2.

A.	 SSAP: Nodes first produce the corresponding SSAP indication of the updates to the 
ML parameter and then send the proof along with the parameter updates to the AN. On 
receiving node data, the AN authenticates it with the help of SSAP proofs. Only the AN 
accepts it if they find it to be correct. Otherwise, it rejects.

B.	 SADP: Nodes locally produce private keys without any complex encoding algorithm 
and apply keys to encrypt updates to variables. The AN receives the encoded data and 
estimates the complete updates.

Fig. 2   ML-based DA model for SSAP and SAD
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3.1.6 � Secret Shared Authentication Protocol

This work’s primary task is to authenticate that a node ui does not send malformed param-
eter updates. To achieve this purpose, this research proposes an SSAP. The recommended 
protocol is stimulated by the research work [57], but for IoT-WSN, this article considers 
the different scenarios, as shown in Figs. 3 and 4. This paper detects that only an AN ‘A’ 
exists, and the “MN” is a failure.

The nodes and the DA is A have a mathematics check Valid (.) SSAP can show 
if Valid (xi) = 1 without leaking ui’s variable updates xi to the ANS ‘A’ and other 
nodes. The participation of the mathematics check Valid (.) over the field ‘F’ are 
x = {x(1), x(2),…… , x(L)} ∈ FL , and has one output. Each vertex in arithmetic check 
Valid(.) is either a gate (or) input/output vertex. The input vertexes are denoted by 
{x(1), x(2),…… , x(L)} (or) constant in ‘F’. Every gate vertex consists of 2 inputs and 1 

Fig. 3   Proof: A specific node transmits proofs to; neighbouring nodes and AN, even though MN failure

Fig. 4   Authentication: The aggregator authenticates the validity of the parameter updates with the help of 
proofs



2598	 N. Chandnani, C. N. Khairnar 

1 3

output, denoted by +∕× . Let us consider that N multiplication gates in mathematics check 
assure condition 2N ≪ |F| . Mathematics check Valid(.) conducts a mapping: FL

→ F.

This research proposes an SSAP algorithm which has the following steps of execution:

Step 1	� Initialize the protocol.
Step 2	� Node ui divides updates of the parameter xi into S shares with the help of the 

improved secret-sharing method.
Step 3	� SSAP, SS share

(
xi, n, u

)
→

{
[xi]j�

}
j[1,2,...,s]

.
Step 4	� Input private data xi, threshold ‘n’ and set ‘u’.
Step 5	� (s − 1) nodes and aggregator A(n ≤ s) produce a set of shares [xi]j.
Step 6	� ui Evaluates arithmetic check Valid (.) on input xi.
Step 7	� The input and output of the tth multiplication gate are INt and OUTt.
Step 8	� (t ∈ (1, 2,… ,N)).ui defines polynomials p1 = INt and p1 = OUTt with N-1 degree.
Step 9	� The Polynomial p3(t) = p1(t)p2(t) with 2N-2 degrees.
Step 10	� The ui generates the shares [p3(t)]j(j = {1, 2,… , s}).
Step 11	� Shares 

{
[a1]j, [a2]j, [a3]j

}
 that meets the limits a1a2 = a3 using the improved 

secret-sharing method.
Step 12	� ui transmits shares [p3(t)]j, [xi]j, and

{
[a1]j, [a2]j, [a3]j

}
 to the AN ‘A’ and neigh-

bour nodes ui−1, ui+1, ui+2,… , ui+s−2.
Step 3	� If ui is the MN, then it sends abnormal data [p3(t)]j,

{
[â1]j, [â2]j, [â3]j

}
.

Step 14	� It is satisfied â1â2 ≠ â3 and [xi]j.
Step 15	� AN ‘A’ identifies abnormal data and discards it.

3.1.7 � Secure Aggregation of Data Protocol (SSDP)

We introduce the SSDP algorithm, whose main aim is that each node encodes the data 
of the parameter updates locally, transmits the encoded data to neighbouring nodes, and 
calculates the missing value when the AN generates a list of discontinued nodes. The con-
cept is encouraged by the research [54], but here we propose a new thing where MN is 
terminated, and therefore the missing values have to be calculated. The proposed SADP 
algorithm has the following steps of execution:

Step 1	� Nodes u1, u2,… , ui,… , us Join the DA based on ML.
Step 2	� Each node ui(i = 1, 2, 3, ..., s) has private updates of parameter xi.
Step 3	� Two prime numbers are assumed, represented as (p, q) and have the same length.
Step 4	� ‘q’ divides p-1.
Step 5	� A q-order multiplication group g =  < g > , where, g is generator and represented 

as g = g
p

1
modp2, g1 = h

(p−1)

q mod p
(
g1 ≠ 1

)
 , and h ∈ zp denotes a random value.

Step 6	� Execution of four rounds.
Step 7	� In round 0 , each node ui arbitrarily chooses a private number ri�zg.
Step 8	� Each node shares a number gri ∈ G with nodes ui−1 and ui+1.
Step 9	� The node us shares grs with nodes u1 and us−1.
Step 10	� Node u1 shares with node us , u2.
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Step 11	� Node ui calculates private key griri+1−riri−1MODp2 and uses the private key for 
encryption value updates xi with x̂i =

(
1 + xip

)
griri+1−riri−1MODp2.

Step 12	� In round 1, ui send x̂i to AN ‘A’.
Step 13	� In round 2, as the AN ‘A’ receives x̂i , then checks the MN who failed.
Step 14	� In such case, ‘A’ generate data about terminated nodes.
Step 15	� In round 3 , the remaining nodes calculate the absent number and transmit it to 

‘A’.
Step 16	� Finally, ‘A’ calculates the updates of parameters without decrypting the data.

The above procedure of SADP has been summarized in Fig. 5.

3.1.8 � Security Analysis

In this section, this article theoretically analyses the security of SSAP and SADP. SSAP 
prevents data confidentiality against abnormal malicious attacks. In SSAP, to fool the 
AN into accepting the wrong updates of parameter, an MN is transmitting the mal-
formed p̂3(t) , ill-formed 

{
[â1]j, [â2]j, [â3]j

}
 and even wrong x̂i . The probability of notic-

ing such malicious behaviour is at least 
(
1 −

2N−2

|F|

)
. We can say that the most consider-

able probability is 2N−2|F|  . So, the probability is decreased by increasing |F| , for example, 
by setting |F| = 2265 . Also, according to property (s-1), MN and malicious aggregator 
methods with each other cannot get accurate variable updates. In short, SSAP authenti-
cates nodes without getting the information about the data. The AN is authenticated 
nodes in less than (s–n) MN failures (Sect. 3.1.3).

SADP provides CDH secured from failure nodes and colluding with other nodes. 
When an MN wants to disclose a specific node, for example, ui ’s updates xi then it has to 
calculate g(ri+1−ri−1)ri . Moreover, the MN gets the access to gri+1 , gri , and gri−1 with the help 

Fig. 5   Outline of SADP: Nodes may cause failure in each round, and SAD protects against the collusion 
attacks
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of colluding with others and failure, but it cannot compute g(ri+1−ri−1)ri without the help 
of ri+1 − ri−1 and ri , since it is a CDH problem to calculate g(ri+1−ri−1)ri without having the 
information of ri+1 − ri−1 and ri (Sect. 3.1.4).

3.1.9 � Complexity Analysis

The communication and computation complexity in the proposed protocol is O(sNlogN) 
and O(max{sN, s|p|}) at most, where ‘s’ is many nodes. The total complexity of the pro-
posed protocol is specified in Table 2.

Every node has to complete O(NlogN) non-cryptographic computations for p3(x) , where 
‘N’ represents good circuit size. As every node has to share the numbers, which consist 
of the output of wires in the valid circuit, the communication complexity is O(N) . The 
AN computes the validity of the circuit, which considers the ideal value O(NlogN) of 
each node. In other words, this work exposes that the communication complexity is O(1) . 
The overall complexity of the computation and communication in SSAP protocol is as 
O(sNlogN) and O(sN) , where ‘s’ represents the number of nodes.

In SAD protocol, in Round 0, each node computes keys and parameter updates, acquir-
ing O(1) as computation complexity. However, nodes exchange number gri

2
 , and the com-

munication overhead corresponding to each node is O(|p|) . In Round 1, O(|p|) is the com-
munication overhead because each node transmits the secured updates to the AN. In Round 
2, communication complexity is O(s|p|) at most because the AN returns a list of nodes 
that drop out during communication. In Round 3, O(|p|) is the communication complex-
ity of each node since nodes transmit the AN, the information about missing values. To 
calculate total updates, the AN performs increases, and hence the computation complexity 
is represented as O(s) . In conclusion, we can say that the computation and communication 
complexity in the SAD protocol is O(s) and O(s|p|) , respectively.

3.2 � Proposed Routing Protocol

The proposed protocol uses an ML method to perform the next-hop selection. When the 
connection is linked between the nodes, the buffer of one node has the data to be sent; the 
decision to send the message to another node is called next-hop selection. The data will 
only be transmitted from the transmitter node to the neighbouring receiver node if it has 
a high possibility of being transmitted to the sink either directly or indirectly. Sending the 
data too often may lead to high packet loss and RO. Less frequent data transmission results 
in fewer delivered messages. A successful PDR is determined by the numerous aspects 
representing the past and the node’s ability to send data effectively. The probability of a 
successful PDR at the next hop is considered by a model based on ML and trained, which 

Table 2   Computation and 
communication complexity in 
proposed SSAP and SADP

DA using ML Computation Communication

SSAP O(sNlogN) O(sN)

SADP Round 0 O(s) O(s|p|)
Round 1 None O(s|p|)
Round 2 O(s) O(s|p|)
Round 3 O(s) O(s|p|)
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has the following features: speed, EC, PDR, distance from the data source, distance to a 
data sink, data processing time, and hop count. The time from data generation to the cur-
rent time is signified by data processing time. The data is sent from the transmitter node if 
Pm > k × Pr , where Pm is the final delivery probability, also known as the ML probability 
considered with ML models, Pr represents the probability of the transmitter node deliver-
ing the data to the sink, k ∈ [0, 1] is a normalization factor.

3.2.1 � Computation of the ML Probability P
m

For the calculation of Pm and assessing the performance analysis of the proposed protocol, 
we used two models based on the concept of ML, one NN and the other DT.

1.	 Neural Network Model: This work considered an IoT-WSN model, which is based on 
NN with many unseen layers where 

(
x1, x2,x3,… , x12

)
 are input features, as discussed 

in Table 3, creating an input layer. p1 and p2 are outputs that denote the probability of 
successful and unsuccessful delivery. This work says that p1 is the ML probability Pm , 
which denotes the successful PDR probability of given inputs (i.e.,) 

(
x1, x2,x3,… , x12

)
 . 

This value in IoT WSN functions as a linear clustering of the node’s value in the preced-
ing layer at each node. Value at node hi as Eq. (1)

Table 3   Input features for the proposed algorithm

Features Symbol Description

Probability x
1

Probability for the selection of the next 
hop in the proposed routing algorithm 
(Sect. 3.2.1 – (3))

Buffer size x
2

The size remained in a buffer for saving 
more data packets (Sect. 3.2.1 – (3))

Effective PDR x
3

Number of effective data transmissions 
from the beginning of the simulation 
to the present instance among any pair 
of nodes

Successful PDR x
4

The ratio of practical data moved to 
total transmissions initiated among 
any two nodes

Start node Speed x
5

Node mobility of transmitter node
End node speed x

6
Node mobility of receiver node

Travel time of data source x
7

Distance of the position of interaction 
among any two nodes from the begin-
ning point of data

Distance to data limit x
8

Distance of position of interaction to the 
closing terminus of the data

Data process Time x
9

Time from the formation of the data to 
the present time

Initial node Energy x
10

Transmitter node’s energy
End node Energy x

11
Destination node’s energy

Current hop count x
12

Number of hops, data has travelled 
before reaching the present transmit-
ter node
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where, xj denotes jth a node of the preceding layer, F represents the activation func-
tion, and ‘w’ denotes the weight matrix. For example, the value of the node h1 , which 
is the linear combination of input parameters 

(
x1, x2,x3,…… , x12

)
 is crossed with F, 

Eq. (2)

Hence, during the forwarding feed operation, as a move from the input to the output 
layer, a value is measured at all nodes; therefore, the output layer values are computed. For 
the execution of this step, the weight matrix wij for each linear clustering is computed. It is 
done with the help of training, and computation weights make NN.

Training: Here, the use of the Backpropagation algorithm for training data for NN [58]. 
The training data has the input values 

(
x1, x2,x3,…… , x12

)
 for selecting the next hop, the 

output rules whether the data reach the sink (or) not. If the output is correct, then p1 = 1 
and p2 = 0 , else, p1 = 0 and p2 = 1 . With the help of training, a sample NN formation 
considers place using random values. To decide whether the PDR is successful, the NN 
is learned through the training set. For the resultant value of Pm , the ML model is trained 
based on data stored in the training situation. The data is in the training phase, and data 
access is an example. Following actions are presumed in training data for each training 
example.

	 (i)	 At each layer, the input is distributed to produce the value of the activation functions. 
Then call it NNPrediction . Suppose NNactual be actual values from the training dataset.

	 (ii)	 Error during the training is considered with the sum of the squared difference 
between desired and predicted value represented as given in the least Mean Squares 
(LMS) algorithm [59] (Eq. (3))

	 (iii)	 To reduce the error due to training, the weights are corrected J(w)�(w) , Eq. (4):

Where ‘n’ represents the learning rate which denotes the virtual transformation in weights 
because of error during training.

	 (i))	 The updating the value of w , Eq. (5):

The steps mentioned above are for all the training test cases, which results in a profes-
sional NN with learned weights that enable the best prediction with minimum error.

(1)hi = F

(
n∑

j=1

xjwji

)

(2)h1 = F
(
w11x1 + w21x2 + w31x3 +…+ w121x12

)

(3)J(w) =
1

2

∑(
NNactual − NNPrediction

)2

(4)�(w) = −n
(
dJ

dw

)

(5)w(new) = w(old) + �(w)
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Calculation of Pm (Feed Forward Process (FFP)): For calculation of Pm , the trained NN 
is used based on the input parameter 

(
x1, x2,x3,…… , x12

)
 found in real-time for the selec-

tion of the next hop. The value is computed at each node as we Move from the input to the 
output layer. The linear clustering of nodes of a preceding layer with the F is applied to this 
clustering. With the help of Eq. (2), the FFP is performed where w is calculated from the 
training. As we proceed from the input to the output layer by crossing all unseen layers, 
the value of the neuron is calculated using Eq. (2), which is also used for calculating node 
value for the subsequent layers. The closing output is p1 and p2 , where p1 represents Pm.

2.	 Decision Tree Model: Fig. 6 shows a DT model, where w1 and w2 denotes output repre-
sents the successful PDR and unsuccessful deliveries respectively,  

(
x1, x2,x3,…… , x12

)
 

are input, and nodes denote the decision based on input. For example, starting at the 
tree’s root for a group of inputs, we proceed to leaf nodes. For example, if x1 = 0.8 , then 
the prediction of input belongs to a class w2 . Let us suppose that we reach node N with 
the value x9 = 1.8 , then the prediction class becomes w1 and Pm the node’s probability 
of falling into w1 from the training set when node N has moved.

Fig. 6   Decision Tree
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Formation of DT: Formation of DT is recursively taking place with the help of training 
data as given below:

BuildTree(S) : The most suitable characteristic and the equivalent value for forming the 
root of the DT is initiated first. x1 is the first attribute selected in the first recursive call and 
x1 > 0.3 is the decision. The most common method for calculating the attribute for splitting 
the data set is entropy impurity [59], Eq. (6)

where P
(
wj

)
 represents the part of outlines at a specific node which lies in the wj Group. 

For the splitting function, the query which decreases the impurity is selected [Eq. (7)]

where, Nx is left nodes and Ny denotes the correct nodes and i
(
Nx

)
 and i

(
Ny

)
 denotes their 

respective impurities. Let us suppose, if x1, x2,x3,…… , x12 are features, then the features 
which have a maximum value of �(i) is considered the root of S.

1.	 Based on the features estimated above in Step 1, dataset S split into Sx and Sy in which 
Sx resembles the left subtree of the root of S and Sy resembles the correct subtree.

2.	 The functions BuildTree(Sx) and 
(
Sy
)
 are recursively for the creation of the root.

This method mentioned above is continuous until the maximum value of �(i) falls below 
a predetermined threshold value. In this work, the C4.5 service of DT [60] and gain ratio 
impurity equations are used for the calculation of �(i) where a modification in impurity is 
reduced by dividing it with entropy, the enhanced J48 DT by the WEKA tool [60] is used.

Computation of Pm : Because the DT is developed entirely based on the input value, the 
conditions for DT are concerned until a leaf node is moved. Class calculated at the leaf 
node is used for the determination of Pm with the help of the probability distribution from 
the training set. For example, if a class w1 is predicted, Pm is calculated by the values in w1 
set from the predecessor node divided by the number of iterations of the predecessor noted. 
Input features 

(
x1, x2,x3,…… , x12

)
 are used by the proposed protocol for the calculation of 

Pm . The selection of the next hop in the DT and NN.

3.	 Computation of Normalization Factor Represented as K and Probability: Though the 
router is not used directly to select the next hop, the PDR probabilities are updated and 
used as variables for the proposed protocol based on ML. The protocol is implemented 
by updating probabilities, so nodes communicate regularly with high PDR success rates. 
Equation (8)

If specific nodes are not connecting, their PDR probabilities must also become old, 
Eq. (9)

where � represents the factor for aging and k denotes the period since the previous aging 
occurred.

(6)i(N) = −
∑

P
(
wj

)
logP

(
wj

)

(7)�(i) = i(N) − P(x)i
(
Nx

)
− (1 − P(x))i

(
Ny

)

(8)P(x, y) = P(x, y)old +
(
1 − P(x, y)old

)
× Pinit

(9)P(x, y) = P(x, y)old × (�)k
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The protocol also observes the tentative behaviour between the nodes. For example, 
let us consider that there are three nodes (n1, n2, n3), (n1, n2) frequently connect, (n2, n3). 
In this situation, a message sent to n3, if forwarded from n1, has a high PDR probability, 
Eq. (10)

This PDR rate is an integral part of the proposed ML algorithm because it proposes the 
best method to send node and link logs, which is necessary to select the next hop.

The value of the K lies in the range of (0, 1). The closing value of the normalization 
factor is decided by multiple values of K in the range of (0, 1) and by noticing the number 
of data messages delivered. The final PDR probability vs. normalization factor K value is 
a Gaussian curve, and the value of K decided by the point which denotes the highest PDR 
probability. This value is assumed into consideration in this proposed work.

Buffer size denotes the level of the receiver node in terms of storage for forwarding the 
data packet (Eq. (11)).

(10)a
(
bc
)
P(n1,n3) = a + b + P(n1,n3)old

+
(
1 − P(n1,n3)old

)
× P(n1,n2) × P(n2,n3) × �

(11)Buffer Occupancy = buffer Sizeavailable − message Sizeto Be Forwarded.

Fig. 7   Proposed framework
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3.2.2 � ML Process in Proposed MLBDARP

The proposed protocol has solved the following hop selection problem with the help of 
PDR probability when selecting the next hop. It depends on variables like probability, 
buffer size, history of the communication, and node speed. The ML process develops a 
model with input features at execution time and output PDR rate. The ML model training is 
based on input and output values in real-time scenarios. The process of ML is effective for 
assessing values for the selection of the next hop, which results in the prediction of PDR 
rates is Pm.

3.2.2.1  Proposed Algorithm  The proposed algorithm for the selection of the next hop is 
explained below:

(a)	 Training: The data is generated for the next hop by executing the training scenario. 
The sender node sends the message to the receiver node, and the entry in the data 
determines if the PDR was successful. To confirm the successful PDR in all cases, use 
the standard routing protocol [46].

After the DA, learning models based on networks and decisions are formed. Whenever 
the data is sent, the next-hop selection choice is made, and the following computations are 
done:

	 (i)	 Compute the probability Pr.
	 (ii)	 Calculate the ML probability, Pm which is based on a trained ML model.
	 (iii)	 Send data from the transmitter to the desired node if Pm > K × Pr.

Table 4   Parameters of the Simulation

Test variables Description Values Description

Network simulator NS-3, Version 3.33 PHY /MAC IEEE 802.11
Network Area 2500 × 2500 m Propagation Two-ray ground
Connection UDP/CBR Mobility/channel 

type
Random way point/

wireless channel
Mobility (ms) 2, 6, 10, 14, 18, 22, 26, 30, 34, 38 Data (kbps) 2, 4, 8, 16, 32, 64, 

128, 256
Source and destination Random Antenna Omnidirectional
Packet size 2048 bytes Time 1000 S
Protocols MLDAR, DDAR, WDARS Language C++ and Python
Scenario (mobile 

nodes)
25, 50, 75, 100, 125, 150, 175, 200, 

225, 250
MN 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10
Node energy 20 dBm NS3-AI OpenAI and NS-3
Numerology 1 Operating Frequency 100 MHz
Bandwidth 100 MHz Ambient noise level  − 73 dBm
Mobility module Constant speed Node energy 100 J (%)
Algorithm Random Robin Threshold energy 40 J (%)
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4 � Protocol Implementation and Simulation Results

The implementation of the proposed MLBDARP is discussed in Sect. 4.1, and the corre-
sponding simulation results and their comparison with the existing research work [34, 61] 
have been explained in Sect. 4.2.

Table 5   Summary of the percent 
increase in NT of MBLDARP vs. 
other Protocols

Parameters DDARP (%) WDARSP (%)

Nodes 43.17 10.02
Data rate 51.72 22.01
Node mobility 25.31 19.51

Fig. 8   No. of nodes versus NT

Fig. 9   Data rate versus NT



2608	 N. Chandnani, C. N. Khairnar 

1 3

4.1 � Proposed Protocol Implementation

The proposed implementation model for running Artificial Intelligence (AI) algorithms in 
Network Simulator-3 (NS-3) is represented in Fig. 7. Different processes are involved in 
running NS-3 and AI. There are mainly two cases in which data transmission is required: 
transmitting data to train and test the AI in NS-3. For setting up the network and topology, 
NS-3 is used, which creates information for training in AI.

The NS-3 provides settings for validating AI algorithms across all network layers by 
generating simulated scenarios. It appears to include a function in NS-3 for analyzing a 
well-trained model. Because the NS-3 codes are all open-source, readily available, and doc-
umented, the analysis might occur in any inner layers (or) modules. In addition, the NS-3 
may act as a data generator. Consider a mobile network where users join or disconnect 

Fig. 10   Node mobility versus NT

Fig. 11   Malicious nodes versus NT
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from the base station (or) move from one side to the other. In general, this work is fre-
quently about the user’s node position and speed and classifying its channel state and user 
practices. A scheduling model might be trained using this data.

NS-3 efficiently handles the learning model’s simulation creation and lower-layer data 
collection. As a result, NS-3 is regarded as a data generation and testing tool for different 
needs. This module supports the integration of many AI systems that use Python scripts. 
We may retrieve data from shared memory using the interfaces on the Python side, then 
continue training the model or return the output for testing. It does not affect the AI’s core 
functioning, data processing, or set-point technique. As a result, rerunning the existing 

Fig. 12   Nodes versus EED

Fig. 13   Data rate versus EED
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methods in NS-3 is easy. The shared memory pool integrates the NS-3 and AI via the NS-
3-Ai module. Both sides access and control the memory, which NS-3 primarily controls. 
The NS-3 module may shift the data sent through the two sections from training and test-
ing data to control signals. As all types of communications are broadcast through the NS-
3-AI module, it represents distinct memories for complex contexts in this method.

Fig. 14   Node mobility versus EED

Fig. 15   Malicious nodes versus EED 

Table 6   Summary of the percent 
decrease in EED of MBLDARP 
vs. other protocols

Parameter DDARP (%) WDARSP (%)

Nodes 42.83 24.32
Data rate 32.93 13.95
Node mobility 38.84 21.28
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a.	 Hardware Configurations: Intel (R) Core (TM) i7-8550U CPU, 1.80 GHz, 1992 MHz, 4 
Core(s), 8 Logical Processor(s); RAM: 16 GB; HDD: 2 TB; Network: Gigabit Ethernet 
and Wi-Fi

b.	 Software Configurations: OS: Ubuntu 20.04.2.0 LTS; Compiler: GCC 9.3; Parallel Com-
puting: OpenMPI 4.0.3; Environments: PyTorch, Keras and TensorFlow dependences

c.	 Hyperparameter Configurations: Learning rate method: exponential decay; mini-batch 
size: 64; training epochs: 100.

Fig. 16   Nodes versus RO

Fig. 17   Data rate versus RO
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Fig. 18   Node mobility versus RO

Fig. 19   Malicious nodes versus RO

Table 7   Summary of the percent 
decrease in RO of MBLDARP 
vs. other protocols

Parameter DDARP (%) WDARSP (%)

Nodes 39.85 29.85
Data rate 44.27 23.55
Node mobility 14.54 9.11

Table 8   Summary of the percent 
increase in PDR of MBLDARP 
vs. other protocols

Parameter DDARP (%) WDARSP (%)

Nodes 5.30 7.61
Data rate 10.17 4.62
Node mobility 4.27 2.26
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5 � Simulation Results

The benchmark tests the effectiveness of the recommended protocol MBLDARP, in which 
secure DA and a routing method based on ML are used, as discussed in Sect. 3, against 
DDAR [34] and WDARS [61] using NS-3. For that purpose, 25, 50, 75, 100, 125, 150, 
175, 200, 225, and 250 SN of standardized features with variations in MN from 1, 2, 3, 4, 
5, 6, 7, 8, 9 and 10 are installed in the IoT-WSN. While routing, MN fails to receive data 
packets. The NT, RO, EED, PDR, and EC QoS metrics of the MBLDARP simulation study 
are assessed by comparing them to those of other protocols [34, 61]. Table 4 summarises 

Fig. 20   Nodes versus PDR

Fig. 21   Data rate versus PDR
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the simulation variables. This paper has added the idea of the proposed protocol, which 
is discussed in Sect. 3, and split NS3-GYM, a toolkit, into two communicating processes 
(i.e.,) NS-3 and OpenAIGym (Python)). This section compares the MBLDARP, DDARP, 
and WDARSP recommended protocols. The test considered data rates of 2, 4, 8, 16, 32, 

Fig. 22   Node mobility versus PDR

Fig. 23   Malicious nodes versus PDR

Table 9   Summary of the percent 
decrease in EC of MBLDARP 
over other protocols

Parameter DDARP (%) WDARSP (%)

Nodes 10.96 9.27
Data rate 15.48 8.01
Node mobility 3.19 1.44
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Fig. 24   Nodes versus EC

Fig. 25   Data Rate versus EC

Fig. 26   Node mobility versus EC
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64, 128 and 256 kbps, a group of 25, 50, 75, 100, 125, 150, 175, 200, 225, and 250 mobile 
nodes, and this paper statement roughly 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 are the MN that enter 
the network and are responsible for malicious attacks (Table 5).

Network Throughput: It equals the total PDR to the base station, split by the simulation 
time. It is high for the best IoT-WSN performance (Figs. 8, 9, 10, 11).

From the above graph, it is evident that in cases of malicious settings, this proposed 
protocol, MBLDARP, outperforms other protocols with an 11.23% increase in NT over the 
DDARP protocol and a 22.69% increase over WDARSP (Figs. 12, 13, 14, 15).

End-to-End Delay: EED is an acronym for "average time". It refers to the time required 
for data segments to travel from their corresponding source nodes to their destination base 
station. It is recommended to maintain its standard configuration for enhanced performance 
of the IoT-WSN (Table 6).

From the above graph, it is evident that in cases of malicious settings, this proposed 
protocol, MBLDARP, outperforms other protocols with a 9.31% decrease in EED over 
the DDARP protocol and an 18.91% decrease over WDARSP (Figs. 16, 17, 18, 19).

Routing Overhead: RO refers to the total data packets implemented for route discov-
ery and maintenance processes. It is recommended to maintain its low setting for the 
greatest performance of the IoT-WSN (Table 7).

From the above graph, it is evident that in the case of malicious settings, this pro-
posed protocol, MBLDARP, outperforms other protocols with a 10.30% decrease in RO 
over the DDARP protocol and a 19.53% decrease over WDARSP.

Packet Delivery Ratio: PDR is the ratio of data packets at the receiving node to those 
that were sent (Table 8). It is proposed to work to achieve the highest possible results 
from the IoT-WSN (Figs. 20,21, 22, 23).

From the above graph, it is evident that in the case of malicious settings, this pro-
posed protocol, MBLDARP, outperforms other protocols, with a 6.85% increase in 
PDR over the DDARP protocol and a 4.26% increase over WDARSP.

Energy Consumption: EC refers to the energy level implemented by the network 
nodes to perform computation and communication (Table 9). It is suggested to keep it 
low for the greatest performance of the IoT-WSN (Figs. 24, 25, 26, 27).

Fig. 27   No. of MN versus EC
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From the above graph, it is evident that in the case of malicious settings, this pro-
posed protocol, MBLDARP, outperforms other protocols with a 3.94% decrease in EC 
over the DDARP protocol and a 5.48% decrease over WDARSP (Table 10).

6 � Conclusion

This research paper has proposed a Machine Learning Based Data Aggregation and Rout-
ing Protocol (MBLDARP), Data Aggregation (DA) and a routing method for the Internet 
of Things (IoT)- Wireless Sensor Network (WSN). This practical method is a novel work 
that authenticates nodes’ information in DA based on Machine Learning (ML) and ensures 
data privacy. It also prevents colluding nodes and aggregators and the failure of nodes. 
The proposed DA protocol maintains nodes’ data privacy within the acceptable overhead. 
This paper also proposes a novel routing protocol based on ML for IoT-WSN. Simulation 
proved that the proposed protocol is best compared to the existing protocols. These results 
highlight that the proposed MBLDARP performs significantly better than the currently 
available methods. The proposed protocol MBLDARP is compared with other protocols, 
Differentiated Data Aggregation Routing Protocol (DDARP) and Weighted Data Aggre-
gation Routing Protocol (WDARP), as shown in Table 10 of Sect. 4. It is experientially 
proven that, in a malicious setting, the proposed protocol has proven improvement in all 
the considered QoS metrics (i.e.,) NT is an 11.23% increase, RO is a 10.30% decrease, EC 
is a 3.94% decrease, EED is a 9.31% decrease, and PDR is 6.85% increase over DDARP, 
and NT is a 22.69% increase, EC is a 5.48% decrease, EED is a 18.91% decrease, PDR is a 
4.26% increase, and RO is 19.53% decrease over WDARSP.
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Table 10   MBLDARP recommends QoS comparative evaluation with other protocols in malicious settings 
(i.e., when some IoT-WSN nodes are MN)

QoS (%) DDARP (%) WDARSA (%) Nodes (MN)

NT (increase) 11.23 22.69 25(1), 50(2), 75(3), 100(4), 125(5), 150(6), 
175(7), 200(8), 225(9), 250(10)EED (decrease) 9.31 18.91

RO (decrease) 10.30 19.53
PDR (increase) 6.85 4.26
EC (decrease) 3.94 5.48
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