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Abstract
Distributed computing workflow is an effective paradigm to express a range of applica-
tions with cloud computing platforms for scientific research explorations. One of the most 
difficult application areas of cloud computing technology  is task scheduling. In a cloud, 
heterogeneous context, job scheduling with minimal execution cost and time, as well 
as workflow reliability, are critical. While working in the heterogeneous cloud environ-
ment, tasks that are successfully executed are widely identified by considering the failure 
of the processor or any communication  technologies link. It will also have an impact on 
the workflow’s reliability as well as the user’s service quality expectations. This research 
paper proposes a Critical Parent Reliability-based Scheduling (CPRS) method that uses 
the reliability parameter to plan the task while taking into account the user-defined cost 
and deadline metrics. The effectiveness of the algorithm is compared to current algorithms 
utilizing scientific workflows as a benchmark, such as Cybershake, Sipht, and Montage. 
The simulation results supported the assertions by efficiently allocating resources to the 
cloudlets and stabilizing all of the aforementioned parameters using sufficient performance 
metrics growth.
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1 Introduction

Cloud computing provides distributing computing environment to access resources over 
the internet [1]. Cloud computing provides an infrastructure of on-demand resources 
and services. The goal of cloud computing is to distribute resources in order to attain 
high availability, reliability, and less failure rate [2]. The services provider and the cus-
tomers negotiate cost, time, deadline, reliability, etc. quality of service (QoS) param-
eters and maintained the service level agreement between the service provider and the 
customer [3]. In a large-scale heterogeneous service environment, reliability is a chal-
lenging task. In cloud computing, scientific workflows are designed in which tasks are 
represented as nodes and edges are the dependencies among the tasks. Several scientific 
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workflows exist in which thousands of tasks are under a single workflow on the public 
cloud [4]. Resource management is one of the challenging issues for a service provider 
to execute such types of numerous workflows. In cloud computing, workflow procedure 
is carried out in two stages, first stage involves identifying and acquiring cloud resources 
to conduct the workflow activities. The second stage provides a timeline for assigning 
every task to an appropriate resource in order to meet Quality of Service (QoS) criteria 
including deadline and task priority considerations [5].

Prior studies on workflow scheduling in conventional parallel computing have mostly 
concentrated upon that task allocation phase since such distributed platforms include a 
monolithic set of resources that specification is immediately known. Whereas most inves-
tigators in conventional distributed systems concentrated on minimizing task scheduling, 
cloud research focused on certain critical characteristics such as cost, power usage, and 
safe performance [6]. A number of heuristics and metaheuristics scheduling algorithms 
have been designed to execute these scientific workflows of NP-hard problems [7]. To 
achieve an optimal solution to these kinds of problems, heterogeneous earliest-finish-
time (HEFT) a list-based heuristic algorithm, min-min algorithms have been proposed to 
list the task in upward ranking and schedule them to different processors [8].

In a cloud heterogeneous service environment, many factors affect the reliability of the 
system. A failure can be occurred due to the processor or any kind of network failure. In a 
workflow, there exist task dependencies, so there is a need for communication between the 
task. If a communication link failure occurred then it results in an increase in its cost and 
execution time. So, the reliability of the node is down. So, meeting the QoS requirement 
like cost, deadline, and reliability is one of the challenging tasks [9–12]. To deal with the 
reliability of a cloud system, reliable heterogeneous earliest finish time (RHEFT) is con-
sidered the product of instruction failure rate with the execution time of the instruction to 
optimize the reliability and make-span [13].

Communication link failure and processor failure are the major factors that affect the 
quality-of-service parameters. Reliability is the probability of successful execution of the 
workflow schedule. Improving reliability by considering deadline and cost of execution 
is the main concern of the current study. Many fault-tolerant algorithms like quantitative 
fault-tolerant scheduling algorithm (QFEC) and resource redundancy minimizing algo-
rithm with deadline and reliability requirements (DRR) are also explored to address the 
reliability of the workflow [10, 14]. In these algorithms task failure on a processor is cal-
culated while ignoring the workflow structure. These methodologies do not consider the 
ranking of tasks while assigning the resources. Our proposed method considers the prior-
ity of individual tasks for resource allocation, that helps to optimize the cost value and 
resource scheduling in the cloud. The major contribution of this paper is mentioned below.

• Formulation of a novel approach named Critical Parent Reliability-based Scheduling 
(CPRS) for workflow scheduling which yields optimum reliability-based scheduling by 
considering cost, and deadline from users.

• An architecture for task prioritization and reliable resource allocation.
• Performance of proposed approach compared with the results of some existing algo-

rithms.

In this paper, cost and time requirements are considered together with reliability. The 
initial step is to rank the resources. Following that, tasks are prioritized, and a task clus-
ter, as well as a resource cluster, are created depending on execution time. Tasks are then 
mapped to appropriate reliable resources.
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2  Literature Survey

Workflow scheduling is an NP-complete problem. In this paper author surveyed, the best 
effort-based scheduling algorithm and QoS-based scheduling algorithms in the context of 
grid computing [15]. The best-effort-based heuristic scheduling algorithms such as Suf-
frage, Minimum Completion Time, Min-min, and Max-min are discussed [16]. Workflow 
scheduling algorithms are categorized into two categories: QoS-based constrained and 
QoS-based optimization [17]. To optimize user’s QoS requirements and specifications, 
QoS-based constrained algorithms are used. Some author’s explored minimizing cost while 
limiting the time.

Sakellariou et al. [18] proposed a scheduling workflow to minimize the makespan. The 
proposed workflow ensures the schedule must be completed only when the cost factor is 
within the budget or tasks are remapped to low-cost VMs to meet the budget constraint. All 
QoS specifications are optimized by using the QoS optimization algorithm [19].

In this area, some research work focused to make a balance between time and cost 
[20, 21]. Further, it is assumed that at any desired time the processors are accessible. But 
actually, in the real scenario, network failure, and processor failure are unavoidable. Due 
to several reasons i.e., failure of link, variation in power, and software/hardware failures 
resources may become inaccessible [22]. Henceforth it is mandatory to consider the relia-
bility of properly-organized workflow scheduling, to reduce the impact of workflow execu-
tion failure [23].

Reliability is calculated by the occurrence of failure of every processor obeying the the-
ory of Poisson distribution having failure rate (λ), which is expected no of failure in unit 
time t having positive real value [24]. According to the exponential distribution function, 
the Reliability of the processor is represented by e − �t . To enhance the reliability of the 
system within defined deadline constraints, two algorithms minimum cost match schedule 
and a progressive reliability maximization schedule were designed [25]. An effective fault-
tolerant reliability cost-driven algorithm is proposed in which scheduling algorithms can 
tolerate one failure in the system [26]. The product of failure rate and execution time of 
independent tasks is analyzed with the extension of the heuristic-based HEFT algorithm 
proposed by Dongarra et al. [13]. A task is executed on a processor having the lowest value 
of the product at that time [27].

The reliability of resources i.e., failure of processor or any node links for communica-
tion are addressed by Nik et al. [21]. The authors propose four algorithms that minimize 
the cost by considering the user-defined reliability and deadline. It firstly divides the work-
flows into clusters by taking critical parents. Further resources are assigned as per taking 
the reliability of the resource and applying the time constraint-based algorithm to meet 
the defined constraints. Reddy and Kumar [28] presented the regressive whale optimiza-
tion (RWO) method for cloud services task scheduling i.e., an optimization method that 
scheduled tasks based on a genetic algorithm. The fitness function is determined through 
the constraints of power consumption, and resource usage. The suggested technique var-
ies from the conventional whale optimization algorithm (WOA) in the formal declaration 
stage, in which a linear extrapolation position update is introduced. The response is derived 
arbitrarily in this methodology, with no concern of such resource sort. The Resource Sort 
delivers the relevant data to VM, that aids in meeting the deadlines constraint. Moreover, 
it dismisses cloud properties like resilience, and remuneration valuation, as well as the het-
erogeneous nature of infinite resources, such as performance discrepancies besides VM 
accretion and cancellation latencies.
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Chakravarthi et al. [29] proposed a cost-effective firefly-based algorithm (CEFA) for 
resolving workflow interruptions during a Cloud computing on infrastructure as a ser-
vice (IaaS) podium. The suggested CEFA employs a unique technique for task encapsu-
lation, population initiation, with fitness analysis that provide effective workflow execu-
tion cost and optimal completions under deadline constraint. Zhang et al. [30] suggested 
an efficient priority and relative distance (EPRD) methodology for reducing schedul-
ing algorithms duration in constrained workflow applications while maintaining time-
line constrain. This technique is made up of two phases. To begin, a task precedence 
buffer is created. Afterward, VM is assigned to a task based on the relative position. 
EPRD provides a technique that has the potential to significantly enhance VM usage and 
scheduling efficiency.

Iranmanesh et al. [31] proposed a hybrid genetic algorithm named “deadline-constraint 
and cost-effective hybrid genetic algorithm for task scheduling (DCHG-TS)”. Due to the 
consideration of load balancing factor and adaptive fitness, it performs better performance. 
Additionally, a heuristic method is employed among the estimated sample chromosomes, 
as well as an efficient process used to generate the remaining fundamental population 
genomes. Green cloud data centers (GCDCs) proposed by Yuan et  al. [32]. The authors 
employed spatial variation and fragmentation in such inter strategy that produces an opti-
mal balance amongst time and expense to perform overall activities. In this system, nev-
ertheless, the starting population is formed at random and does not accommodate for the 
optimum load allocation among processors. Concurrently, in addition to its great simplicity 
and flexibility, new and updated operators in the genetic algorithm have been employed, 
that considerably decreases the time required to resolve to the best solution.

3  Cloud System Model

In workflow scheduling, scientific workflows are represented as a directed acyclic graph 
i.e., DAG. Let G be a graph G = (V,E,ET,TC) where V  is the set of vertices that repre-
sents tasks 

(

T1, T2,… Tn
)

 , (Ei,Ej) is the edge or link from task Ti to Tj [33]. If more than 
one entry nodes and exit nodes exist then two dummy nodes Tentry and Texit will be created 
having zero cost. TE is r ∗ s matrix in which TEi∗j the execution time of Ti on resource Rj .  
TC is the transmission cost with r ∗ r matrix in which TCi,k is the data transmission cost 
from Ti to Tk.

The following are the general attributes used in the scheduling of tasks [34].

1. Precede ( Ti ) denotes the predecessor of task Ti is given directed acyclic graph. If any 
task has no predecessor, then it means it is the entry task. If any DAG has multiple entry 
vertex, then a dummy node is created in the graph having zero weight and zero com-
munication link weight.

2. Succ ( Ti ) denotes the successor of task Ti . If no successor is existed, then called it is 
an exit node. If a number of exit nodes exist, then a dummy exit node is created in the 
graph with zero weight and zero communication links from the multiple exit nodes.

3. Makespan: It is the maximum execution time of the longest task in the DAG. It is 
denoted as

(1)Makespan = Max
{

FT
(

TL
)}
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FT  is the last finish time of the exit node. If more than one exit nodes exist then TL is 
considered which has taken maximum time to complete.

4. Critical Path ( CP ): the longest path in the schedule of DAG is considered a critical path. 
The critical path of having minimum computational cost is taken into account for the 
scheduling of tasks.

5. ST(Ti , Pj ): it denotes the start time of a task Ti on processor Pj and computed as

where 
{

Tavail
(

Pj

)

} is the availability of a processor Pj to start execution of Task Ti , Tl 
is the predecessor of task Ti and FT

(

Tl
)

 gives the last finish time of the predecessor of 
the current task.

  Compare the finish time of predecessor and availability of the processor to execute, 
the maximum value of these becomes the starting time of the current task. The  Cl,i is 
the commination cost it can be zero if predecessor node Tl is assigned to processor ( Pj

).
6. EFT(Ti , Pj ): it is the Expected Finish Time of a task Ti is on a processor Pj which is the 

sum of starting time and computational cost of execution of the task and defined as

4  Problem Formulation

Reliability of resources are addressed in this paper as any workflow execution cannot be 
guaranteed to be 100% accurate. However, if workflow schedules satisfy the user’s reliabil-
ity constraint while considering cost, makespan and deadline then that workflow execution 
is considered reliable.

Every cloud system tries to execute tasks with a maximum success rate. The following 
is a formal description of the problem addressed by this research. The input of the work-
flow scheduling has given workflow W, deadline D, cost C and reliability R. The problem 
is to map the tasks to the processors by generating workflows so that cost and time are 
minimized while meeting the reliability of the workflow. Rworkflow is the reliability of the 
workflow.

To attain the reliability of the workflow, the makespan of the workflow is calculated 
and compared with the deadline WDeadline  of the workflow. The calculated reliability of the 
workflow is compared with the required reliability of the workflow [35].

This paper proposed an approach schedule of the workflow while considering the 
makespan, optimized cost value, and deadline of the individual task as well as its 
whole workflow. As shown in Fig. 1, the proposed approach firstly initializes the task 

(2)ST
(

Ti,Pj

)

= max

{

Tavail
(

Pj

)

, max
Tl∈precd(Ti)

{

FT
(

Tl
)

+ Cl,i

}

}

(3)EFT
(

Ti,Pj

)

= ST
(

Ti,Pj

)

+Wi,j

WMakespan = AFTL − ASTentry

WMakespan ≤ WDeadline

Rworkflow ≥ R
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to the processor by getting inputs from the user and computing the cost of computation 
and communication using Eqs. (4) and (5). Afterward, it evaluates the optimized cost 
of communication as well as computation, this optimization is done through Eq.  (6). 
Based upon the optimized costs, the task is ranked to predict the optimized resource by 
computing the reliability of resources in the task deadline. Thus, our proposed method 
helps to optimize cost, reliability as well as a timeline for every task in the workflow.

5  Proposed Critical Parent Reliability‑Based Scheduling (CPRS)

The motive of the research is to develop a model in which the scheduling of workflow 
is discussed. The reliability of the system is to calculate the failure rate of the pro-
cessor. In DAG-based applications failure rate is described by the Poisson distribu-
tion (�) . Reliability is denoted as e(−�t) . Reliability depends on reliable communication. 
In CPRS methodology, shown in Fig. 1, inputs are taken from the user for workflow 
application and sent to the manager of workflow where task computed based on rank-
ing and mapped to the virtual Machine ( VM ). Further, the result is evaluated using the 
VM and remapping process for the reliability prediction of the assigned resource. Fur-
ther steps that are taken to predict the reliability are discussed below.

Workflows Parse

PEFT Ranking
VMM

Reliability Predictor

Threshold Workflows Manager

VM1 VM 2

Remapping

Mapping 

User 

Workflow 
Schedule

Check Deadline

Analysis Cost

Analysis Time

W
or

kf
lo

w
 A

pp
lic

at
io

n
vm vm vm vm vm vm vm… … …

Fig. 1  Architecture of proposed model
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5.1  Rank the Tasks

The workflow is represented by DAG. In the DAG approach, V  is the vertices which repre-
sent task and E

(

ei, ej
)

 is the dependency of task Tj over the task Tj . It means task Tj cannot 
be started until Task Ti will be executed completely.

5.1.1  Computational Cost Calculation

V × P is the computational cost matrix. Each weight Wi,j in V × P matrix denotes the 
expected execution time the task Ti to execute on Processor Pj.

Here, Wi is average execution time used to calculate priority rank for the task.

5.1.2  Communicational Cost Calculation

Each edge in the DAG is associated with weight Ci,j . It is the communication cost between 
task Ti and Tj.

Here, L is the latency of the processor, B is the network bandwidth of the link, datai,j is 
the amount of data transferred between Ti and Tj , Ci,j = 0 ; if Ti and Tj are executed on the 
same processor P.

5.1.3  Calculate Optimized Cost

A cost-optimized matrix is generated in which rows represent the number of tasks of a 
workflow and column represents the number of processors. OC

(

Ti,Pj

)

 indicates the maxi-
mum execution cost from Ti from its child nodes to the exit node of the workflow. The value 
of OC of task Ti on processor Pj is calculated recursively by using the equation below: -

where Ci,j is the communication cost of dependent tasks in the workflow. Its value is zero 
if dependent tasks are allocated to the same processor otherwise it will be calculated from 
Eq. (1). w

(

Ti, Pw
)

 is the execution cost of the task Ti on Processor Pw . OCT  value for the 
last exit node is zero for all Pk ∈ P.

5.2  Compute Priority of the Tasks

Firstly, calculate the optimized cost (OC) of each task and take the average of the cost com-
puted of a task on each available processor. The calculated average value is used to rank the 
tasks. This process is used to calculate the rank of the tasks from the starting node to the 

(4)Wi =
∑

j∈P

Wi,j

P

(5)Ci,j = L +
datai,j

B

(6)

OC
(

Ti ,Pj

)

= max
Tj∈Succ(Ti)

{(

min
Pw∈P

(

OC
(

Ti, Pw
)

+ w
(

Ti, Pw
)

+ Ci,j

)

∥

(

min
Pw∈P

{(

OC
(

Ti, Pw
)

+ w
(

Ti, Pw
)

, ifPw = Pk

)}

OC
(

Texit ,Pk

)

= 0 if Texit is the last node for ∀P
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exit node with the longest path. In this way prepare schedules of the tasks and rank the task 
with minimum cost value. It is formulated as

To execute the task, we need to select the processor which provides the guarantee that 
the task will be completed before its defined deadline. So, calculate the earliest finish time 
of the longest path which is the path from the selected node to the exit node. We calculate 
the optimized time of the processor by using its Earliest Finish Time, EFT , and its opti-
mized cost value by using Eq. (8).

5.3  Proposed CPRS Algorithm

In order to calculate the reliability of workflow, calculate the sub-reliability of each task in 
the workflow. The above algorithm computes the reliability of individual tasks. Thereafter, 
computes the overall reliability of the workflow by the use of Eq. 9.

(7)Rank
�

Ti
�

=

∑P

k=1
OC(Ti,Pk)

P
.

(8)OEFT = EFT(Ti,Pj) + OC
(

Ti, Pj
)

Fig. 2  CPRS working steps
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Here R is the reliability requirement of the workflow and Ract is the calculated reliability of 
the workflow. The proposed algorithm calculates the reliability of different types of scien-
tific workflow applications. The working steps of proposed algorithms are shown in Fig. 2.

The following algorithm demonstrates the model CPRS:

For selecting the appropriate resources to execute the workflow task, the computation 
reliability ( Rcmpj ) is computed using Eq. (10).

(9)Ract =
R

∑n

i=1
Ri

�

n

(10)Rcmpj(t) = e−�t(TETi,j)
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Here, i ∈ nooftasksexecutedonprocessorPj ∈ P , wi,j is the mean execution time of Ti on 
processor Pj and � is the processor failure rate that is assumed to be constant. There exists 
a heterogeneous computing environment in the cloud, so computation reliability may vary 
from resource to resource.

Communication Reliability of link ( Rcmmj,k ) is calculated as per the execution of parent 
and its child task on the same resource or different. In this proposed work comparison of 
reliability with the different existing algorithms is done. The proposed work performed bet-
ter results as compared to existing.

6  Results and Analysis

To validate the results of the CPRS algorithm, sample workflows are randomly generated 
with a different number of tasks from 20 to 30 and simulated on cloudSim. Three different 
scientific workflows Cybershake, Montage, and Sipht are studied to analysed the reliability 
and deadline of every workflow of the CPRS scheduling algorithm. The simulation results 
are validated using Cybershake, Montage, and Sipht datasets and compare the results with 
the existing efficient priority and relative distance (EPRD) algorithm and Cost-Effective 
Firefly based Algorithm (CEFA). The target reliability of the workflow is compared with 
the actually obtained reliability.

6.1  Experimental Setup

The virtualized environment has been realised by infusing numerous simulation parameters 
that have been created by randomising the workflow model established under Sects. 3 and 
4. This has been done to analyse and measure the performance of the suggested approach. 
By varying the (a) number of virtual machines, their operating frequencies further mapped 
on to Million Instructions Per Second (MIPS), and computation capacities of machines 
considered for task allocation, a number of parameters, essentially the cloud-based expe-
dients and resources underlying the workflow model, are considered. Furthermore, each 
virtual computer includes (b) existing workload; various (c) tasks may be referred to as 
Cloudlets, their length, and eventually, showing the (d) scientific workflow with counts and 
types.

Table 1 summarises the set of parameters and metrics, as well as some supplementary 
configuration details in terms of hardware requirements.

The experiment on Montage scientific workflow with 20 tasks and 30 tasks are simu-
lated, shown in Fig. 3a and b. Because the proposed algorithm CPRS provides the solu-
tions of montage workflow with less makespan, shows an average of 4% and 2% better 
results as compared to EPRD and CEFA respectively.

Similarly, reliability is compared with Cybershake and Sipht Workflow using 20 and 
30 tasks. The results show that CPRS algorithm perform better as compared to the EPRD 
and CEFA algorithm. In Cybershake workflow, Fig. 4a and b illustrate that proposed algo-
rithm results also show better outcome as compared to EPRD and CEFA algorithms. It 
has been observed from these graphs that EPRD performs an average of 6% and 4% better 

(11)TETi,j =

n
∑

i=1

wi,j
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performance for 20 and 30 tasks. But in the case of Sipht workflow, results are slightly var-
ied from the existing algorithm.

As Sipht is a complex workflow and also achieved the threshold reliability with the pro-
posed scheduling algorithm. The results are compared on different defined threshold val-
ues. A processor is not able to perform 100% reliability every time. So, different threshold 
values vary from 0.95 to 0.90. Figure 5a and b illustrate the reliability of existing algo-
rithms with comparison of proposed algorithms on 20 and 30 tasks. It has been carried 
out from the analysis that EPRD perform an average of 5% and 2% better than CPRS and 
CEFA on different tasks.

6.2  Discussion with Existing Work

In a cloud setting, the experimental study was carried out on computers with low and high 
heterogeneity. Based on the observations and statistical data obtained, it can be concluded 
that the EPRD and CEFA have lower reliability as compare to proposed CPRS algorithm. 
This is because existing approaches generate the initial population using the canonical dis-
patching rule, but as the size of the initial population grows, so does the corresponding 
execution time. As a result, the fundamental issue with prior methodologies is that when 
the initial population was produced randomly, it resulted in an exponential increase in exe-
cution time when compared to the execution time achieved utilising the proposed meth-
odology CPRS. In a similar vein, another critical parameter that has remained the focus 
of the current study is incurred reliability. It was discovered that the proposed algorithm 
incurred the highest reliability when compared to existing algorithms because of the low-
est makespan and optimised ranking, which results in task completion before the dead-
line and results in the highest reliability when using different scientific workflows such 
as Cybershake, Montage, and Sipht. All of the aforementioned concerns are addressed at 
the very beginning, namely, the reliability index factor, machine utilisation factor, and task 
prioritisation, all of which improved the overall makespan time as well as the cost fac-
tor, which was a shortcoming in traditional approaches used for comparison. Based on the 
results of the comparison study, it can be stated that include all of these criteria in the pro-
posed approach at various stages greatly enhanced the results. Finally, the suggested CPRS 
method revealed that it surpassed existing strategies in terms of efficacy and efficiency.

Table 1  Simulation set-up Parameters Specifications

Workstation DELL Inspiron 5518 Core i5 
11th Gen 16 GB/512 GB SSD

Operating environment MS Windows 10
Task length 1000–20,000
Total number of tasks 20–30
Computational capacity 1000–10,000 (MIPS)
Link bandwidth 100–200 (Mbps)
Total number of VMs 2–20
VM load 0–40(%)
Cluster size 200, 400 and 1000 hosts
Turnaround times (TRT) 40 ms, 60 ms, 80 ms and 100 ms
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7  Conclusion

In this paper, a new reliability-aware algorithm critical parent reliability-based scheduling 
(CPRS) is proposed in which optimized cost, user-defined deadline, and reliability con-
straints are considered for scheduling workflows. Reliability is one of the important param-
eters of QoS. It is the successful execution of the workflow. The results of the proposed 
approach are compared with EPRD and CEFA approaches. For evaluation of results three 
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different scientific workflows Cybershake, Sipht and Montage are taken. To evaluate the 
reliability of workflow, the unreliability of every individual task is computed by consider-
ing its optimized cost and deadline. The proposed algorithm results outperform as com-
pared to the existing metaheuristic algorithm.
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