
Vol.:(0123456789)

Wireless Personal Communications (2023) 130:987–1004
https://doi.org/10.1007/s11277-023-10316-4

1 3

A Priority Inheritance Centered Locking Protocol for DRTDBS

Sarvesh Pandey1 · Udai Shanker2

Accepted: 24 February 2023 / Published online: 11 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In distributed real-time applications, the static 2 Phase Locking with High Priority (S2PL-
HP) protocol may resolve data conflict(s) among transactions executing concurrently.
S2PL-HP is virtuously free from the priority inversion that may arise due to executing–
executing conflict—both the transactions in the execution phase. However, its performance
may degrade because of other problems, i.e., cyclic restart and unnecessary abort, star-
vation of transactions of longer length, and system resource wastage. We propose a new
Priority Inheritance (PRIN) centered locking protocol to resolve the above problems. PRIN
checks the wastage of system resources by preventing cyclic restart and unnecessary abort
using the priority inheritance approach. It is also free from deadlock and reduces the effects
of lengthy transaction starvation. The system performance is measured using the transac-
tion miss percentage metric. We developed the simulator to assess the performance of the
proposed protocol; the results confirm that our system, PRIN, achieves 1.05 ×–1.23 × per-
formance improvement over the state-of-the-art systems.

Keywords Transaction · Two phase locking · DRTDBS · S2PL-HP · Priority inheritance

1 Introduction

Today, shared access to a database in a multi-user environment has been a key idea behind
most computational decision-making systems. We use countless real-life database-powered
applications today, ranging from manufacturing, payroll management, health care, bank-
ing, social media, robotics, satellite missions, agriculture systems, and many more. It is
beyond doubt that all such applications are making our life easy. At the same time, with
growing demand and exponentially increasing complexity of the systems, it has become
even more challenging for today’s database researchers to develop more efficient database
handling algorithms and protocols to meet ever-growing computational demand [1, 2].

 * Sarvesh Pandey
 sarveshpandey@bhu.ac.in

 Udai Shanker
 udaigkp@gmail.com

1 Computer Science – MMV, Banaras Hindu University, Varanasi, India
2 Department of Computer Science and Engineering, M.M.M. University of Technology,

Gorakhpur 273010, India

http://orcid.org/0000-0002-3014-9792
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-023-10316-4&domain=pdf

988 S. Pandey, U. Shanker

1 3

We access the database using transaction invocations [3]. The transaction is a logical
grouping of queries involving database operations, and it must follow the ACID property:
Atomicity, i.e., all or nothing; consistency, i.e., consistent data state at both points (before
the beginning and after the end of the transaction execution life-cycle); isolation, i.e., invis-
ible intermediate transaction state to users; durability, i.e., changes made by a successful
transaction persist even in case of system failure [4].

Concurrent transaction execution has twofold benefits: improved system performance
metrics (particularly throughput) and reduced wait time. However, concurrency is useless
if achieved at the cost of losing database consistency. It is always about designing concur-
rency control protocols so that consistency is not compromised and performance improves.
One way to ensure consistency is by implementing a lock manager. If concurrent access
results in a lock conflict, the algorithm should have a tradeoff, like who would get access
to the resource first. Application requirements—criticality, deadline [5, 6]—influence the
decision to resolve lock incompatibility. Most of the commercial database-centered appli-
cations we use today utilize lock-based Concurrency Control (CC) mechanisms in schedul-
ing the resources for the execution of the transactions. Two Phase locking protocol, i.e.,
2PL—the first commercial concurrency control procedure—is utilized by conventional
database systems that are centralized and do not consider the deadline.

S2PL-HP [7], 2PL-WP [8], and RT-S2PL [9] have the following limitations—priority
inversion (PI), unnecessary aborts, wastage of system resources, lengthy transactions star-
vation, and cyclic restart (see Sect. 2 for details). PRIN is a cooperative cum competitive
protocol that addresses the above limitations. First, it uses the priority inheritance mecha-
nism to reduce resource wastage. Second, it allows the low-priority transaction to complete
its execution provided it doe not cause a deadline miss for the waiting high-priority trans-
action. Third, it overcomes the frequent starvation associated with lengthy transactions.

Section 2, i.e., Related Work, sets a foundation for our proposed protocol. Section 3
describes the PRIN protocol. The evaluation of PRIN’s performance is presented in Sect. 4;
results confirm improvement with PRIN over S2PL-HP. Section 5 first concludes and then
lists areas for future research work along the lines of this study.

2 Related Work

The 2PL is the sole of all the pessimistic CC mechanisms developed to facilitate con-
currency. It works in two phases—growing and shrinking. The locking and unlocking of
data items required by the transactions are performed in these two phases, respectively.
Locking a data item is impossible during the shrinking phase, and unlocking cannot be
done during the growing phase. Variants of 2PL are designed to meet the ever-changing
database requirements of applications [9]. Two widely studied 2PL variants are static 2PL
and dynamic 2PL. As the name suggests, with static 2PL protocol, all the locks are first
acquired by a transaction, and then its execution is initiated. The requesting transaction
would either lock all its prerequisite data items or not even a single. Though this feature
leads to lower communication overhead in setting up the locks and eliminates the possibil-
ity of local deadlock, the same can be a reason for unbounded blocking of the requesting
transaction. With dynamic 2PL, transaction dynamically requests data items as and when
they need; it involves higher communication cost.

Let us take a scenario to understand the unbounded blocking problem with static 2PL.
Suppose transaction T1 has requested a lock on data items d1 and d2. Data item d1 is

989A Priority Inheritance Centered Locking Protocol for DRTDBS

1 3

currently available, but some other transaction T2 has already locked d2. In this scenario,
as per the static 2PL protocol, transaction T1 will not put a lock on any of the above two
data items. Meanwhile, transaction T3 arrives and locks data item d1, which is currently
free; even when the earlier arrived transaction T1 still requires access. Now, data item d2 is
released by T2. So, even after the release of data item d2, which was the reason for block-
ing of transaction T1, T1 cannot proceed for execution because now data item d2 is not free.
The above undesirable scenario, where the release of a conflicting data item(s) is not a
guarantee that requesting transaction can further proceed for its execution, is unacceptable
for the time-constrained databases [10–12].

Real-Time S2PL (abbreviated as RT-S2PL) protocol is specially designed for the dis-
tributed real-time database system (DRTDBS) environment [9]. The RT-S2PL is similar to
the S2PL protocol as it also requires that all the prerequisite data are first locked, and then
only a transaction may start its execution. Furthermore, it has a unique feature of assigning
priority to all the data items accessed by concurrently executing transactions. In RT-S2PL,
a data item’s priority equals the highest requesting transaction’s priority. With RT-S2PL, if
a transaction cannot lock all its prerequisite data items at an instance because of some data
conflict, it has to release any of the data items it has locked to ensure an ‘all-or-none’ prop-
erty. Furthermore, when the priority of the data item is lower, the priority of the transac-
tion requesting access to the data item is higher, and locking the data item is not possible,
we would upgrade the data item’s priority to that of requesting transaction. Thus, RT-S2PL
overcomes the limitation with S2PL of prolonged blocking of the requesting transaction.

The 2PL Wait Promote protocol (2PL-WP) is the first locking-based protocol using the
concept of priority inheritance. It resolves the PI problem by taking two actions—blocking
the requesting transactions and inheriting their priority [7, 8]. Thus, the 2PL-WP protocol
lessens the negative impact of the PI problem. Suppose a data conflict occurs between low-
priority lock holder transactions and high-priority lock requester transactions. In that case,
the low-priority lock holder transaction’s priority is upgraded equally to the priority of the
highest priority assigned to the transaction that has requested access for one of its locked
data items so that it can complete its execution somewhat earlier. The priority up-gradation
of low-priority lock holder transactions is to make the blocked high-priority transactions
get the conflicting data item earlier than usual if the low-priority lock holding transaction
had been executed at its original priority. In short, the above approach to dealing with the
PI problem lessens the duration of the PI for high-priority lock explicitly requesting trans-
actions instead of eliminating the PI problem [13–15]. The priority inheritance mechanism
improves the commit protocols [16].

The static 2PL High Priority (S2PL-HP) protocol ensures that the transactions of low
priority are not supposed to block high-priority transactions by resolving the PI prob-
lem immediately in favor of transactions of high priority [7, 8]. It is done by determining
the issue of conflicts for the data instantaneously in favor of higher-priority transactions.
The S2PL-HP protocol is not affected by the well-known destructive impact of PI in the
RTDBS environment. However, in DRTDBS, the S2PL-HP protocol cannot eliminate PI.
It is because the low priority lock holding transaction cannot be aborted if it is in a PRE-
PARED state and is part of some global transaction.

RACE [17] protocol attempts to address five limitations of the existing locking pro-
tocols—the starvation of long transactions, deadlock, pseudo priority inversion, cyclic
restart, and inefficient resource utilization. However, it is designed for a parallel transac-
tion model; therefore, it does not suit when sub-transactions can independently run. An
Enhanced Secure 2PL (ES2PL) [18] real-time protocol has recently been proposed, sug-
gesting the role of a security level mechanism in resolving data conflicts. It is claimed

990 S. Pandey, U. Shanker

1 3

that ES2PL’s throughput is incrementally better than RACE’s with a lesser rollback count.
Table 1 summarizes the key protocols discussed in this section and compares them with the
proposed study.

From Table 1, it could be concluded that PRIN is a more robust concurrency control
protocol for parallel DRTDBS systems. This study can be viewed as an extension of the
heuristic presented in [15], which is the first in exploring the parallel execution of global
transactions.

3 PRIN: A Real‑Time Locking Protocol

The PRIN protocol is a lock-based concurrency control protocol designed for the DRTDBS
environment. It solves the problems such as PI, unnecessary aborts, wastage of system
resources, lengthy transaction starvation, and cyclic restart. Assume an example to explain
the problem of cyclic restart from a practical point of view, as this problem was discussed a
little in the context of time-constrained databases.

Let us assume that T1 and T2 are two global transactions with cohorts executing at mul-
tiple sites in parallel to complete their execution. Further in the timeline, a sub-transaction
 T11 of global transaction T1 is granted all its prerequisite locks so that it may further start
its processing. Note that it is assumed that the transaction execution is divided into phases,
one being locking and processing as the second. Commit processing begins after it. The
least slack first (LSF) policy is used for assigning priority to the transactions. Moreover,
the priority of global transaction (T1) is lower as compared to transaction T2. At some later
stage, a sub-transaction T2i of global transaction T2 requests to use by accessing one of
the data which has already been utilized by sub-transaction T11. Thus, the PI occurred,
and as per the S2PL-HP protocol, the global transaction T1 will be aborted along with all
its participating cohorts. Such intermediate stage restart of global transaction T1 will lead
to the release of all its locked data items. This will pave the way for sub-transaction T2i of
global transaction T2 to set a lock on the requested data item, which was previously held
by sub-transaction T11 of global transaction T1. Till this point, everything is as expected.
But later, it was found that the restarting global transaction T1 had already eaten up most
of its slack time, so its priority is now assigned to be higher than that of global transaction
 T2. After this, sub-transaction T11 of global transaction T1 yet again requests access to the
data items required for its execution. As previously said, some of its required data items

Table 1 A comparative comparison of similar protocols for concurrency control in a distributed real-time
environment

CR means Cyclic Restart; PI means Priority Inversion; PseudoPI means Pseudo Priority Inversion

Publication Key comparison parameters for state-of-the-art systems

Unnecessary CRs,
and PI

Deadlock PseudoPI Transaction model

2PL-HP [5] ✓ ✓ ✓ Serial
2PL-WP [7, 8] ✓ ✓ ✓ Serial
S2PL-HP [7, 8] ✓ ✓ ✓ Serial/parallel
RACE [17] ✕ ✕ ✕ Serial
Priority heuristic [15] ✓ ✓ ✓ Parallel
PRIN (this study) ✕ ✕ ✕ Parallel

991A Priority Inheritance Centered Locking Protocol for DRTDBS

1 3

are now locked by sub-transaction T2i of global transaction T2. This situation again leads
to the problem of PI. As per the S2PL-HP protocol, global transaction T2 has now been
restarted by T1. Such cyclic restart eventually leads to the deadline miss of both global
transactions. The above cyclic restart problem is a source of many other problems rang-
ing from a waste of already consumed system resources, unnecessary abort, and degraded
system performance.

The PRIN protocol resolves the above-discussed problems. The PRIN locking proto-
col aims to resolve the issue of data conflicts among concurrently executing transactions.
Fulfilling it becomes even more difficult when transactions are associated with deadlines.
Therefore, an efficient real-time conflict resolution procedure is being in need to improve
the DRTDBS performance. For instance, let us assume a scenario where a cohort of low-
priority distributed real-time transactions is currently holding a lock on some of the data
items that are requested by some other cohort belonging to a high-priority distributed
real-time transaction at a later stage. This scenario results in the problem of priority inver-
sion that resulted only after considering real-time constraints of transactions. The simple
approach to increasing the system throughput is by reducing the wastage of already con-
sumed resources by handling their accesses intelligently. Like the conventional locking of
data item-based concurrency control protocols, reducing the already consumed resource
wastages is a goal in the case of real-time locking approach-based concurrency control pro-
tocol as well. However, the objective of real-time locking of the data item-based concur-
rency control protocols differs in a way that they primarily require that transactions com-
plete their executions before their deadlines; increasing throughput and reducing resource
wastages are secondary objectives.

The proposed PRIN protocol utilizes a new intermediate temporary priority assignment
heuristic. This heuristic does not affect the initial priorities of transactions. While resolving
conflict amongst concurrently executing transactions, this heuristic considers the cohort
level priority as well. The role of the above intermediate priority assignment heuristic is
explained with an example. Suppose a PI problem occurred because of data conflict among
a lock holding low priority cohort (TLi) and lock requesting higher priority cohort (THj).
Now, instead of simply aborting the TLi , the heuristic decides the fate of TLi based on the
following parameters—(i). State of the TLi , i.e., whether it is in a PREPARED state or not;
(ii). The remaining execution time TLi requires for completing its execution; and (iii) avail-
ability of slack time with the higher priority cohort THj , which arrived after TLi . Slack time
is associated with every cohort at the time they initiate their execution; it is a reserved time
available with a cohort in addition to its minimum execution time to deal with the uncer-
tainty involved in its execution. The computation of the remaining execution time associ-
ated with the lock holding sub transaction TLi is done as per the equation given below.

where Ri is the minimum time required for the cohort response; TElapse is elapsed time for
the execution of the TLi ; and TRemain is the required remaining execution time of TLi . By
considering the still availability of slack time with the lock-requesting high-priority cohort,
the PRIN protocol also handles the impact and the problem of the starvation of lengthy
transactions that originate due to the higher level probability of conflicts for the accessing
of the data items. The PRIN protocol reduces the transaction deadline miss percentage by
considering the following three steps.

(1)TRemain
(

TLi
)

= Ri − TElapse

992 S. Pandey, U. Shanker

1 3

1. If the lock-holding low-priority cohort TLi is not in a PREPARED state and TRemain(TLi) is
less than the slack time of (THj), the priority of TL inherits the priority of the TH . Finally,
TH is queued in a wait state.

2. If lock-holding low-priority cohort TLi is not in a PREPARED state and TRemain(TLi) is
larger than or equitable to the slack time (THj), low-level priority lock holder transaction
is supposed to be aborted.

3. In the case of lock-holder low-priority cohort TLi being in the state PREPARED, TL
inherits the priority of the TH . The TH is queued in a wait state irrespective of the
requester transaction TH being of higher priority or not. The priority inheritance pro-
cedure utilized here provides the transactions in a conflict state a fairer chance for suc-
cessful completion by lessening the period of PI.

compare priority (,)

PI?

YES
priority () > priority ()

NO

CR? AND State ()?

No CR AND any other state
CR OR

PREPARED

state

holds lock on data item O while
requests for it in incompatible mode.

()?

Slack () < ()

Abort to immediately
execute .

Queue and enable

priority inheritance.

Queue

Slack () ≥
()

End

Start

Fig. 1 Block diagram for data conflict resolution method in PRIN

993A Priority Inheritance Centered Locking Protocol for DRTDBS

1 3

The block diagram is presented in Fig. 1 to understand better PRIN protocol working.
As can be seen from Fig. 1, if there is no priority inversion, the pre-defined process is

triggered, which puts the requesting low-priority transaction in the wait queue. In the case
of priority inversion, other conditions are evaluated to decide on the execution of one of the
two possibilities. Let us present PRIN’s data conflict resolution algorithm.

In brief, optimistically PRIN protocol reduces the severe wastage of already consumed
resources of the system by utilizing the priority inheritance procedure, eliminates the cyclic
restart problem by prejudging its occurrence, and nicely overcomes the detrimental impact
of the starvation associated with the transactions of long length up to a fairer way by utiliz-
ing the assigned intermediate temporary priority. The above protocol has shown how data
locking is permitted in PRIN.

994 S. Pandey, U. Shanker

1 3

3.1 Key Contributions

The critical contributions made by the PRIN protocol are summarized below.

1. The PRIN protocol is free from local deadlock and reduces lengthy transaction starva-
tion’s adverse effects.

2. It reduces the wastage of system resources by preventing cyclic restarts and unnecessary
abort using a priority inheritance mechanism.

4 Performance Evaluation

We developed the DRTDBS simulator to assess the fruitfulness of the PRIN protocol, with
consideration of complete coverage of the performance setting acceptable to the industry/
academic arena. The environment assumed for this study is quite similar to the perfor-
mance settings of past studies [19–21] on transaction processing in DRTDBS.

4.1 The DRTDBS Simulation Model

The simulator is written in C language to assess the PRIN protocol’s performance [22, 23].
The discrete event-based programming style is utilized. In each simulator run, 20 thou-
sand transactions are invoked; an average of 10 independent runs are taken to conclude any
behavior. Such repeated experiments are the foundation of confidence in insights drawn.
Each transaction adds equal value to the system; no transaction is more critical than the
other [24]. Figure 2 presents the high-level view of the DRTDBS model implemented,
facilitating the parallel execution of firm-distributed transactions.

We particularly schedule two types of resources—data and CPU. To schedule CPU, a
priority-based preemption mechanism is implemented; data is provided to high-priority
transactions first on a preemptive basis if some prepared cohort does not hold it. Further-
more, the assumptions considered while developing the model are given below.

• Poisson distribution-based transaction arrival is followed. The firm-distributed transac-
tions are considered, where deadline miss leads to transaction kill.

• A transaction is just a logical combination of read/write data operations. All the data
items and their access mode are first recorded, and then transaction execution begins.

• Communication between any two shards in the global system will cost either 10 ms or
1 ms. This helps simulate network delay’s effects on overall system performance indi-
cators.

• The cohort-level execution is done in parallel, as there is no data dependency between
sibling cohorts of any global transaction. However, to facilitate communication between
sibling cohorts, each cohort is provided with the IDs of all its sibling cohorts.

The performance of the PRIN is assessed using the transaction miss percent metric
(TMP); the purpose is to reduce TMP. Mathematically, one can compute TMP using the
below equation,

(2)TMP (in %) =

(

transaction abort count

total transaction count

)

∗100

995A Priority Inheritance Centered Locking Protocol for DRTDBS

1 3

TMP signifies aborted transactions percentage. To avoid any biasness in the final result, the
system load has been varied during experimentation—normal (TMP ranges from 0 to 20),
heavy (TMP ranges from 20 to 100), and mix load (TMP ranges from 0 to 100) [7].

4.2 Deadline Computation in a Parallel Setting

The mathematical foundation of the parallel DRTDBS model is discussed in this subsec-
tion. The deadline of any transaction depends on three parameters—arrival time, execu-
tion time, and slack factor. Slack factor plays a significant role in serial DRTDBS setting
[22]; we employed the CA-EQS policy for priority assignment [25]. The ordering-based
deadlock resolution in CA-EQS works well for global transactions as well. In a parallel set-
ting, the computation of predicted execution time (PET) is performed differently compared
to the serial DRTDBS. The PET further depends on two sub-components—execution and
commit time. We focus on execution time (timeexe) for this study, deatails on computation
of commit time (timecommit) can be found in [26].

The execution time of a cohort (sub-transaction) can be computed as a multiple of the num-
ber of operations it performs. To begin with, let us calculate the time required to complete
a single data operation (timeONE),

Here, timer and timew are a time to read and write respectively. The probablilityr and
probablilityw are the probability of read and write operations, respectively. As can be
seen from Eq. 4, performing a data operation is a two-step process – lock the data item

(3)PET = timeexe + timecommit

(4)timeONE = timelock +
(

timew × probablilityw
)

+
(

timer × probabilityr
)

Concurrency Control Protocol

Database

CPUScheduler

COMMIT/ ABORT

Release Resources

Transaction

Site A

Communication
Interface

Users

Remote Sites

Fig. 2 Parallel transaction execution model for DRTDBS

996 S. Pandey, U. Shanker

1 3

in shared/exclusive mode and then do computation. Assuming a local transaction with ‘ n ’
operations, the local execution time (timeexe_local) is computed as,

Execution of global transactions, which consists of multiple cohorts, can be optimized
in parallel DRTDBS. Unlike executing a local transaction, it requires message exchange
because of having more than one cohort. Moreover, the total number of data operations (n)
is the sum of local (nlocal) and remote (nremote) operations.

Furthermore, the execution time for a global transaction, considering the parallel execution
of cohorts, can be computed as,

Here, ‘ cohort_exe ’ is the time required for executing a sub-transaction at some cohort; ‘r’
is the cohort count; ‘ comm_cost ’ is the message count for running a global transaction.
From Eq. 7, it could be interpreted that parallelly running cohorts reduces the duration of a
global transaction.

4.3 Parameters for Experimentation

The database populated for our experimentation has 2400 pages per shard. There is a
total of 4 non-replicated shards, which means data present at geographically distinct
sites are distinct. The reason for going with a tiny database is to create high data con-
tention. The higher the data contention, the higher will be PI probability. This is the
best environment to assess the effectiveness of the proposed protocol in handling the
PI problem [22]; the default simulation parameters considered in our study are listed in
Table 2.

The default set of parameters is primarily utilized for conducting experiments unless
specified otherwise. Any change in the parameter setting may affect the final result;
however, the qualitative trend is expected to remain the same. A general experimenta-
tion framework is designed to add confidence to the qualitative findings. At the same
time, variation of data and resource contention also led to some interesting results. To
quantitatively assess the contention level, metrics like CPU utilization, disk utilization,
and data conflict frequency are used.

4.4 Experiment Findings

The experiments are designed in two categories, considering whether the database resided
in primary or secondary memory (main memory resident or disk-resident). Moreover, the
PRIN is evaluated against the S2PL-HP protocol as it is the improved version of it.

4.4.1 Experiment 1 Using Main Memory Databases

The idea of making the entire database resident in main memory comes from the recent
advancements in computer storage facilities. Today, having a main memory size of more

(5)timeexe_local = timeONE × n

(6)n = nlocal + nremote

(7)timeexe_global = MAX
(

timeONE × nlocal,MAX{cohort_exe}r
i=1

)

+ comm_cost

997A Priority Inheritance Centered Locking Protocol for DRTDBS

1 3

than 100 GB is becoming common, particularly in an industry setting. This has become
possible because of less cost in gaining such capacity with declining hardware cost. Its
well-known data access fastens multifold with main memory compared to hard disk. The
main memory resident database is evaluated as one of the performance-driving aspects.

Figure 3 evaluates the TMP of S2PL-HP and PRIN protocol under ‘normal & heavy’
load conditions. Since the database resides in the main memory and the communication
delay is 1 ms, the TMP is considerably low for both protocols. As expected, the PRIN
protocol performs incrementally well as compared to S2PL-HP. It supports the argument
that low communication delay leads to considerably shorter transaction completion time,
and therefore there is a lesser chance of cyclic restart among transactions. The performance
improvement is primarily due to the intelligent use of a priority inheritance technique.

Figure 4 evaluates the TMP of S2PL-HP and PRIN protocol under ‘normal & heavy’
load. Here, the TMP is very high for both protocols compared to Fig. 3. This is due to
an increase in overall transaction execution time with an increase in communication
delay from 1 to 10 ms, which resulted in more transactions missing their deadlines. As
expected, the PRIN performs significantly better than S2PL-HP due to the elimination of
cyclic restart. It supports the argument that a more significant communication delay leads
to considerably larger transaction completion time and, therefore, more chances of transac-
tion deadline miss due to cyclic restart. The performance improvement is primarily due to
eliminating the cyclic restart problem in PRIN; intelligent use of the priority inheritance
technique also resulted in improved system performance.

4.4.2 Experiment 2 Using Disk Resident Databases

Figures 5, 6 and 7 show the TMP as a function of system workload. The system misses
more deadlines with an increase in workload, resulting from long queuing delays, a high
probability of conflict for the data, and a higher probability of blocking transactions.

Figure 5 evaluates the TMP of S2PL-HP and PRIN protocol under normal load. Since
the communication delay is 1 ms and there is low data contention, the deadline miss per-
centage of the transaction is considerably lower for both protocols. The PRIN protocol can
also be expected to perform additively well compared to the S2PL-HP. It supports the argu-
ment that low communication delay leads to considerably shorter transaction completion
time and, therefore, lesser chances of cyclic restart among transactions. The performance
improvement is primarily due to the intelligent use of a priority inheritance technique.

Table 2 System parameter and data settings

Parameter Description and value

DBSize 2400 pages per shard
Ndb 4 shards
AR [0,4] or up to four transactions per sec (distribution is uniform)
Tcom Either 1 ms or 10 ms of comm. delay
Nop 4–20 operations per transaction (distribution is uniform)
SF Slack factor of 1–4 (distribution is uniform)
P(w) 0.6 is the probability of the write operation
CPUpage 5 ms to access a CPU page
Diskpage 20 ms to access a disk page

998 S. Pandey, U. Shanker

1 3

Figure 6 evaluates the TMP of S2PL-HP and PRIN protocol under heavy load. Since
data contention is high, the TMP is at a high level for both the protocols mentioned above
compared in Fig. 5. The PRIN again performs incrementally well compared to S2PL-HP. It
supports the argument that lower-level communication delay leads to considerably shorter
transaction completion time, and therefore, there are fewer chances of cyclic restart among
transactions. The performance improvement is primarily due to the intelligent use of a pri-
ority inheritance technique.

Figure 7 evaluates the TMP of S2PL-HP and PRIN protocol under ‘normal & heavy’
load. Here, the TMP is very high for both protocols compared to Figs. 5 and 6. This is
due to an increase in overall transaction execution time with an increase in communica-
tion delay from 1 to 10 ms, which results in more transactions missing their deadlines. As
expected, the PRIN performs significantly better than S2PL-HP due to the elimination of
cyclic restart. It supports the argument that a larger communication delay leads to a consid-
erably larger transaction completion time, and therefore there are more chances of transac-
tion miss due to cyclic restart. In addition to the intelligent use of the priority inheritance
technique, the performance improvement is primarily due to eliminating the cyclic restart
problem in the PRIN protocol.

The study of Figs. 4 and 7 shows that the TMP is usually higher for disk-resident data-
bases than the main memory databases. Per our intuition, disk-resident databases require
a larger transaction execution time since the data items residing on the disk need to be
swapped to the main memory for processing. Such overhead is avoided in main memory-
resident databases to minimize the transaction execution time.

Figures 3, 4, 5, 6 and 7 shows that the proposed PRIN protocol performs significantly
better than the S2PL-HP protocol, irrespective of the type of load (normal, heavy, and
mixed). Use of priority inheritance technique (instead of aborting lock holding low prior-
ity cohort) when a lock holding low priority cohort has not sent a PREPARED message to
its coordinator and a lock requesting high priority cohort has a slack time greater than the
remaining execution time of a low priority lock holding transaction, to give a fair chance

Transaction Arrival Rate vs TMP

Transaction Arrival Rate/Site

10 20 30 40 50

M
is

s
P

er
ce

nt
ag

e

0

10

20

30

40

50

60

70

S2PL-HP
PRIN

Fig. 3 Arrival rate versus TMP: Comm. Delay = 1 ms; load = mix; resource and data contention

999A Priority Inheritance Centered Locking Protocol for DRTDBS

1 3

of completion to the lock holding low priority cohort involved in a conflict. Such action
results in the avoidance of the unnecessary abort of lock holding low priority cohort, dec-
lination in starvation with lengthy transactions, and lead to the fair utilization of resources.
In addition to the above reasons, eliminating the cyclic restart problem also plays an impor-
tant role in the performance improvement of the PRIN protocol.

5 Conclusions and Future Research

Existing real-time locking protocols suffer badly due to issues, i.e., cyclic restart, unnec-
essary abort, starvation of transactions of extended length, and wastage of the already
consumed system resources. Resolving the above problems required developing a more
efficient real-time locking protocol. The proposed PRIN protocol reduced the wastage of
system resources by preventing cyclic restart and unnecessary abort using a priority inher-
itance mechanism. It is also deadlock-free and declines the adverse effects of lengthy trans-
action starvation. The PRIN protocol has shown better performance over the S2PL-HP
by optimally utilizing the priority inheritance mechanism and combining the initial and
intermediate strategies of priority assignments. We designed the DRTDBS simulator to
compare the PRIN protocol’s performance with the S2PL-HP protocol, and the simulation
results confirmed the performance improvement. From the experiments, two major con-
clusions are drawn. First, an in-memory database is recommended if there is no financial
constraint, as PRIN performed better with main-memory databases. Second, under higher
communication delay, the performance benefits of PRIN got 2 ×; this is mainly because of
better data conflict resolution.

Future time-constrained databases should be able to efficiently process an enormously
varying number of transactions executing concurrently [12]. We discuss below selected
areas of research with enormous possibilities.

2 4 6 8 10 12 14
0

20

40

60

80

S2PL-HP
PRIN

Transaction Arrival Rate vs TMP

M
is

s
P

er
ce

nt
ag

e

Transaction Arrival Rate/Site

Fig. 4 Arrival rate versus TMP: Comm. Delay = 10 ms; load = mix; resource and data contention

1000 S. Pandey, U. Shanker

1 3

1. We can manage the priority inversion—originating from the executing-committing con-
flict because of the concurrent execution of distributed RTTs—by exploiting either the
priority inheritance mechanism [16, 25, 26] or the lender-borrower approach [27–30],
or both in a combined way [31]. These approaches have their positives and negatives
[32]. More research is needed to develop advanced priority assignment heuristics for
DRTDBS [33, 34].

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

2

4

6

8

10

12

14

16

S2PL-HP
PRIN

Transaction Arrival Rate vs TMP

M
is

s
P

er
ce

nt
ag

e

Transaction Arrival Rate/Site

Fig. 5 Arrival rate versus TMP: Comm. Delay = 1 ms; Load = normal; resource and data contention

6 8 10 12 14 16 18
0

20

40

60

80

100

S2PL-HP
PRIN

Transaction Arrival Rate vs TMP

M
is

s
P

er
ce

nt
ag

e

Transaction Arrival Rate/Site

Fig. 6 Arrival rate versus TMP: Comm. Delay = 1 ms; load = heavy; resource and data contention

1001A Priority Inheritance Centered Locking Protocol for DRTDBS

1 3

2. After almost 3 decades of research in the conventional database domain, we need a
reverse engineering approach to modify/redesign the foundational components of data-
bases, e.g., 2PC and 2PL [35–38]. Furthermore, it is interesting to draw attention to the
design of some applications that might involve database and non-database operations
to achieve their objectives [39].

3. It will be noteworthy to extend the discussion on the PI problem in Mobile DRTDBS
[40–42], and Replicated DRTDBS [43–45]. The study presented can also be extended
to wireless sensor networks [46–48] as the backbone remains the same, which is a dis-
tributed system.

4. We plan to explore the intersection of blockchain and distributed databases to move to
a decentralized data management setting [49, 50].

Acknowledgements The financial assistance under the Institute of Eminence (IoE) seed grant by BHU,
Varanasi, India, is acknowledged.

Data Availability My manuscript has no associated data as the experiment-specific data is generated ran-
domly through simulation.

References

 1. Sadoghi, M., & Blanas, S. (2019). Transaction processing on modern hardware. Synthesis Lectures on
Data Management, 14(2), 1–138.

 2. Pandey, S., & Shanker, U. (2020). Causes, effects, and consequences of priority inversion in transac-
tion processing. In Handling priority inversion in time-constrained distributed databases. IGI Global.

 3. Pandey, S., & Shanker, U. (2016). Transaction execution in distributed real-time database systems. In
Proceedings of the international conference on innovations in information embedded and communica-
tion systems (pp. 96–100).

2 4 6 8 10 12 14
0

20

40

60

80

100

S2PL-HP
PRIN

Transaction Arrival Rate vs TMP

M
is

s
P

er
ce

nt
ag

e

Transaction Arrival Rate/Site

Fig. 7 Arrival rate versus TMP: Comm. Delay = 10 ms; load = mix; resource and data contention

1002 S. Pandey, U. Shanker

1 3

 4. Pandey, S., & Shanker, U. (2020). Transaction scheduling protocols for controlling priority inversion:
A review. Computer Science Review, 35, 100215.

 5. Kao, B., & Garcia-Molina, H. (1993). An overview of real-time database systems. Real Time Comput-
ing, 127, 261–282.

 6. Lam, K. Y. (1994). Concurrency control in distributed real time database systems. Ph.D. thesis.
 7. Haritsa, J. R., Carey, M. J., & Livny, M. (1992). Data access scheduling in firm real-time database

systems. Real-Time Systems, 04(03), 203–241.
 8. Abbott, R. K., & Molina, H. G. (1992). Scheduling real-time transactions: A performance evalua-

tion. ACM Transactions on Database Systems, 17(03), 513–560.
 9. Lam, K.-Y., Hung, S.-L., & Son, S. H. (1997). On using real-time static locking protocols for dis-

tributed real-time databases. Real-Time System, 13(02), 141–166.
 10. Yu, P. S., Wu, K.-L., Lin, K.-J., & Son, S. H. (1994). On real-time databases: Concurrency control

and scheduling. Proceedings of the IEEE, 82(01), 140–157.
 11. Ramamritham, K. (1993). Real-time databases. Distributed and Parallel Databases, 01(02),

199–226.
 12. Shanker, U., Misra, M., & Sarje, A. K. (2008). Distributed real time database systems: Background

and literature review. International Journal of Distributed and Parallel Databases, Springer Ver-
lag, 23(02), 127–149.

 13. Huang, J., Stankovic, J. A., & Towsley, D. (1991). On using priority inheritance in real-time data-
bases. In Real-time systems symposium (pp. 210–221).

 14. Huang, J., Stankovic, J. A., Ramamritham, K., Towsley, D., & Purimetla, B. (1992). Priority inher-
itance in soft real-time databases. Real-Time Systems, 04(03), 243–278.

 15. Shanker, U., Misra, M., & Sarje, A. K. (2005). Priority assignment heuristic to cohorts executing in
parallel. In Proceedings of the 9th WSEAS international conference on computers, World Scientific
and Engineering Academy and Society (WSEAS) (pp. 01–06).

 16. Pandey, S., & Shanker, U. (2018). A one phase priority inheritance commit protocol. In Proceed-
ings of the 14th international conference on distributed computing and information technology
(ICDCIT) Bhubaneshwar, India, January 11–13, 2018.

 17. Pandey, S., & Shanker, U. (2020). RACE: A concurrency control protocol for time-constrained
transactions. Arabian Journal for Science and Engineering, 45, 10131–10146.

 18. Abduljalil, E., Thabit, F., Can, O., Patil, P. R., & Thorat, S. B. (2022). A new secure 2PL real-time
concurrency control algorithm (ES2PL). International Journal of Intelligent Networks, 3, 48–57.

 19. Ulusoy, O. (1995). A study of two transaction-processing architectures for distributed real-time
data base systems. The Journal of Systems and Software, 31(02), 97–108.

 20. Taina, J., & Son, S. H. (1999). Towards a general real-time database simulator software library.
IFAC Proceedings, 32(01), 75–80.

 21. Ulusoy, Ö., & Belford, G. G. (1993). Real-time transaction scheduling in database systems. Infor-
mation Systems, 18(08), 559–580.

 22. Lee, V. C. S., Lam, K.-W., & Hung, S.-L. (2002). Concurrency control for mixed transactions in
real-time databases. IEEE Transactions on Computers, 51(7), 821–834.

 23. Shanker, U., Misra, M., & Sarje, A. K. (2006). SWIFT—A new real time commit protocol. Distrib-
uted and Parallel Databases, 20(01), 29–56.

 24. Stankovic, J., & Zhao, W. (1988). On real-time transactions. ACM Sigmod Record, 17(1), 4–18.
 25. Pandey, S., & Shanker, U. (2017). On using priority inheritance based distributed static two phase

locking protocol. In Proceedings of the international conference on data and information system
(ICDIS) (pp. 179–188).

 26. Pandey, S., & Shanker, U. (2018). CART: A real-time concurrency control protocol. In B. C. Desai,
J. Hong, & R. McClatchey (Eds.), 22nd International database engineering & applications sympo-
sium (IDEAS 2018). New York: ACM.

 27. Shanker, U., Agarwal, N., Tiwari, S., Goel, P., & Srivastava, P. (2010). ACTIVE-a real time commit
protocol. Wireless Sensor Network, 2(3), 254.

 28. Shanker, U., Vidyareddi, B., & Shukla, A. (2012). PERDURABLE: A real time commit protocol.
In Recent trends in information reuse and integration (pp. 1–17).

 29. Pandey, S., & Shanker, U. (2017). IDRC: A distributed real-time commit protocol. Procedia Com-
puter Science, 125, 290–296.

 30. Pandey, S., & Shanker, U. (2019). EDRC: An early data lending based real-time commit protocol.
In Encyclopedia of organizational knowledge, administration, and technologies (1st Edn).

 31. Pandey, S., & Shanker, U. (2018). Priority inversion in DRTDBS: challenges and resolutions. In
Proceedings of the ACM India joint international conference on data science and management of
data (CoDS-COMAD’ 18) (pp. 305–309).

1003A Priority Inheritance Centered Locking Protocol for DRTDBS

1 3

 32. Haritsa, J. R., Ramamritham, K., & Gupta, R. (2000). The PROMPT real-time commit protocol.
IEEE Transactions on Parallel and Distributed Systems, 11(02), 160–181.

 33. Shanker, U., Misra, M., & Sarje, A. (2001). Hard real time distributed database systems: Future
directions. In Proceedings of all India seminar on recent trends in computer communication net-
works. Dept. of ECE, IIT Roorkee, India (pp. 172–177).

 34. Pandey, S., & Shanker, U. (2019). MDTF: A contention aware priority assignment policy for
cohorts in DRTDBS. In D. R. M. Mehdi Khosrow-Pour (Ed.), Encyclopedia of organizational
knowledge, administration, and technologies (1st Edn.).

 35. Gupta, S., & Sadoghi, M. (2018). “EasyCommit: A non-blocking two-phase commit protocol. In
International conference on extending database technology (EDBT) (pp. 157–168).

 36. Gupta, S., & Sadoghi, M. (2019). Efficient and non-blocking agreement protocols. Distributed and
Parallel Databases, 38, 1–47.

 37. Pandey, A. K., Pandey, S., & Shanker, U. (2019). LIFT—A new linear two-phase commit protocol.
In Proceedings of 25th annual international conference on advanced computing and communica-
tions (ADCOM 2019) at IIIT Bangalore.

 38. Harding, R., Aken, D. V., Pavlo, A., & Stonebraker, M. (2016). An evaluation of distributed con-
currency control. VLDB, 10(05), 553–564.

 39. Singh, R. K., Pandey, S., & Shanker, U. (2019). A non-database operations aware priority ceiling
protocol for hard real-time database systems. In The proceedings of 10th international conference
on computing communication and networking technologies, IIT, Kanpur, India, July 6–8.

 40. Lam, K., Kuo, T., Tsang, W., & Law, G. (2000). Concurrency control in mobile distributed real-
time database systems. Information Systems, 25(4), 261–286.

 41. Lei, X., Zhao, Y., Chen, S., & Yuan, X. (2009). Concurrency control in mobile distributed real-time
database systems. Journal of Parallel and Distributed Computing, 69(10), 866–876.

 42. Swaroop, V., Gupta, G. K., & Shanker, U. (2011). Issues in mobile distributed real time databases:
Performance and review. International Journal of Engineering Science and Technology, 3(4),
3504–3517.

 43. Xiong, M., Ramamritham, K., Haritsa, J. R., & Stankovic, J. A. (2002). MIRROR: A state-con-
scious concurrency control protocol for replicated real-time databases. Information systems, 27(04),
277–297.

 44. Wei, Y., Aslinger, A., Son, S., & Stankovic, J. (2004). ORDER: A dynamic replication algorithm
for periodic transactions in distributed real-time databases. In 10th international conference on
real-time and embedded computing systems and applications (RTCS 2004), August.

 45. Srivastava, A., Shankar, U., & Tiwari, S. K. (2012). Transaction management in homogenous dis-
tributed real-time replicated database systems. International Journal of Advanced Research in
Computer Science and Software Engeering, 2(6), 190–196.

 46. Ashraf, S. (2019). Culminate coverage for sensor network through bodacious-instance mechanism.
i-Manager’s Journal on Wireless Communication Networks, 8(3), 1–9.

 47. Ashraf, S., Alfandi, O., Ahmad, A., Khattak, A. M., Hayat, B., Kim, K. H., & Ullah, A. (2020).
Bodacious-instance coverage mechanism for wireless sensor network. Wireless Communications
and Mobile Computing, 2020, 1–11.

 48. Ashraf, S., Ahmed, T., & Saleem, S. (2021). NRSM: Node redeployment shrewd mechanism for
wireless sensor network. Iran Journal of Computer Science, 4, 171–183.

 49. McConaghy, T., Marques, R., Müller, A., De Jonghe, D., McConaghy, T., McMullen, G., Hender-
son, R., Bellemare, S., & Granzotto, A. (2016). Bigchaindb: A scalable blockchain database. White
Paper, BigChainDB.

 50. Peng, Y., Du, M., Li, F., Cheng, R., & Song, D. (2020). FalconDB: Blockchain-based collaborative
database. In Proceedings of the 2020 ACM SIGMOD international conference on management of
data (pp. 637–652).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

1004 S. Pandey, U. Shanker

1 3

Dr. Sarvesh Pandey is presently working as Assistant Professor in
Computer Science—MMV, BHU, Varanasi, India. He received his
Ph.D. degree (2020) in Computer Science and Engineering from M.
M. M. University of Technology, Gorakhpur, India. His broad research
areas include distributed real-time database systems, cloud computing,
blockchain, and advanced data systems. More than 25 research papers
have been published by him in various journals/conferences of their
reputes. He serves as an active review member for various reputed
journals/conferences/book series.

Dr. Udai Shanker is presently a Professor in the Department of Com-
puter Science and Engineering of M. M. M. University of Technology,
Gorakhpur-273010. For his imitation of the most modern of
approaches and his exemplary devotion to the field of teaching and
sharing his profound knowledge with students to make a better future
citizen of India, he has been a role model for the new generation of
academicians. Besides introducing radical and revolutionary changes
that have positively impacted the database world and student commu-
nity, he is well-versed in all the intricacies of academics.

	A Priority Inheritance Centered Locking Protocol for DRTDBS
	Abstract
	1 Introduction
	2 Related Work
	3 PRIN: A Real-Time Locking Protocol
	3.1 Key Contributions

	4 Performance Evaluation
	4.1 The DRTDBS Simulation Model
	4.2 Deadline Computation in a Parallel Setting
	4.3 Parameters for Experimentation
	4.4 Experiment Findings
	4.4.1 Experiment 1 Using Main Memory Databases
	4.4.2 Experiment 2 Using Disk Resident Databases

	5 Conclusions and Future Research
	Acknowledgements
	References

