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Abstract
The classical least mean square (LMS) algorithm is a widely studied method for adaptive 
beamforming. It is well known for its lower computational complexity. However, fast 
and robust beamforming is not possible with the classical LMS method since it uses a 
constant step size. This nature hinders its applications in many advanced communication 
systems. Furthermore, this method degrades when the signal-to-noise ratio is rapidly 
changing. To circumvent these issues posed by the classical LMS method, two modified 
LMS beamformers are presented in this paper. We name these methods as M-LMS-1 
and M-LMS-2. We present two new complex array weights to accelerate the rate of 
convergence. Computer simulations show that both methods present fast and robust 
beamforming. That is these algorithms have convergence improvement of about 37.5% and 
50% over the standard LMS algorithm.
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1  Introduction

In mobile communications, the fifth-generation (5 G) technology offers multigigabit data 
transmission. The evolution of the mobile networks from 1 G to the 6 G and the beyond is 
depicted in Fig. 1. One of the most promising technologies to improve the efficacy of the 
5 G new radio (5GNR) are the smart antennas. Mobile edge computing (MEC) supports 
5 G, especially, 5GNR, and exploits smart antennas to optimize coverage and minimize the 
need for hand-over from 5 G to 4 G RAN. 5GNR requires Smart Antennas since they use 
millimeter wave (mmwave) RF propagation [1]. Smart Antennas for 5GNR will signifi-
cantly enhance the signal reception quality by focusing on the user signal where they are 
required the most.

Smart Antennas improve the signal quality, coverage, and capacity of 5  G, 5GNR, 
and 6 G and beyond by offering adaptive beamforming. This key technique of the smart 
antennas forms the major beam in the user direction and the nulls and sidelobes in the 

 *	 Veerendra Dakulagi 
	 veerendra.gndec@gmail.com

1	 Department of Electronics and Communication Engineering, Guru Nanak Dev Engineering 
College, Bidar, Karnataka, India

http://orcid.org/0000-0003-1056-0004
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-023-10302-w&domain=pdf


626	 V. Dakulagi 

1 3

not required signal directions. A highly directed beam ensures high directivity and optimal 
bandwidth which are key requirements of various wireless communication systems 
including radar, sonar, satellite and mobile phones [2]–[8].

Smart antenna system (SAS) consists of an antenna array and signal processor, which 
makes it possible to transmit and receive the incoming signals in spacial sensitive and 
adaptive manner. This dramatically increases the capacity of wireless systems [9]–[12].

Numerous grave areas of smart antenna systems are listed as below [13]:

–	 Digital Signal processing algorithms.
–	 Wireless channel modeling and coding.
–	 Network performance for cellular communications.
–	 Antenna systems simulation and design.
–	 Processing of Space-time.

Smart antenna are used in wide applications, including, RADAR, sonar, satellite, MIMO 
based communication systems, Wifi and WiMAX applications, wireless Local area 
networks (WLAN) etc. Huge research work for enhancing the communication systems’ 
performance is being carrying out worldwide. The smart antennas have emerged as frontier 
in the wireless communication industry to improve the quality, coverage and capacity [14]. 
In smart systems, the LMS beamformer has its own importance due to its due to robustness 
and simplicity. Nonetheless, this beamformer exploits fixed step size which inherently 
limits its use in many most adaptive filtering applications. As a result, this method has been 
constantly studied by many researchers to improve its performance.

One of the most popular methods is to deploy a varying step size of the classical LMS 
[15]. In this technique, the convergence is speeded up by using a large step size when the 
LMS method is away from its optimal solution. However, small step size is used when the 
method is close to the optimum [16].

To improve the convergence time of the classical LMS algorithm, two recent LLMS 
[17] and LLMS1 [18] were proposed. These methods combine LMS algorithms in 
two sections. Certainly, these methods show improvement over the classical LMS 
but demand to independent constant step size. This increases the complexity of the 

Fig. 1   Evolution in the generations of mobile radio communication networks [1]
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algorithm [19]–[21]. Field trials and commercial products has taken place in recent 
year. A few examples are: Ericsson undertook one project in cooperation with German 
GSM1800 operator Mannesmann. It employed digital beam forming at the uplink and 
downlink, realizing an increase in capacity of 100–200%, as well as, an achievable 
range extension that is equivalent to 50% fewer sites.

European advanced communication technologies and services (ACTS) (TSUNAMI II 
project) dealing with the deployment of the smart antenna to DCS1800-based networks 
in Bristol, UK. The initial report findings from the project suggest a 54% range 
extension in rural environments and a reduction of interferences in the order of 30dB.

Bellofiere, employed smart antenna systems on mobile Ad-Hoc networks resulting in 
improved network capacity also; a 27% capacity improvement was shown when using 
smart antennas for IS-95 systems.

2 � Array Signal Model

The considered ULA composed of M- antenna array is shown in Fig.  2. The antenna 
elements are separated by �∕2 to evade the grating lobe and the effect of mutual cou-
pling. Let us assume that the L ≤ M user signals arriving from the far field directions 
are received by the considered ULA in presence of noise.

The received signal can be expressed mathematically for the N sample as

where
A(�) =

[

a
(

�
1

)

, a
(

�
2

)

, ⋅ ⋅ ⋅, a
(

�L
)]

 denotes the steering vectors of the received signal.
s(n) =

[

s
1(n), s2(n), ⋅ ⋅ ⋅, s

(

nL
)]T denotes the array covariance matrix and �(n) 

represents the noise.
Let us write the steering vector as

(1)x(n) = A(�)s(n) + �(n), n = 1, 2, ⋅ ⋅ ⋅,N

Fig. 2   The ULA configuration 
used for smart antennas
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Let us write the covarience matrix of the vector x(n) as

where IM is the (M ×M) identity matrix, Rs = �
[

s(k)s(n)H
]

 denotes the signal covariance 
matrix and �2

n
 is the noise power.

In practice, the expression (3) should be averaged over several snapshots as

3 � Proposed Methods

3.1 � M‑LMS1 Algorithm

In this work, we have modified the comples array weights of standard LMS algorithm as

Here: �
1
 is the shaping parameter=0.1

W(n) is the previous weights
W(n + 1) is the updated array weights.
Furthermore, �(n) is the step size which varies as the signal varies and �(n) is the error 

signal. We write the expression of these parameters as

where the r(n + 1) denotes the reference signal used for the tracking of the desired signal. 
The gradient estimate of the new LMS algorithm is given by [22]

where

Finally, the array output is written as
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= ARsA
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(4)R =
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(5)W(n + 1) = W(n) +
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⋅
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]

(6)�(n) =
�(n)0

x(n)xH(n)

(7)�(W(n)) = �(n) = x(n + 1)WH(n) − r(n + 1)

(8)g(W(n)) = 2R(n + 1)W(n).

(9)R(n + 1) =

[

nR(n) + R(n + 1)

n + 1

]

.

(10)y(n) = WH(n) ⋅ x(n)



629Improved Adaptive Beamforming Algorithms for Wireless Systems﻿	

1 3

3.2 � M‑LMS2 Algorithm

The modified complex weight update equation is expressed as:

The array factor is expressed as

3.3 � Results and Discussion

Let us consider an ULA with array elements L=[10, 20, 50 and 60], let the value of 
d = 0.5� , direction of user is at 0 deg, consider two interference at angles [-20 deg and 
20 deg] and let the step size is adaptive. Figure 3 shows the converengence performance 
of proposed and other LMS algorithms. Figures 4 and 5 show the beamscanning plots of 
M-LMS1 and M-LMS2 respectively.

From Fig.  3, we notice that, the proposed algorithms are fast in converging the 
MSE to zero. The M-LMS1 and M-LMS2 algorithms require only 40 and 35 iterations 
respectively to produce satisfactory output. In Figs. 4 and 5 we notice that the proposed 
beamformers produced the main beam accurately in the desired direction.

Now let us study the proposed algorithms by varying the number antenna elements. 
The simulations results for L= 10, 20, 50 and 60 are shown in Figs. 6 and 7. Figure 6 
shows the radiation pattern of M-LMS1 and M-LMS2 for small antenna elements (L=10 
and L=20) and Fig. 7 shows the radiation pattern of M-LMS1 and M-LMS2 for large 
antenna elements (L50 and L=60).

(11)W(n + 1) = W(n) +

[

�(n)

1 + �(n)�(n)�(n)∗x(n)

]

⋅

[

�(n)∗ ⋅ x(n)
]

(12)AF =

[

L
∑

i=1

WH

i
exp(j2� sin(�)

]

Fig. 3   MSE performance versus 
No.of iterations
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Fig. 4   Beamscanning plot of 
M-LMS1 algorithm

Fig. 5   Beamscanning plot of 
M-LMS2 algorithm

Fig. 6   Radiation pattern of M-LMS1 and M-LMS2 for: a L=10 b L=20
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3.4 � Calculation of Improvement Factor

No. of iterations required for Standard LMS [3] = IL = 80
No. of iterations required for M- LMS1 = IM1

 =50
No. of iterations required for M-LMS2 = IM2

 =40
Now, let us compute the improvement factor IF for both M-LMS1 and M-LMS2 as:

Similarlly,

Hence, M-LMS1 and M-LMS2 show the improvement of about 37.5% and 56% 
respectively over the standerd LMS algorithm.

From Fig.  6, it can be observed that when L=10 beam width and directivity of 
M-LMS2 is much better than M-LMS1 algorithm. When this value is increased 
particularly for L=60 as shown in Fig.  7b, both the methods have almost same beam 

(13)IF1 =

(

IL − IM1

IL

)

(14)IF1(in%) =

(

IL − IM1

IL

)

× 100

(15)=
(

80 − 50
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)

× 100 = 37.5%

(16)IF2 =

(

IL − IM2

IL

)

(17)IF2(in%) =

(

IL − IM2

IL

)

× 100

(18)=
(

80 − 50

80

)

× 100 = 50%

Fig. 7   Radiation pattern of M-LMS1 and M-LMS2 for: a L=50 b L=60
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width and directivity. Hence the proposed M-LMS2 works well for both small and large 
antenna arrays and it is much better than M-LMS1.

4 � Conclusion

In this work, we developed two modified versions of LMS algorithms to overcome the 
limitation of the classical LMS beamformer. We name these adaptive beamformers the 
M-LMS1 and M-LMS2. We devised two new complex adaptive weight update equations 
for both methods. The convergence plot shows that both methods outperform the classical 
LMS, the NLMS, and the recent VSSNLMS methods. Both methods are capable of 
producing the sharp main beams in the required RF signal direction while nullifying 
the interference. The convergence rates of the LMS1 and LMS2 show 30.75% and 50% 
improvements over the classical LMS beamformer. Hence, the new LMS1 and LMS2 
are more suitable for 5  G and 5GNR and beyond mobile communication for adaptive 
beamforming.
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