
Vol.:(0123456789)

Wireless Personal Communications (2023) 129:323–344
https://doi.org/10.1007/s11277-022-10099-0

1 3

HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance
and Dynamic Task Scheduling in Cloud Computing

Manikandan Nanjappan1 · Gobalakrishnan Natesan2 · Pradeep Krishnadoss3

Accepted: 11 October 2022 / Published online: 2 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Task scheduling is an important issue in cloud computing when it comes to achieving
multiple goals and satisfying different user needs. The increasing demand and users urge
the necessity to minimize the task completion time and enhance the load balancing capac-
ity. To achieve this goal, this article proposes a Hybrid firebug and Tunicate Optimiza-
tion (HFTO) algorithm. Based on the previous scheduling information, the HFTO clas-
sifier classifies the task and creates different variants of Virtual Machine (VM). This step
helps to minimize the time taken for VM creation. The proposed HFTO task scheduling
framework aims at optimizing different Quality of Service (QoS) parameters such as fault
tolerance, response time, efficiency, and makespan. The optimization algorithm helps to
expand the search space of the solutions and frames an optimal task scheduling strategy
for the virtual machines. The HFTO optimization method has several advantages, includ-
ing enhanced search capability and faster convergence. The HFTO algorithm improves
the fault tolerance capability by allocating the tasks to appropriate resources based on the
resource load peak. The lightweight tasks can be allocated to the resources with high CPU
utilization and the computation-intensive tasks can be allocated to the resources with low
CPU utilization. The response time and execution time are improved by task pre-emption.
Hence the time complexity and computational complexity can be improved by the HFTO
algorithm even with limited resource capability. The experiments are conducted using the
CloudSim experimental platform and the results are compared to the state-of-art tech-
niques. The performance of the proposed methodology is evaluated in terms of different
performance metrics namely makespan, load balancing, and average execution time. The
results show that, when compared to existing techniques, the proposed methodology pro-
vides higher load balancing efficiency and improved cloud task scheduling performance.

Keywords  Cloud computing · Dynamic scheduling · Bio-inspired algorithm · Optimal
scheduling · Load balancing · Firebug optimization

 *	 Manikandan Nanjappan
	 macs2005ciet@gmail.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-022-10099-0&domain=pdf

324	 M. Nanjappan et al.

1 3

1  Introduction

Users now have immediate access to pooled resources thanks to a new technology
called cloud computing. The core of a cloud computing (CC) data center has changed
as a result of the rapid growth of cloud computing technology. Cloud computing and
supercomputing are made feasible by increasingly dispersed computing resources,
such as high-bandwidth networks, massive data centers, and volumes of storage that
are immense [1]. The daily rise in the number of cloud-based services that meet cus-
tomer demands is made possible by the performance of the cloud environment. Some of
the stages that the CC goes through include grid computing, utility computing, parallel
computing, and distributed computing [2].

Among the many issues in cloud computing, the fundamental process at the Software
as a service (SaaS) level is task scheduling [3]. The service provider must use a type of
scheduling that maximizes resource usage while satisfying the demands of the clients.
When tasks are completed simultaneously, the service provider distributes multiple
tasks to a single or several VMs. While the cloud environment experiences an overall
variance in demand, the static load balancing strategy is crucial [4]. Static algorithms
cannot function in the cloud environment because workload changes over time. Hence,
the workload balancing among the VMs needs dynamic methods. The scheduling pro-
cess and NP-hard problem consider task scheduling based on the dynamic and heteroge-
neity properties of CC [31–33].

A new branch of networked computing called cloud computing disseminates data
technical services across the Internet. More capable computing offers centralized stor-
age, memory, computation, and bandwidth [5]. The backbone of CC is virtualization
which enables virtual machines (VMs). In the cloud computing environment, the VMs
execute the tasks presented by the clients. Because of the nature of the dynamic cloud,
there is variation in physical machine (PM) load [6, 30]. The workload across many
computing resources including disk drives, CPUs, network links, and computers is dis-
tributed via load balancing.

Dynamic and static are the two basic kinds of load balancing algorithms [28, 29]. At
the runtime, the distribution of workload is changed by making the dynamic load bal-
ancing model. The dynamic load balancing methodology is used due to the unpredict-
ability of workload[7]. The increasing demand and users urge the necessity to minimize
the task completion time and enhance the load balancing capacity. The NP‐complete
problem considers the heterogeneous environment-based task scheduling [19–23, 34,
35]. A faster response time enhances system performance overall, and a faster comple-
tion time is crucial. According to the rapid development of data centers, energy effi-
ciency is a prominent contradiction in the cloud. Nevertheless, it may lead to a few
problems such as performance reduction and service response delay [24, 25]. It is crit-
ical to achieving a better balance between energy and performance. The major steps
involved in this study are delineated as follows:

•	 A hybrid firebug and Tunicate Optimization (HFTO) algorithm is proposed for task
scheduling and load balancing in the cloud.

•	 The HFTO algorithm is a combination of the Firebug Swarm Optimization (FSO)
algorithm and Tunicate Swarm Optimization (TWO) algorithm in which the HFTO
algorithm method has several advantages, including enhanced search capability and
faster convergence.

325HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance…

1 3

•	 The HFTO algorithm minimizes the time taken for VM creation and optimizes differ-
ent Quality of Service (QoS) parameters such as fault tolerance, response time, effi-
ciency, and makespan.

•	 The proposed HFTO algorithm improves the time complexity and computational com-
plexity.

The remainder of this article is organized as follows: Sect. 2 provides a review of the
current works. The Hybrid Firebug and Tunicate Optimization (HFTO) algorithm are for-
mulated in Sects. 3, and 4 presents the challenges that are the focus of this study. Section 5
gives an overview of the proposed work, while Sect. 6 discusses the experimental findings.
Section 7 concludes the article.

2 � Related Works

Ebadifard et al. [8] developed an autonomous task scheduling approach for load balanc-
ing in cloud computing. An increasing amount of inter-VM communication overheads is
the major challenge in dynamic load balancing. This method’s performance is evaluated
by applying the CloudSim tool and then compared with Naive Bayesian Load Balancing,
Honey-Bee, Autonomous, and Round Robin techniques. The experimental results demon-
strated maximum load balancing and minimal communication overheads, as well as shorter
response times and higher resource usage. However, geographical clouds with dispersed
Datacenters are not taken into account.

Hybrid Tabu–Harmony task scheduling (HTHTS) algorithm was proposed by Alazzam
et al. [9]. The Harmony and Tabu search algorithms were merged to improve the qual-
ity of the findings. While compared to the round-robin, Harmony search, and Tabu search
methods, this task scheduling method yielded better results in the case of the total cost,
makespan, and throughput. While throughput and cost are increased, task scheduling per-
formance is hindered by crowded VMs.

The Service level agreement-based Load Balancing (SLA-LB) algorithm was suggested
by Lavanya et al. [10]. The overall makespan of the task is reduced to exaggerate the per-
formance of task scheduling in clouds. The expected time to complete (ETC) generates
the threshold data. The expected robust threshold value optimizes load balancing across
machines with the minimum configuration machine allocation to the task, as well as sys-
tem utilization. Compared to the existing algorithms, the SLA-LB algorithm provided bet-
ter results using the measures such as VM utilization, gain cost, penalty, and makespan.
The experimental results showed that improved task allocation was associated with poor
resource utilization and complicated costs. The new energy-efficient load balancing global
optimization model was introduced by Lu et al. [11]. The load balancing and energy con-
sumption optimization is their major objective function. Based on the experimental inves-
tigation, the minimum energy consumption with better power management is obtained but
this model is not suitable for large data centers.

Khorsand et al. [12] introduced an energy‐efficient task‐scheduling (EETS) algorithm in
cloud computing. Based on the best–worst Method (BWM), an energy-efficient task-sched-
uling model is introduced to determine cloud scheduling solutions. For each criterion, the
importance weights are assigned by applying the BWM process. The effectiveness of this
strategy is evaluated using a variety of statistical testing standards, including ANOVA
and the CloudSim toolkit. Nevertheless, it does not consider reliability and computational

326	 M. Nanjappan et al.

1 3

complexities. An Improved Firework Algorithm was proposed by Wang et al.[13] for task
scheduling in cloud computing. The primary choice is lightweight computing because of
its weak processing ability and fewer computing resources. The experimental results dem-
onstrated better load balancing with minimum task processing time and it does not share
the resources among data centers. Table 1 lists the summary of related works.

3 � Formulation of Hybrid Firebug and Tunicate Optimization (HFTO)
Algorithm

The Firebug Swarm Optimization (FSO) and Tunicate Swarm Optimization (TWO) algo-
rithms are combined to form the Hybrid Firebug and Tunicate Optimization (HFTO) algo-
rithm. As a result, the following is a breakdown of the HFTO algorithm’s steps:

3.1 � Firebug Swarm Optimization (FSO) Algorithm

The two basic behaviors of the Firebug Swarm Optimization (FSO) algorithm are gre-
garious behaviors and solitary individuals forming aggregations. These aggregations help
select compatible partners for reproduction and lessen predator activity [14]. The Firebug
behaviors of FSO algorithm models are explained below:

•	 Male firebugs use pheromones, which are chemical messages, to defend and attract the
female bug colonies.

•	 The fittest female in its colony only mates with every male bug.
•	 The male bug based on the colony strongly attracts the female bugs.
•	 Fit females’ chemical signals attract male bugs who would never join their colony.
•	 Even if a single aggregation moves together, the swarm members never disperse.

The following section explains the mathematical model of the FSO algorithm.

3.1.1 � Female Colonies Formation

The fit bugs are connected with the lower cost values because the firebugs search for fit
mates. In the search space, the FSO model initializes with the female bugs MNMG in which
every male bug contains the female bugs colony MG . The uniform random vector variable
treats each female bug’s initial location in accordance with the search space.

3.1.2 � Selection of Males

The placement of each male insect is first determined by the best female bug in the colony,
but the male bug mates with the healthiest female bug. Every male bug position is updated
by the best female in the colony. The location updates are implemented using operations on
elements like Hadamard matrix multiplication.

3.1.3 � Female Bug Chemotactic Movement

According to the male selection behavior, the female bug’s location is updated after initial-
ization. The FSO strategy relies heavily on avoiding scalar operations in order to achieve

327HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance…

1 3

a successful result. Store all of the female bug positions in one matrix corresponding to
a specific male colony. Let n(n) ⋅ G be the corresponding female bug position stored in a
matrix MG . The effective Hadamard multiplication model with a matrix update equation
updates the female bugs.

The random integer b falls in interval 1 and MG . With the function repmat (B, m, n), the
n copies of B return a matrix in addition to the row dimension.

3.1.4 � Male bug’s Attraction Toward Fittest Female Bugs

The fit females attract every male bug. The male bug moves to a comparable fittest bug
based on the specific geographical position, and the entire population is limited to the spec-
ified geographical position, preventing the swarm from dispersing. Equation (4) explains
the update rule for the male bug movement behavior to the fittest female bug.

(1)Ny ← repmat(n(n) ⋅ y, 1,MG)

(2)Nz ← repmat(n(b) ⋅ y, 1,MG)

(3)n(n) ⋅ G ← n(n) ⋅ G + C1Θ
(
Ny − n(n) ⋅ G

)
+ C2Θ

(
Nz − n(n_ ⋅ G

)

(4)n(n) ⋅ G ← n(n) ⋅ y + C3Θ(h − n(n)y)

Table 1   List of related works

References Methods Parameters Advantages Disadvantages

Ebadifard
et al. [8]

The autonomic task
scheduling algo-
rithm

Makespan and
communication
overhead

Maximum load
balancing degree
with minimum
communication
overheads

Geographic clouds
with distributed
data centers were
overlooked

Alazzam
et al. [9]

Hybrid Tabu–Har-
mony task schedul-
ing algorithm

Cost, makespan, and
throughput

Better throughput
and lower cost

Overloaded VMs
reduces the task
scheduling perfor-
mance

Lavanya
et al. [10]

Service level
agreement-based
Load Balancing
algorithm

VM utilization factor,
gain cost, penalty,
and makespan

Better task allocation Poor resource utiliza-
tion with complex
cost

Lu et al.
[11]

New energy-efficient
load balancing
global optimization
model

Energy consumption,
resource utilization,
and makespan

Minimum energy
consumption with
better power man-
agement

Not suitable for large
data centers

Khorsand
et al. [12]

Multi-criteria
decision-making
method

Resource utilization,
energy consump-
tion, and makespan

Independent tasks Does not consider reli-
ability and computa-
tional complexities

Wang et al.
[13]

Improved Firework
Algorithm

Processing time and
throughput

Better load balancing
with minimum task
processing time

Not sharing resources
among datacenters

328	 M. Nanjappan et al.

1 3

3.1.5 � Swarm Cohesion

Individual bugs are not scattered in a swarm when the entire swarm moves as a single
entity [15]. The herd cohesion model is represented in Eq. (5).

Individual bugs must choose the best match for reproduction based on the reproduction
swarm behavior of firebugs. Based on the triangular vector law, the y1 and y2 express the
vector y is expressed as:

The relocation of the male insect to the fittest female bug is accomplished by Eq. (7).

The element-wise Hadamard multiplication that takes the place of the scalar vector is
shown in Eq. (8).

The below expression delineates the weak movement of female bugs to random males
and the strong movement to the dominant.

The movement to the random male and the dominant male is denoted as
C2Θ

(
Nz − n(n) ⋅ G

)
 and C1Θ(Ny − n(n) ⋅ G . Additionally, the degree of attraction to domi-

nant and random male bugs is C1 and C2.

3.2 � Tunicate Swarm Optimization (TSO) Algorithm

The conflict among the search agents avoidance is performed via a vector to calculate the posi-
tion of the new search agent [15].

The gravity force and the water flow advection are ��⃗H and �⃗F . The random interval 0 and 1
for the random variables such as a1,a2 and a3 . Where ��⃗M express the social force between the
search agents.

(5)n(n) ⋅ y ← n(n) ⋅ y + C4Θ(h − n(a)y)

(6)y = y1 + �(y2 − y1)

(7)n(n) ⋅ y ← n(n) ⋅ y + �(h − n(n) ⋅ y

(8)n(n) ⋅ y ← n(n) ⋅ y + C4Θ(h − n(a) ⋅ y

(9)n(n) ⋅ G ← n(n) ⋅ G + C1Θ(Ny − n(n) ⋅ G + C2Θ
(
Nz − n(n) ⋅ G

)

(10)�⃗P =
��⃗H

��⃗M

(11)��⃗H = a2 + a3 −
�⃗F

(12)�⃗F = 2.a1

329HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance…

1 3

From Eq. (13), Smax and Smin are the subordinate and initial speeds. The values of Smin and
Smax are 1 and 4.

3.2.1 � Follows the Optimal Agent Position

For reaching the optimal solution, following the current best agent is important. There is no
fighting among the agents in the swarm. Equation (14) describes the best agent with its opti-
mal position [16].

From the above equation, the food source and search agent distance is �����⃗RD . Where, Ybest and
y is the food source position and the current iteration of tunicate. The 0 to 1 interval range for
the random integer (random) and ������⃗Sp(y) is the position of the tunicate.

3.2.2 � Keep Near to the Best Agent

Equation (15) computes the best position to ensure the search agent is still near to the best
agent. The best food source position Ybest is and the tunicate position is ������⃗Sp(y).

3.2.3 � Swarm Behavior

Based on the positions of two agents, update the current agent position to model the swarm
characteristics of tunicates.

(13)��⃗M = [Smin + a1.Smax − Smin]

(14)�����⃗RD =
|||
Ybest − random ⋅

������⃗Sp(y)
|||

(15)��������⃗Sp(y) =

{
Ybest +

�⃗P ⋅
�����⃗RD if random ≥ 0.5

Ybest −
�⃗P ⋅

�����⃗RD if random < 0.5

(16)���������������⃗Sp(y + 1) =
��������⃗Sp(y) +

���������������⃗Sp(y + 1)

2 + a1

330	 M. Nanjappan et al.

1 3

Algorithm 1: Pseudocode of HFTO algorithm.
Initialize the HFTO algorithm parameters with the maximum number of iteration
For NM, 1← do

)ff G⋅

)) (minmaxmin Gmodnar E My y y× −

)min(], [fGvalind ⋅←

valy nG ←) (
() () :()n n y n n G dni⋅ ←

End For
h m dni y⋅)

valhf ←

For max1, 1S← do
Formulate the female colonies

Select male firebugs
 Chemotactic movement of female firebug
Use equation (4) to update the rule for the male bug movement behavior to the fittest female
firebug
 Equation (5) delineate the herd cohesion model
 Update the behavior of the tunicate swarm equation (16)
Obtain the optimal solution
End For

3.3 � HFTO Algorithm

The Firebug Swarm Optimization (FSO) algorithm has several advantages such as
reducing execution time, modern CPUs, and GPUs of fast Single Instruction Multiple
Data (SIMD) feature in which it performs multiple arithmetic operations, lower cost,
exploration, and Behaviour and etc. However, the FSO algorithm’s exploitation swarm
cohesiveness behavior required few changes because it degrades FSO’s performance in
terms of convergence speed, searchability, and computational complexity. As a result,
we integrated the swarm behavior of tunicate swarm optimization to the FSO exploita-
tion swarm cohesion, so improving the FSO algorithm’s performance, and the newly
developed model is known as the Hybrid Firebug and Tunicate Optimization (HFTO)
method. As a result, the HFTO approach offers various advantages, such as improved
search capacity and faster convergence. Algorithm 1 delineates the pseudocode of the
HFTO algorithm.

331HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance…

1 3

4 � Problem Formulation

The set of N number of virtual machines is described as VM =
{
VM1,VM2,VM3, ...,VMN

}
 .

Where TA =
{
TA1, TA2, TA3, ...,TAK

}
 describes the set of K tasks. We need to know how

much the load has changed amongst the virtual machines to do load balancing [17]. The
single virtual machine of CPU capacity ( CAj ) is expressed in Eq. (17).

Equation (18) describes the capacity (C) of the physical machine.

The below equation calculates the load on single virtual machines.

Equation (19) calculates the load on single physical machines.

The below equations explains the processing time of virtual machine and physical
machine.

The host is in a balanced state based on the value of the RS parameter. Equation (23)
computes the workload standard deviation.

The priority for each task is applied to any virtual machines based on the physical
machines [18]. Compared with the computed standard deviation � , the virtual machine
is in a balanced state when the task is executed. the threshold is set from 0 to 1 and the
standard deviation is within the threshold limit.

(17)CAj = NIRPj

(18)C =

m∑

j=1

CAj

(19)LVMj =

i∑

k=1

SLk

(20)L =

n∑

j=1

LVMj

(21)RSj =
LVMj

CAj

(22)RS =
L

C

(23)� =

√√√
√1

n

n∑

j=1

(RSj − RS)

332	 M. Nanjappan et al.

1 3

5 � Proposed HFTO Algorithm for Resource Allocation and Load
Balancing in the Cloud

The loads are balanced in the cloud data center and the optimum resource is assigned using
the proposed HFTO algorithm. Virtual machines that are present on a single physical host
are the subject of intrahost load balancing [19]. The mapping across load scenarios is bal-
anced as a result of a thorough examination of the HFTO algorithm. Table 2 describes the
relationship between the HFTO algorithm scheduling scenario and its behavior.

5.1 � Virtual Machine Classification

The proposed HFTO algorithm with its working process is delineated in Fig. 1. On the
basis of the proposed model, load balancing tasks are removed from the workload under-
loaded VM, overloaded VM, and balanced VM. The VMs are mainly grouped based on
their upper and lower boundaries. The upper boundary comprises 70% of the physical
machine capacity whereas the lower boundary comprises 20% of the physical machine
capacity. The overloaded VMs are represented using the

(
LVMj > 0.8 ∗ C

)
 and the under-

loaded VM are expressed using the
(
LVMj < 0.3 ∗ C

)
 criteria. The tasks are balanced by

taking the tasks waiting in the overutilized VM and scheduling them in the underutilized
VM. The priority and residual completion time are two essential factors that must be taken
into account in order to reduce the task’s makespan and response time.

The proposed HFTO task scheduling paradigm seeks to maximize Quality of Service
(QoS) metrics, including fault tolerance, response time, effectiveness, and makespan.
The high-priority tasks are mainly taken both for pre-emption and exemption. The task is
mainly exempted in a scenario where a high-priority task is executing in a particular VM to
minimize the failure in terms of QoS on the service provider side. In this way, the Service
Level Agreement (SLA) is not violated.

5.2 � Task Scheduling

The optimal task scheduling is carried out using the HFTO algorithm. The main chal-
lenge with task scheduling is determining how to execute jobs that have been removed
from virtual machines. The tasks withdrawn from the VM are mostly assigned to the new
VM, which has a lower task load and tasks with varying priority. Equation (24) frames the
objective function.

Table 2   The mapping among the HFTO algorithm scheduling scenario with its behavior

Behavior Less loaded group of VM

Tandem formation Capacity and loan on every virtual machine
Female firebug population Tasks neglected from a virtual machine belong

to the overloaded virtual machine group
Dominant male firebug Tasks in new or queue incoming tasks
Male firebug Running tasks in every virtual machine
Female firebug chemical signal A virtual machine in an underloaded VM group

333HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance…

1 3

The load on the VM is LVMj
 and the total number of tasks in the queue is MSt . The ran-

domly dispersed solution in the search space is derived by Eq. (25).

The upper and lower bounds with respect to yj,k are yj,max and yj,min . Based on the
overloaded virtual machine groups, the female firebug updates the position by applying
Eq. (26) after generating the initial population.

Equation (27) delineate the fitness function of a male firebug after updating the position.

The population initializations of firebugs (FB) are described in Table 3. The matrix values
are mainly the VM IDs present in the underutilized VM. The overall number of tasks largely
indicates the tasks that were removed from the overused VMs. The selection probability of
HFTO is higher when the fitness value is higher. The optimal scheduling is obtained after
reaching the maximum iteration. However, the priority of the task running is considered when

(24)F(y) = min

(
MSt + LVMj

)

(25)yj,k = yj,min + random[0, 1] ⋅
(
yj,max − yj,min

)

(26)uj,k = yj,k + �j,k ⋅
(
yj,k − yi,k

)

(27)Rj =
F(yj)

∑m

j=1
F(yj)

Fig. 1   Proposed HFTO algorithm for task scheduling and load balancing

334	 M. Nanjappan et al.

1 3

performing preemptive scheduling. The optimal scheduling plan mainly comprises the ID of
the VM where the removed task is executed.

5.3 � Optimal Scheduling with Preemptive Scheduling

Preemption happens when the removed task’s priority is higher than the next task waiting in
the queue. In certain cases, the running task’s remaining estimated completion time is longer
than the eliminated task burst time. Once the requirement is met, the removed task is carried
out by the virtual machine. The preempted task state is preserved by the checkpoint mech-
anism. If the priority of the incoming task is greater than the priority of the task currently
running in the VM, then it is executed first, or else it waits in the target VM queue. Next,
the execution time of both tasks is checked, if the running task execution time is lower than
the prioritized task, then it is executed. The higher-priority task is completed first if its run-
ning time exceeds that of the remaining task; otherwise, its current state is maintained. After
the task allocation process is complete, the VM is assigned several parameters, such as the
number of tasks provided, their priority, updated overloaded and underloaded VMs, etc. We
mainly formulate the proposed model on the assumption that at least one physical machine
may fail. The task scheduling module runs completely before the deadline. The makespan is
computed by taking the Module Processing Time (MST) and Data Transmission Time (DTT).
The MST is the variation between the ending time and task execution deadline. The DTT and
MST values are normalized via different weight coefficients x and y. Since the MST and DTT
both have equal importance, the coefficients x and y are allocated the same weights.

The checkpoint restore model is used here for fault tolerance.

6 � Result and Discussion

A cloud simulation toolset, including CloudSim [26, 27], supports both behavior and sys-
tem models of cloud system components, including resource provisioning rules, virtual
machines, and data centers. CloudSim also shows how well the proposed model performs.
At least four virtual machines are running on each of the 20 hosts in a single data center.

MP = x ∗ DTT + y ∗ MST

Table 3   Population initialization Number
of tasks

FB1 FB2 FB3 FB4 FB5 FB6 FB7 FB8 FB9 FB10

T1 3 1 1 1 3 1 2 3 2 3
T2 3 1 2 3 3 1 1 3 2 3
T3 3 2 1 2 1 2 3 1 1 1
T4 2 2 1 2 2 1 3 2 3 1
T5 1 3 2 2 2 3 1 2 2 1
T6 2 1 2 3 1 1 1 1 1 1
T7 1 1 3 2 3 2 2 1 3 2
T8 2 3 3 1 1 1 1 3 2 2
T9 3 2 1 1 1 2 3 1 3 1
T10 2 2 1 1 2 3 3 1 3 2

335HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance…

1 3

The task length is in the 400–1 billion instruction range. When the virtual machines are
started and scheduled to run, 300 cloudlets are created. With one CPU core, each node has
minimum and maximum processing capabilities of 500 MIPS and 20,000 MIPS, respec-
tively. 50 individuals comprise the population, and there is 100 iterations total. The param-
eters settings of the proposed model are described in Table 4.

6.1 � Makespan Performance

Makespan mainly computes the overall time required to schedule the input tasks by select-
ing an optimal VM in the cloud and it is mathematically computed as follows:

In terms of makespan, Fig. 2 depicts the results achieved by comparing the proposed
model to conventional techniques. Depending on the makespan in seconds, the num-
ber of tasks ranges from 100 to 500. The proposed method efficiency is validated using
the significant performance measure called makespan. The makespan is calculated using
Eq. (28). The time taken with the virtual machines to finish each task execution determines
the makespan. The state-of-art comparison is carried out using the proposed method with
existing Hybrid Tabu–Harmony task scheduling (HTHTS) [9], Service level agreement-
based Load Balancing (SLA-LB) [10], Energy‐efficient task‐scheduling (EETS) [12],
and Improved Firework Algorithm (IFA) [13]. Because of the constant number of virtual
machines, the number of jobs increased by increasing the execution time. The proposed

(28)
Nj = max

{
CSj,k∕j ∈ S, j = 1, 2, ...,m and k ∈ virtual machines, k = 1, 2, ..., n

}

Table 4   Proposed parameter settings

Parameter Ranges

Common and HFTO algorithm parameters
Scheduling and load balancing model HFTO algorithm
Number of data centers 1
Number of virtual machines 2–64
OS of datacenter Linux
Bandwidth 1000–3000 MB
Number of tasks 100–500
Population size 50
Maximum number of iterations 100
VM setup of data center
Bandwidth
Bandwidth 100 M/s
RAM 4096 MB
Dist input output 10 GB
CPU computing capacity 1860 MIPs and 2660 MIPs
Task setup of data center
Output size (memory) [20, 40] MB
File size [200, 1000] MB
CPU length [400, 1000] MIPs

336	 M. Nanjappan et al.

1 3

method demonstrated less makespan than other existing techniques such as HTHTS, SLA-
LB, EETS, and IFA [28–30]. The proposed model minimizes the makespan by the heuris-
tic-based load balancing algorithm created.

Figure 3 delineates the state-of-art result of makespan based on different task types.
The four task types (Tj) are plotted on the horizontal axis such that j ∈ {1, 2, 3, 4} . When
the task types changed from 1 to 4, so did the makespan values of the state-of-the-art
approaches, including HTHTS, SLA-LB, EETS, and IFA with the proposed model. Com-
pared to the existing methods, the proposed technique provided better makespan results
based on varying makespan. The shorter the makespan, the better the service quality and
the better the scheduling. From the below equation, the task completion time in the cloud
is �j.

6.2 � Response Time Performance

A higher response time taken by a model specifies its weak capability of it in handling the
overloaded VMs. Hence, a reliable model needs to have a minimal response time as possible
to effectively manage the load in the network. Figure 4 displays a cutting-edge comparison
of response time based on the number of tasks. Depending on the makespan in seconds, the
number of tasks ranges from 100 to 500. For user satisfaction, the measurement criterion is
response time. Equations (30) and (31) is used to calculate the response time. The low and
medium-priority jobs are removed from overloaded virtual machines. When compared to
the existing techniques, the amounts of task migrations are fewer. In comparison to existing

(29)N =
min

∑M

j=1
�j

M

Fig. 2   State-of-art comparison of makespan

337HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance…

1 3

approaches such as HTHTS, SLA-LB, EETS, and IFA, the proposed method obtains mini-
mum makespan values, as shown in Fig. 4.

(30)FSj,k =
SLk

Cj

Fig. 3   State-of-art comparison of response time based on task type

Fig. 4   State-of-art comparison of response time based on the number of tasks

338	 M. Nanjappan et al.

1 3

The state-of-art comparison of response time with respect to arrival rate is described in
Fig. 5. The existing Hybrid Tabu–Harmony task scheduling (HTHTS) [9], Service level
agreement-based Load Balancing (SLA-LB) [10], Energy‐efficient task‐scheduling (EETS)
[12] and Improved Firework Algorithm (IFA) [13] with the proposed method validate the
performance of proposed work. With an average response time of 200 to 1000 s, this test
uses a variable arrival rate ranging from 20 to 100. The proposed method takes less average
response time than other conventional methods including HTHTS, SLA-LB, EETS, and
IFA.

6.3 � Fault tolerance Performance

The two most critical Fault Tolerance tasks are fault recovery and fault detection. To per-
form the former in a decentralized manner, all hosts place a monitoring ring on top of a
peer ring and observe their counter-clockwise neighbors. The backup host will have all
failed node tuples, which will also validate the given status. Backup nodes are never given
additional resources; they are only utilized for recovery. The backup node gets overbur-
dened as a result of or during the takeover. The offload initiates the scale-out or adaptive
load balancing procedure without interfering with routine operations. The failure rate of
different techniques is identified and the results are presented in Fig. 6a and b in terms of
network usage and delay. The network usage is computed in terms of kilobytes and the
delay is computed in terms of milliseconds. For a failure rate of 0.1%, the proposed model
offers better performance in both delay and network usage.

(31)PSj,k = CS(k−1)j

Fig. 5   State-of-art comparison of response time with respect to the arrival rate

339HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance…

1 3

6.4 � Performance Efficiency

The efficiency of the different models taken for comparison is mainly computed using the
prediction time and prediction accuracy. The prediction time primarily computes the time
required to allocate the appropriate task to the intended usage within the user-specified
time limit. The prediction accuracy mainly implies the total amount of tasks in the queue
that are executed within the limited time specified by the user to the overall tasks pre-
sent in the cloud. Hence an efficient methodology should consume minimal prediction time
and higher prediction accuracy. The predicted task state is measured using a minimum and
maximum task arrival state threshold value. The state-of-art comparison of overall effi-
ciency is delineated in Fig. 7. This analysis is conducted in the context of user requests
arrival rate and time. The proposed technique is compared to existing Hybrid Tabu-Har-
mony task scheduling (HTHTS) [9], Service level agreement-based Load Balancing (SLA-
LB) [10], Energy-efficient task scheduling (EETS) [12], and Improved Firework Algorithm
(IFA) [13]. The proposed method demonstrated superior efficiency results to other existing
methods including HTHTS, SLA-LB, EETS, and IFA.

6.5 � Load Balancing Performance

The load balancing capability of any strategy is determined by its ability to maximize
resource utilization while minimizing total completion time. A system with a higher load
balancing capacity has a higher task configuration capacity by identifying the optimal VM
for task allocation. In this way, the resource utilization capability is increased when the
number of incoming tasks with different sizes is managed correctly by the VM assigned.
The load balancing performance results are delineated in Fig. 8. The load balancing test
checks the task scheduling performances provided. Figures 8a–c depict the load balanc-
ing analysis in terms of CPU consumption, I/O utilization, and memory utilization. The
proposed method is used to compare load balancing performance with existing Hybrid
Tabu-Harmony task scheduling (HTHTS) [9], Service level agreement-based Load Bal-
ancing (SLA-LB) [10], Energy-efficient task scheduling (EETS) [12], and Improved
Firework Algorithm (IFA) [13]. The HTHTS, on the other hand, selected idle resources

Fig. 6   Impact of failure rate. a Network usage and b Delay

340	 M. Nanjappan et al.

1 3

over SLA-LB, EETS, and IFA. However, the proposed work allocates resources more effi-
ciently than existing methods. Based on the investigation of Fig. 8a–c, the proposed tech-
niques take less CPU utilization, Input–Output utilization (IOU), and memory utilization.
We mainly took the terms such as CPU utilization, IOU, and memory into consideration
because they are mainly related to resource wastage. An effective load balancing scheme
should resist resource wastage as maximum as possible.

7 � Conclusion

In this article, a task scheduling framework using Hybrid Firebug and Tunicate Optimi-
zation (HFTO) technique is presented. CloudSim simulates the proposed model’s perfor-
mance. The state-of-art comparison is carried out using the proposed method with existing
Hybrid Tabu–Harmony task scheduling (HTHTS), Service level agreement-based Load
Balancing (SLA-LB), Energy‐efficient task‐scheduling (EETS), and Improved Firework
Algorithm (IFA). Computationally intensive tasks are assigned to resources with low CPU
utilisation, whereas lightweight tasks are assigned to resources with high CPU utilisa-
tion. The HFTO algorithm improves the Quality of Service (QoS) factors fault tolerance,
response time, efficiency, and makespan. In terms of cloud task scheduling performance
and load balancing efficiency, the proposed strategy outperformed the previous techniques.

Fig. 7   State-of-art comparison of efficiency

341HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance…

1 3

Author Contributions  All authors agreed on the content of the study. MN,GN and PK collected all the
data for analysis. MN agreed on the methodology. MN,GN and PK completed the analysis based on agreed
steps. Results and conclusions arediscussed and written together. The author read and approved the final
manuscript.

Funding  Not applicable.

Data Availability and Materials  Data sharing is not applicable to this article as no new data were created or
analyzed in this study.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Human and Animal Rights  This article does not contain any studies with human or animal subjects per-
formed by any of the authors.

Fig. 8   Load balancing performances, a CPU utilization, b Input Output utilization, and c Memory utiliza-
tion

342	 M. Nanjappan et al.

1 3

Informed Consent  Informed consent was obtained from all individual participants included in the study.

References

	 1.	 Geng, X., Yu, L., Bao, J., & Fu, G. (2019). A task scheduling algorithm based on priority list and
task duplication in cloud computing environment. Web Intelligence, 17(2), 121–129.

	 2.	 Ramasubbareddy, S., Swetha, E., Luhach, A. K., & Srinivas, T. A. (2021). A multi-objective
genetic algorithm-based resource scheduling in mobile cloud computing. International Journal
of Cognitive Informatics and Natural Intelligence (IJCINI), 15(3), 58–73. https://​doi.​org/​10.​4018/​
IJCINI.​20210​701.​oa5

	 3.	 Arulkumar, V., & Bhalaji, N. (2021). Performance analysis of nature inspired load balancing algo-
rithm in cloud environment. Journal of Ambient Intelligence and Humanized Computing, 12(3),
3735–3742.

	 4.	 Yiqiu, F., Xia, X., and Junwei, G., (2019). Cloud computing task scheduling algorithm based on
improved genetic algorithm. In 2019 IEEE 3rd information technology, networking, electronic and
automation control conference (ITNEC) (pp. 852–856). IEEE.

	 5.	 Houssein, E. H., Gad, A. G., Wazery, Y. M., & Suganthan, P. N. (2021). Task scheduling in cloud
computing based on meta-heuristics: Review, taxonomy, open challenges, and future trends. Swarm
and Evolutionary Computation, 62, 100841.

	 6.	 Gupta, A., & Garg, R. (2017). Load balancing based task scheduling with ACO in cloud comput-
ing. In 2017 International conference on computer and applications (ICCA) (pp. 174–179). IEEE.

	 7.	 Fang, Y., Wang, F., & Ge, J. (2010). A task scheduling algorithm based on load balancing in
cloud computing. International conference on web information systems and mining (pp. 271–277).
Springer.

	 8.	 Ebadifard, F., & Babamir, S. M. (2021). Autonomic task scheduling algorithm for dynamic workloads
through a load balancing technique for the cloud-computing environment. Cluster Computing, 24(2),
1075–1101.

	 9.	 Alazzam, H., Alhenawi, E., & Al-Sayyed, R. (2019). A hybrid job scheduling algorithm based on Tabu
and Harmony search algorithms. The Journal of Supercomputing, 75(12), 7994–8011.

	10.	 Lavanya, M., Shanthi, B., & Saravanan, S. (2020). Multi objective task scheduling algorithm based on
SLA and processing time suitable for cloud environment. Computer Communications, 151, 183–195.

	11.	 Lu, Y., & Sun, N. (2019). An effective task scheduling algorithm based on dynamic energy manage-
ment and efficient resource utilization in green cloud computing environment. Cluster Computing,
22(1), 513–520.

	12.	 Khorsand, R., & Ramezanpour, M. (2020). An energy-efficient task-scheduling algorithm based on a
multi-criteria decision-making method in cloud computing. International Journal of Communication
Systems, 33(9), e4379.

	13.	 Wang, S., Zhao, T., & Pang, S. (2020). Task scheduling algorithm based on improved firework algo-
rithm in fog computing. IEEE Access, 8, 32385–32394.

	14.	 Noel, M. M., Muthiah-Nakarajan, V., Amali, G. B., & Trivedi, A. S. (2021). A new biologically
inspired global optimization algorithm based on firebug reproductive swarming behaviour. Expert Sys-
tems with Applications, 183, 115408.

	15.	 Shyaamini, B., & Senthilkumar, M. (2006). Multi objective particle swarm optimization for perfor-
mance testing in web application. ARPN Journal of Engineering and Applied Sciences, 13(11), 1–9.

	16.	 Houssein, E. H., Helmy, B. E. D., Elngar, A. A., Abdelminaam, D. S., & Shaban, H. (2021). An
improved tunicate swarm algorithm for global optimization and image segmentation. IEEE Access, 9,
56066–56092.

	17.	 Ergu, D., Kou, G., Peng, Y., Shi, Y., & Shi, Y. (2013). The analytic hierarchy process: Task schedul-
ing and resource allocation in cloud computing environment. The Journal of Supercomputing, 64(3),
835–848.

	18.	 Dhinesh Babu, L. D., & Krishna, P. V. (2013). Honey bee behavior inspired load balancing of tasks in
cloud computing environments. Applied Soft Computing, 13(5), 2292–2303.

	19.	 Xu, X., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., & Liu, A. X. (2018). Dynamic resource allocation
for load balancing in fog environment. Wireless Communications and Mobile Computing, 2018, 1–15.

	20.	 Polepally, V., & Chatrapati, K. S. (2019). Dragonfly optimization and constraint measure-based load
balancing in cloud computing. Cluster Computing, 22(1), 1099–1111.

	21.	 Xingjun, L., Zhiwei, S., Hongping, C., & Mohammed, B. O. (2020). A new fuzzy-based method for
load balancing in the cloud-based Internet of things using a grey wolf optimization algorithm. Interna-
tional Journal of Communication Systems, 33(8), e4370.

https://doi.org/10.4018/IJCINI.20210701.oa5
https://doi.org/10.4018/IJCINI.20210701.oa5

343HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance…

1 3

	22.	 Muthsamy, G., & Ravi Chandran, S. (2020). Task scheduling using artificial bee foraging optimiza-
tion for load balancing in cloud data centers. Computer Applications in Engineering Education, 28(4),
769–778.

	23.	 Deng, Z., Cao, D., Shen, H., Yan, Z., & Huang, H. (2021). Reliability-aware task scheduling for
energy efficiency on heterogeneous multiprocessor systems. The Journal of Supercomputing, 77(10),
11643–11681.

	24.	 Luppold, A., Oehlert, D., & Falk, H. (2020). Compiling for the worst case: Memory allocation for
multi-task and multi-core hard real-time systems. ACM Transactions on Embedded Computing Systems
(TECS), 19(2), 1–26.

	25.	 Roy, A., & Livny, M. (2004). Grid resource management state of the art and future trends (pp. 135–
144). Springer.

	26.	 Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1), 23–50.

	27.	 Boveiri, H. R., Khayami, R., Elhoseny, M., & Gunasekaran, M. (2019). An efficient Swarm-Intelli-
gence approach for task scheduling in cloud-based internet of things applications. Journal of Ambient
Intelligence and Humanized Computing, 10(9), 3469–3479.

	28.	 Abd Elaziz, M., Xiong, S., Jayasena, K. P. N., & Li, L. (2019). Task scheduling in cloud computing based
on hybrid moth search algorithm and differential evolution. Knowledge-Based Systems, 169, 39–52.

	29.	 Houssein, E. H., Gad, A. G., Wazery, Y. M., & Suganthan, P. N. (2021). Task scheduling in cloud com-
puting based on meta-heuristics: Review, taxonomy, open challenges, and future trends. Swarm and
Evolutionary Computation, 2021, 100841.

	30.	 Prem Jacob, T., & Pradeep, K. (2019). A multi-objective optimal task scheduling in cloud environment
using cuckoo particle swarm optimization. Wireless Personal Communications, 109(1), 315–331.

	31.	 Sreenu, K., & Sreelatha, M. (2019). W-Scheduler: Whale optimization for task scheduling in cloud
computing. Cluster Computing, 22(1), 1087–1098.

	32.	 Mapetu, J. P. B., Chen, Z., & Kong, L. (2019). Low-time complexity and low-cost binary particle
swarm optimization algorithm for task scheduling and load balancing in cloud computing. Applied
Intelligence, 49(9), 3308–3330.

	33.	 Prassanna, J., & Venkataraman, N. (2019). Adaptive regressive holt–winters workload prediction and
firefly optimized lottery scheduling for load balancing in cloud. Wireless Networks, 2019, 1–19.

	34.	 Sundararaj, V., 2019. Optimal task assignment in mobile cloud computing by queue based ant-bee
algorithm. Wireless Personal Communications, 104(1), pp.173–197. 10.​1007/​s11277-​018-​6014-9

	35.	 Manikandan, N., Gobalakrishnan, N. and Pradeep, K., 2022. Bee optimization based random double
adaptive whale optimization model for task scheduling in cloud computing environment. Computer
Communications, 187, pp.35–44. 10.​1016/j.​comcom.​2022.​01.​016

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Dr. Manikandan Nanjappan  obtained his Bachelors of Engineering
degree in Computer Science Engineering from Anna University 2005.
Then he obtained his Master’s of Engineering degree in in Computer
Science Engineering from Anna University 2011. He completed his
PhD in Sathyabama Institute of Science and Technology 2020 and
presently he is an Assistant Professor of Department of Data science
and Business Systems, SRM Institute of Science and Technol-
ogy, SRM Nagar, Kattankulathur, Chennai, TN, India. His specializa-
tions include cloud computing, Operating systems, networking.

https://doi.org/10.1007/s11277-018-6014-9
https://doi.org/10.1016/j.comcom.2022.01.016

344	 M. Nanjappan et al.

1 3

Gobalakrishnan Natesan  pursued his Bachelor’s degree in Computer
Science and Engineering at Madras University, Tamilnadu, India in
2004. He then obtained his Master’s degree in Computer Science and
Engineering from Anna University, Tamilnadu, India in 2011. He
completed his Ph.D in Sathyabama Institute of Science and Technol-
ogy, Chennai, India and working an Assistant Professor in the School
of Computer Science and Engineering, VIT University, Chennai,
Tamilnadu, India. His current research interests are Cloud computing,
Virtualization and Big Data.

Pradeep Krishnadoss  pursued his Bachelor’s degree in Information
Technology at Anna University, Tamilnadu, India in 2005. He then
obtained his Master’s degree in Software Engineering from Bharathid-
hasan University, Tamilnadu, India in 2008. He received his Ph.D from
Sathyabama Institute of Science and Technology, Chennai, India and
working as Associate Professor in the Department of Information
Technology, Sri Venkateswara College of Engineering, Chennai,
Tamilnadu, India. His current research interests are Cloud computing,
IoT and Big Data. He is a life time member of ISTE.

Authors and Affiliations

Manikandan Nanjappan1 · Gobalakrishnan Natesan2 · Pradeep Krishnadoss3

1	 Department of Data science and Business Systems, School of Computing, College of Engineering
and Technology, Faculty of Engineering and Technology, SRM Institute of Science
and Technology, SRM Nagar, Kattankulathur, Chennai, Tamilnadu, India

2	 Department of Information Technology, Sri Venkateswara College of Engineering, Chennai,
Tamilnadu, India

3	 School of Computer Science and Engineering, Vellore Institute of Technology, Chennai,
Tamilnadu, India

	HFTO: Hybrid Firebug Tunicate Optimizer for Fault Tolerance and Dynamic Task Scheduling in Cloud Computing
	Abstract
	1 Introduction
	2 Related Works
	3 Formulation of Hybrid Firebug and Tunicate Optimization (HFTO) Algorithm
	3.1 Firebug Swarm Optimization (FSO) Algorithm
	3.1.1 Female Colonies Formation
	3.1.2 Selection of Males
	3.1.3 Female Bug Chemotactic Movement
	3.1.4 Male bug’s Attraction Toward Fittest Female Bugs
	3.1.5 Swarm Cohesion

	3.2 Tunicate Swarm Optimization (TSO) Algorithm
	3.2.1 Follows the Optimal Agent Position
	3.2.2 Keep Near to the Best Agent
	3.2.3 Swarm Behavior

	3.3 HFTO Algorithm

	4 Problem Formulation
	5 Proposed HFTO Algorithm for Resource Allocation and Load Balancing in the Cloud
	5.1 Virtual Machine Classification
	5.2 Task Scheduling
	5.3 Optimal Scheduling with Preemptive Scheduling

	6 Result and Discussion
	6.1 Makespan Performance
	6.2 Response Time Performance
	6.3 Fault tolerance Performance
	6.4 Performance Efficiency
	6.5 Load Balancing Performance

	7 Conclusion
	References

