
Accepted: 28 September 2022 / Published online: 15 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

	
 Sarvesh Pandey
pandeysarvesh100@gmail.com

1	 Computer Science, MMV, Banaras Hindu University, Varanasi, India
2	 Department of Computer Science & Engineering, Madan Mohan Malaviya University of

Technology, Gorakhpur, India

On Developing Framework for Schedulable Priority-Driven
Systems: A Futuristic Review

Sarvesh Pandey1 · Udai Shanker2

Wireless Personal Communications (2023) 128:2983–3001
https://doi.org/10.1007/s11277-022-10082-9

Abstract
Over time, systems’ real-time data access requirements evolved, e.g., Real-Time Systems
and Real-Time Database Systems and their variants. Assigning priorities to tasks/transac-
tions in such a system has always been a critical decision as it forms a basis for allocating
the limited number of shared resources optimally. This survey article studies the resource
scheduling mechanisms of such systems. For resource scheduling, a priority is assigned to
the smallest execution unit of the application, depending on the underlying scenario. The
already existing resource scheduling algorithms are compared to make future recommen-
dations – further exploration of all such unresolved open priority assignment policy-relat-
ed problems is critical. Finally, we identify some new target technologies where one could
foresee the future possibility of integrating custom-designed priority assignment policies.

Keywords  Priority assignment · Real-time systems · Databases · Heterogeneous
computing · Complex workflow scheduling

1  Introduction

The demand for designing innovative custom data-driven real-time applications is at an all-
time high in today’s digital world. Our society is arguably approaching a maturity level (in
terms of utilizing the internet in this highly interconnected world). One can see the trials of
the 5G internet all around the world that will change the world in the next few years. The
real-time aspects of today’s multi-node applications make them more human – mobility,
heterogeneity, predictability, transparency, time-constraint enabled, and distributed nature.
In Real-Time Systems (RTS), tasks are scheduled based on their priority for access to finite
resources.

1 3

http://orcid.org/0000-0002-3014-9792
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-022-10082-9&domain=pdf&date_stamp=2022-11-15

S. Pandey, U. Shanker

The journey of priority scheduling scheme design, in specific, begins with ever-growing
research in RTS [1] and now covers newer technologies (e.g., cloud computing and the Inter-
net of Things). Multiple research areas are originated from RTS, e.g., Real-Time Database
Systems (RTDBS) [2], Distributed Real-Time Database Systems (DRTDBS) [3], Mobile
DRTDBS [4], Replicated DRTDBS [5], Active DRTDBS [6], and deductive databases [7].

One common attribute in all these research domains is scheduling the resources for
tasks/jobs/transactions/processes based on their time constraints and other factors, as the
resources required are finite and limited. Many scheduling algorithms were designed in the
past, and still, active research is going on in this direction to match the ever-going com-
plexity of today’s applications [8]. It will remain a relevant research field for a long time
to meet the challenges set forth by today’s societal needs. Instead of becoming obsolete, its
relevance in system design has increased over time. Priority Assignment policies are also
studied in the context of cloud computing [9] and fog computing [10] research domains
for the completeness of this study. This generalized idea of understanding the evolution of
priority assignment schemes historically revealed many similarities in how this problem is
addressed across the domain.

The contribution of this survey paper is threefold. First, it revisits RTS, RTDBS, DRT-
DBS, and mobile DRTDBS with a central focus on the design of priority assignment poli-
cies. Second, it discusses how the relevance of designing priority scheduling methods has
increased with the adoption of priority-based decision-making in new technologies, par-
ticularly cloud computing. Third, future research directions are noted as an outcome of an
exhaustive study of priority assignment policies across computing domains.

The organization of the rest of this survey paper is as follows. Sect. 2, entitled " Pri-
ority Scheduling in Real-Time Systems,“ discusses the various existing priority schemes
in the field of RTS. Sect. 3, entitled " Priority Scheduling in Deadline Driven Database
Systems,“ discusses the need to design an entirely new set of priority schemes that are
compatible with the unique nature of the given database application. First, the literature on
priority assignment policies in the RTDBS environment is presented (in sub-Sect. 3.1). Sub-
Sect. 3.2 focuses on how the application’s distributed nature makes it hard to schedule the
transactions (and associated cohorts running at multiple sites). Sub-Sect. 3.3 concentrates
on covering the literature work on priority assignment policies in mobile DRTDBS. Sect.
4 is dedicated to cloud computing-based services and their way of assigning priorities. The
existing priority heuristics are a foundation for designing priority heuristics for any new
technological domain. In the end, Sect. 5 concludes the survey paper.

2  Priority Scheduling in Real-Time Systems

The RTSs have been a driving engine for a wide range of dynamically evolving real-life
applications for almost the last five decades [11]. More specifically, it all started in 1967
when a study on scheduling two periodic synchronous tasks with implicit deadlines was
presented [12]. Modeling tasks in RTSs has never been easy because of their complex nature
and multi-criteria decision mechanisms.

Let us explain the underlying RTS terminologies to sketch a simple RTS scenario. Task
execution is the only way to make changes in RTS. The task can be further categorized as
a single-instance task and a multi-instance task [13]. The single-instance task is an aperi-

1 3

2984

On Developing Framework for Schedulable Priority-Driven Systems: A…

odic task, where the task invocation can happen only once. Moreover, a multi-instance task
can invoke its instances in a repeated manner. Job is nothing but an invocation of a multi-
instance task. Repeated executions of the same task instance are facilitated — execute the
given job repeatedly depending on the scenario.

The multi-instance task can be categorized as a periodic and sporadic task. If the next
job of a given task is executed just after the previous period’s elapsed, then the task is a
periodic one. So, the next job of a periodic task begins its execution right away when the
period-in-run finishes. In simple words, the execution of the job is continually repeated at
the end of the period. The recurrence of the job of a periodic task is implemented using clock
interrupts. A sporadic task is different in terms of its job arrival sequences. Like, the arrival
of the next job of a sporadic task cannot be predicted — it might reoccur at a random instant
after a long time [14]. The only mathematical guarantee one has is that it would be after the
elapse of minimum inter-arrival time. A worse scenario separates each instance of a sporadic
task by minimum inter-arrival time. The aperiodic task has no restrictions associated with
it regarding task arrival time. Two aperiodic tasks may get invoked at the same time. It also
cannot be instantiated more than once [15].

Furthermore, a task-set is defined as a set of concurrently executing multi-instance tasks
requiring access to the shared resources in the system. The task-set can be classified into
three types based on the task type — periodic task-set, aperiodic task-set, and sporadic task-
set. Based on task arrival time, the task set can be categorized as synchronous as well as
asynchronous. If all the tasks associated with the given task-set arrive at time t = 0, then it is
a synchronous task set — the arrival of all the associated tasks happens in sync with each
other. Otherwise, if the tasks of a given task-set have offsets associated with them, then it
is called an asynchronous task-set — the arrival of the associated tasks are not in sync (the
first task may arrive at the time t1 while the second may arrive at the time t2). Based on the
deadline parameter, the task sets can be categorized as implicit-deadline task sets (Di = Ti

), constrained-deadline task sets (Di ≤ Ti), and arbitrary-deadline task sets (the deadline of
a task can be smaller than, equal to, or greater than its period).

Fixed Priority Scheduling of any given task-set workload is mainly done using one of the
following three state-of-the-art scheduling schemes.

1.	 Fixed Priority Preemptive Scheduling (FPPS): The preemption is permitted to
respect the priority order. This scheme is based on real-time competitive scheduling —
the one with lower priority must not cause trouble to the one with higher priority.

2.	 Fixed Priority Non-preemptive Scheduling (FPNS): Preemption is not permitted.
This scheme is based on the simple idea of First Come, First Serve — irrespective of its
priority, the currently running task must be allowed to finish its execution. The FPNS, a
real-time priority scheduling scheme, ensures that priority order is followed for transac-
tion enqueuing. It is just that if a high-priority task comes and requests a resource that is
held by already executing a low-priority task (the low-priority task here is in the middle
of its execution), then preemption would not be allowed. This scheme is not a true real-
time scheduling scheme.

3.	 Fixed Priority Deferred-preemptive Scheduling (FPDS): The preemption may be
deferred for some time in case of priority inversion. Priority inversion is when a high-
priority task is asked to wait for a resource already being held by some other low-
priority task(s). The FPDS sets the non-preemptive region for each task. If the task is in

1 3

2985

S. Pandey, U. Shanker

a non-preemptive region, i.e., when it is close to its completion, it cannot be pre-empted
even in case of priority inversion. The non-preemptive region is inclined towards the
end of the task execution life cycle. The FPPS attempts to draw a fair trade-off between
resource utilization and priority order.

One of the above-discussed priority scheduling algorithms, i.e., FPPS, FPNS, or FPDS, is
utilized to schedule task-set workloads on a case-to-case basis for any real-life application.
For any RTS, the variants of task-set and the widely used scheduling algorithms are pictori-
ally represented in Fig. 1. The type of task heavily affects the performance of the priority
scheduling algorithm employed and, ultimately, the system. For instance, one needs to con-
sider whether the task is periodic, aperiodic, or sporadic and whether the associated deadline
is implicit, constrained, or sporadic. The nature of the synchronous or asynchronous task set

Fig. 2  Logical Representation of Database Systems Design Complexity

Fig. 1  Terminologies & Variants of Scheduling Algorithms for RTS

1 3

2986

On Developing Framework for Schedulable Priority-Driven Systems: A…

plays a crucial role in prioritizing schemes. Thus, one needs to consider this while choosing
the priority scheduling algorithm in the RTS-based applications.

The foremost work on scheduling two synchronous periodic tasks with implicit deadlines
on a single processor was reported in 1967 by Finberg and Serlin [12]. They considered the
FPPS scheme for this purpose. The FPPS, a single-processor-based fixed-priority preemp-
tive scheduling algorithm, was further extended by Liu and Layland in 1973. They came
up with a new algorithm named Rate Monotonic Priority Ordering (RMPO) — this algo-
rithm was designed for synchronous periodic task sets with implicit deadlines [16]. Almost
a decade afterward, in 1982, a pioneer work on scheduling tasks was reported by Leung and
Whitehead [17]. They argued that priority assignments should be done based on the dead-
line of a task instead of its period. The reason behind this argument was that, in practice, a
task always has a deadline less than its period. Therefore, the driving parameter for priority
assignment should be the deadline of a task. They named their algorithm the Deadline-
Monotonic Priority Ordering (DMPO) algorithm.

The DMPO is a classical priority assignment scheme designed to prioritize tasks in the
RTS. It is optimal for synchronous periodic task sets with constrained deadlines. Depending
on the evolving nature of research problems, opportunities, and challenges, many variants
of the DMPO algorithm are proposed. Last time, when this research area got full attention,
several priority assignment policies were designed — mainly focusing on its enhancements
[18]. The objective was to put more effort into getting the optimum possible schedulable
sequence.

The optimality of DMPO can be broken up by adding an offset element in the schedul-
ing scenario. Moreover, it is also not a suitable policy if one goes with arbitrary deadlines
instead of constrained ones [19]. The optimality does not work with non-preemptive sce-
narios as well [20]. However, this research problem got very little attention afterward, par-
ticularly in the context of RTS.

Only milestone technical papers on the RTS’s priority assignment policy have been
reported, as this survey paper mainly focuses on the DRTDBS and other recent develop-
ments. In the next section (Sect. 3), the heuristics developed for the deadline-driven data-
base systems are discussed/compared.

3  Priority Scheduling in Deadline Driven Database Systems

The complexity of database-based applications has been exponentially increasing and can be
discussed in a sequence, from RTDBS [2], DRTDBS [3], to MDRTDBS [21]. The RTDBS
is a live database system with tuned performance and throughput metrics for enhanced
user experience [22], e.g., live streaming of audio/video through WhatsApp and banking.
The RTDBS must be able to process/handle queries fetching temporal time-sensitive data
through priority scheduling. The DRTDBS is a system with multiple RTDBS nodes con-
nected through a network. In DRTDBS, the query can be even more complex as it may
require data processing at multiple RTDBS nodes, e.g., processing sensor data stored in
distributed databases.

The mobile DRTDBS logically connects multiple RTDBS mobile nodes through a net-
work. Compared to the DRTDBS, in the MDRTDBS, dealing with mobile nodes for dis-
tributed data processing possesses additional challenges, such as computing nodes’ energy

1 3

2987

S. Pandey, U. Shanker

needs and frequent disconnections. For example, Oracle Database Lite [23] involves por-
table mobile computing devices (e.g., smartphones and tablets) for data processing over a
mobile network. It is not truly a mobile system as it has the feature of synchronization with
stationary database nodes.

Figure 2 shows that designing a priority assignment policy for the MDRTDBS is more
complex than the DRTDBS. This section covers the above three sub-areas, focusing on pri-
ority assignment policies. The design complexity of priority assignment policies depends on
the application’s complexity. Therefore, designing a suitable priority scheme (customized as
per the needs) for complex applications is challenging.

3.1  Real-Time Database Systems

The real-time database systems are more complex than the real-time systems [2] [24], where
one ensures consistency and meets deadlines. The smallest executable unit is the task for the
RTS and the transaction for the RTDBS. Scheduling tasks is comparatively a less complex
problem than a scenario where one needs to schedule transactions.

Most studies go with the Earliest Deadline First (EDF) policy for priority assignment of
transactions. The EDF is the most straightforward and easy-to-implement policy, wherein
the transaction with the earliest deadline is assigned the highest priority, i.e., the earlier the
deadline of a transaction, the higher its priority will be. With time, researchers found that
the EDF policy has some disadvantages requiring further investigation. At first, it favors
short-lived transactions (or penalizes long-lived transactions). Second, the criticality aspect
of a transaction is not considered in the EDF, as the criticality of a transaction has nothing
to do with its size [25]. Third, it is known that the EDF does not perform well under high
load conditions (confirmed by many researchers). It is because high-priority early deadline
transactions are more prone to deadline miss, particularly when the workload is high. Such
deadline misses can lead to system resource wastage [26].

The First attempt to improve the EDF is made in [27]; here, the adapted earliest deadline
(AED) policy is proposed. As the name suggests, the AED improves the overall RTDBS
performance using the mechanism based on adaptive admission control. In AED, the incom-
ing lock requesting transaction is assigned to the HIT/ MISS group – the HIT group capacity
is further dynamically tuned, resulting in improved system performance. Later, the AED
policy was modified/improved, and the adapted earliest virtual deadline (AEVD) policy
was proposed [28]. The AEVD explicitly addresses the problem of biases toward short-
lived transactions. Datta et al. later developed an extension of AEVD; the adaptive access
parameter (AAP) policy is presented [29]. The AAP is based on explicit admission control.

There is one more study available in the literature, by Dogdu et al., on balancing the
biases of EDF towards short-lived transactions by utilizing transaction execution histories
[30]. Here, the execution history of transactions forms a basis for priority assignment. The
idea is that the miss rate for short-lived and long-lived transactions should be quantitatively
similar. The Generalized Earliest Deadline First (GEDF) policy is proposed and compared
against EDF [31]. The GEDF has the following salient features.

1.	 Introduction of the new parameter named “transaction importance” to be taken care of
while assigning priority to transactions.

2.	 Use of Deadline and Importance Criterion in Scheduling Transactions

1 3

2988

On Developing Framework for Schedulable Priority-Driven Systems: A…

The GEDF policy is further extensively studied by Kaddes et al. from the perspective of
tuning the “transaction importance” parameter named “SPriority” [32]. The performance
of the RTDBS system is evaluated under varying values of SPriority, and optimal values of
system parameters are suggested [33].

3.2  Distributed Real-Time Database Systems

The DRTDBS is a logical integration of multiple geographically separated RTDBSs [34].
The transaction processing domain in the DRTDBS can be divided into the following sub-
domains – priority assignment, concurrency control, and commit processing. This survey
paper focuses on studying priority assignment schemes. For a complete understanding of
all the components of transaction processing in DRTDBs, readers can refer to [35] [36] [3]
[37] [6] [8] [38].

Assigning priority to transactions in the DRTDBS setting is a complex job compared to
the RTDBS setting. A transaction can be distributed in nature (instead of being a local one,
as in the RTDBS). Therefore, processing a distributed transaction requires a mechanism to
divide it into sub-transactions (cohorts) depending on the associated data access require-
ments. This results in a scenario where the local processing by cohorts at multiple distant
locations affects the overall global transaction execution life cycle.

In [39], it has been proved that the DRTDBS application’s performance can be improved
by performing priority assignment activities at a cohort level. Four priority schemes were
suggested – (i). Ultimate deadline (UD) (ii). Effective deadline (ED), (iii). Equal slack
(EQS), and (iv). Equal Flexibility, considering the sequential execution model. Although
these schemes consider the deadlines of participating transactions, all four schemes fail to
address increased data contention level that shoots up in an uncontrolled manner at a high
load.

The data contention issue with the above four schemes is studied in [40]. As a solution
to this problem, modified and more flexible schemes were proposed. These schemes cov-
ered both the aspects of assigning priority to transactions – deadline requirements and data
contention. The simplest scheme proposed was the NL (Number of Locks held) priority
scheme. Here, the priority to the current cohort is assigned based on the total number of
locks held by its parent transaction at the time of its invocation. Another scheme proposed
was the static EQS (SEQS), which is nothing but the extended version of the EQS to reduce
the negative impact of data contention on the system caused by the EQS. Further, a hybrid
priority assignment scheme named Mixed Method (MM) is proposed that considers both the
criteria in priority assignment – time-constraint and data contention level. The MM scheme
was the first of its kind that attempted to come up with a balanced multi-criterion priority
assignment approach. However, all the above-discussed schemes, except the UD priority
scheme, are not suitable for the parallel transaction execution framework.

The parallel transaction execution framework has distributed deadline dependency –
overall transaction execution time depends on a cohort that finishes its execution at last.
Late execution of any of the cohorts may lead to a deadline miss of the associated global
transaction. This makes it hard for a global transaction to meet its deadline because of multi-
party involvement in completing its execution – it is likely that one of its cohorts might be
running at an overloaded site.

1 3

2989

S. Pandey, U. Shanker

The heuristic to assign priorities to cohorts of a distributed transaction (with parallel run-
ning cohorts) is proposed in [41] [42]. This heuristic favors the cohort with a larger number
of locks – the higher the number of locks held, the higher the priority. The parallel cohort
requiring more locks is assigned a comparatively higher priority. The fairness aspect of
transaction scheduling is also touched upon in this study. Whenever a data conflict occurs,
a near-to-completion cohort is favoured if possible. This reduces the wastage of resources
and might lead to a scenario where the conflicting transaction may cooperatively complete
their execution.

The communication delay in sending/receiving messages should also be considered in
designing a priority assignment scheme. With global transactions, access to remote data
items is facilitated through communication between the parent cohort and the cohort where
the given remote data item physically resides. The role of communication delay in assign-
ing priority to transactions was first studied by Chen Hong-Ren et al. [43]. They proposed
a priority scheme named Flexible High Reward (FHR). The FHR aims at reducing transac-
tion deadline miss percentage by favoring the remote cohorts, i.e., assigning comparatively
higher priority to the remote cohorts. It is an attempt to balance the intrinsic communication
delay involved in accessing remote data items.

The existing deadline-based priority assignment heuristics for time-constrained databases
are studied and concluded that such heuristics do not perform better in terms of the percent-
age of transactions missing their deadlines; they fail miserably in the high data contention
environment. Therefore, to address the issue of high data contention, the Most Dependent
Transaction First (MDTF) heuristic has been proposed [44]. The MDTF utilizes the depen-
dent transactions sizes of all directly competing transactions in the computation of their
priority value. Performance studies have shown that MDTF provides a trade-off between
the NL and EQS heuristics from the performance perspective due to its better handling of
data contention. As an extension to the MDTF, the contention-aware equal slack (CA-EQS)
policy [45] is also proposed. The CA-EQS is an advanced version of MDTF — it performs
better than the MDTF. The MDTF is purely based on dealing with data contention, while
the CA-EQS considers real-time constraints as well as checks on the data contention level.

3.3  Mobile Distributed Real-Time Database Systems

The MDRTDBS research area requires utmost attention by the database community as, to
date, only a little work has been reported [21]. Though developing custom concurrency
control protocols for the MDRTDBS has gained some attention in recent years [4], only a
few efforts have been made to develop custom priority assignment policies. The readers are
referred to [46], [47], and [48] for the noted development in the field of concurrency con-
trol (one of the key sub-domains of transaction processing) – all the three research articles
considered the Earliest Deadline First (EDF) for priority assignment. This makes it hard
to claim that the existing mobile-based concurrency control algorithms are effective under
real-life mobile scenarios.

The policies, i.e., NL [40] and CA-EQS [45], designed specifically for the DRTDBS, are
incompatible with the MDRTDBS applications for obvious reasons – the additional com-
plexities intrinsically added with consideration of mobile nodes. In [49], a modified version
of the already existing NL heuristic is proposed. The heuristic is designed considering the
MDRTDBS environment. In this heuristic, the data contention is linked with the type of lock

1 3

2990

On Developing Framework for Schedulable Priority-Driven Systems: A…

(read or write) on any given data item. It is claimed that, contrary to the NL heuristic, write
locks contributes more to the data contention and therefore need to be handled differently
[50]. This heuristic is further enriched by considering one more aspect of priority computa-
tion – the size of the prerequisite set of data items required by a cohort of any global trans-
action [51]. However, the existing MDRTDBS priority assignment policies are not mature
as the intrinsic mobility issue is not yet efficiently handled. The protocols discussed in this
section are summarized in Table 1.

The above table summarizes the advancements in designing priority assignment schemes
with a sole focus on real-time database applications

Table 1  Evolution of Priority Assignment Policies in Databases
Database
Environment

Priority
Assign-
ment
Policy

Pros Cons

RTDBS EDF [26] • widely accepted
• simple to implement

• Favors short-lived
transactions
• Criticality aspect not
considered, and
• Not suitable for high
workload scenarios.

AED [27] • Improved EDF variant
• Enhanced performance through the integration
of adaptive admission control.

Biases toward short-
live transactions
present

AEVD
[28]

• Extended version of AED
• adverse effects of biases on long-lived transac-
tions reduced.

Criticality aspect not
addressed in AEVD.

AAP [29] • The modified version of AEVD
• Inclusion of explicit admission control.

Criticality is not
addressed

GEDF
[31]

• Utilizes the transaction execution history to
solve the bias in EDF
• Addresses the criticality aspect as well.

Working with transac-
tion execution history
creates extra overhead.

DRTDBS FHR [43] • is based on the simple idea that communication
delay should be counted in designing a priority
heuristic.
• Remote cohorts are favored as their execution
also involves communication costs.

No consideration of
the contention caused
by hot data items.

MDTF
[35]

Based on how many transactions depend on the
requesting transaction – the transaction with
the highest dependency length would have the
highest priority.

• This heuristic con-
siders only one aspect
– contention.
• The deadline of a
transaction is ignored.

CA-EQS
[45]

• An extended version of the MDTF heuristic.
• Considers both the deadline requirements and
the data contention in a balanced manner.

Fine parameter tuning
is required.

MDRTDBS NWL
[43]

• Designed for the MDRTDBS environment.
• The idea is that write locks contribute more to
data contention than read locks.

No consideration of
mobility aspects.

1 3

2991

S. Pandey, U. Shanker

4  Priority Scheduling of Tasks in Cloud-Based Real-Time Database
Applications

Soon after the advent of the internet in the early nineties, the beginning of the 21st century
marked extensive research in cloud computing [9]. Many applications have migrated to the
cloud recently and were previously deployed on on-prem dedicated node-based set-ups.
Businesses/individuals started relying more on cloud resources for their unpredictably vary-
ing IT infrastructure needs rather than owning the costly hardware infrastructure [52]. This
resulted in the broad adoption of cloud-related services across industries [53]. In the interest
of not losing track of studying priority assignment policies, the discussions are restricted to
studying the priority schemes only.

Scheduling of tasks in heterogeneous computing systems is an exciting research area
– lots of work has been done in this direction in the last two decades. This topic remains
relevant even today and continues to grab the attention of the research community at large.
Applications based on the static model can be represented as the Directed Acyclic Graph
(DAG), where nodes represent tasks and edges represent dependencies amongst tasks. Fol-
lowing are the characteristics of all such applications – dependency between tasks, the exe-
cution time of each task on each processor, and communication cost between two adjacent
tasks connected through an edge.

In a simple way, the objective here is to schedule tasks belonging to an application to
one of the available heterogeneous compute resources (heterogeneous processors) in such
a way that the overall performance can be improved and task-precedence requirements are
met. The parameter to assess the performance can be the overall completion time. Research-
ers have extensively studied the static task scheduling problem, and their solutions can be
widely categorized as list-based algorithms, clustering-based algorithms, duplication-based
algorithms, and guided random search based algorithms. Figure 3 briefly represents algo-
rithms under each of these categories.

The list-based scheduling algorithms generally provide an ordered list of tasks. Here,
priority is assigned to each task. Further, a task is selected for execution based on its priority.
Once it’s decided which task will execute, the next question is which processor the selected
task will be with. This decision is based on the fact which processor is going to minimize the

Fig. 3  Broad Categorization of Algorithms Solving Heterogeneous Task Scheduling Problem

1 3

2992

On Developing Framework for Schedulable Priority-Driven Systems: A…

Table 2  Chronological Developments in the Cloud Scheduling Literature (2002–2020)
Year Cloud

Scheduling
Algorithm

Objectives
Considered

The Pros and Cons

2020 DRHEFT
[74]

MTTF — provides a better SER-LTR trade-off using fuzzy dominance.
— Based on the single fault tolerance assumption that further
requires generalization to increase its applicability.

2018 E-HEFT
[72]

Makespan and
load balancing

— Reduces makespan of a workflow and improves load bal-
ance among VMs.
— Virtual machine selection is facilitated using many-to-one
game matching, considering tasks and VMs as players.

2018 Modified
HEFT [73]

Makespan and
load balancing

— Makespan time is reduced compared to HEFT.
— The overload issue as well is addressed. However, the uni-
formity of load distribution remains a cause of concern.

2015 CEAS [71] Execution Cost
and energy
consumption

— The evaluation is done using Cloudsim. Four real-time
workflows are considered for performance evaluation.
— Outperforms existing algorithms considering the cost in-
volved (in $) and energy consumption (in Kilowatt).

2014 MPQGA
[75]

Makespan and
SLR

— A GA-based stochastic search method for heterogeneous
computing systems.
— Utilized GA for priority assignment while heuristic-based
HEFT search for task-processor mapping.

2012 CBHD [76] Makespan,
Load Balancing,
and Processor
Utilization

— Intelligent use of clustering and replication techniques with
the HEFT resulted in reduced makespan, improved load balanc-
ing, and increased processor utilization.
— Adding clustering and replication components increased the
system’s complexity.

2011 ECS
[70] and
ECS + idle
[70]

Energy Consump-
tion, Makespan

— Energy saving goals are achieved using the DVS technique.
Better power management is facilitated by recent processors
(Intel and AMD).
— The shorter the makespan value, the lesser would be the en-
ergy consumption requirements. This is because idle processor
slots also add to energy consumption.

2008 LDCP [69] Normalized
Schedule length
and speedup

— The new LDCP attribute is defined, which helps assign
priorities to tasks in a workflow.
— Best suited for workflows with high communication costs.
— Possible integration of the LDCP algorithm with already
existing optimizations, for instance, task duplication, should be
explored and evaluated.

2005 HNDP [68] Schedule length
ratio

— Priorities are assigned to tasks based on a decisive path.
— If the processor is idle, an attempt is made to duplicate the
predecessors’ currently running tasks in the order of most to
least favorite.
— HNDP outperforms HEFT. The performance improvement
becomes even more evident on increasing the CCR value.
— Requires slightly higher compute resource (approx. 5%)
to achieve the same makespan value as it is a task duplication
algorithm.

2002 HEFT [67]
and CPOP
[67]

Makespan — Both HEFT and CPOP algorithms were proposed in the
same research article. The performance results with HEFT are
better than that of CPOP.
— HEFT is a pioneer list-based heuristic algorithm. Many
researchers validated their results against HEFT even when it is
almost two decades old. The HEFT algorithm suffers from the
resource overload problem.

1 3

2993

S. Pandey, U. Shanker

pre-defined cost. The algorithms of this category were found to be more practical and prom-
ising than those of other categories. Some of the list scheduling heuristics in this category
are the Modified Critical Path (MCP) [54], Dynamic Critical Path (DCP) [55], Dynamic
Level Scheduling [56], Mapping Heuristic (MH) [57], Insertion Scheduling Heuristic [58],
and earliest Time First (ETF) [59].

The clustering-based algorithms map the DAG graph tasks with the unbounded number
of clusters. Then, these unbounded number of task clusters are merged iteratively to the
point where the number of clusters becomes equal to the number of processors. Further, the
finalized task clusters are mapped with and scheduled on a bounded number of processors.
Tasks belonging to the same cluster must be executed using the same processor. Moreover,
within each processor, task executions are ordered as well. Some of the scheduling heuris-
tics in this category are the Linear Clustering Method [60], Dominant Sequence Clustering
(DSC) [61], Mobility Directed [54], and Clustering & Scheduling System (CASS) [62].

The task duplication based algorithms generally assume that the system consists of an
unbounded number of identical processors. The algorithms in this category were not practi-
cally viable because of the significantly higher time complexities compared to other cat-
egories [63]. As the name suggests, the guided random search algorithms use randomized
search in a guided manner to navigate through the problem space [64]. This is an iterative
process where knowledge gained in the previous iteration is combined with a randomized
feature to generate new results [65]. The algorithms based on the idea of guided random
search could be the right choice for some applications as they provide good quality DAG
schedules. However, they require a significantly higher execution time to reach a solution
compared to the alternatives available [66].

4.1  The HEFT Algorithm and its Variants

The HEFT algorithm [67], proposed in 2002 by Topcuoglu et al., is undoubtedly a found-
ing pillar for most list-based scheduling algorithms. This subsection particularly focuses on
how the scheduling ‘heterogeneous computing resources’ research is carried out with the
HEFT algorithm kept in the centre. The heterogeneous computing resources are nothing
but ‘heterogeneous virtual machines hosted in a cloud environment. The objective of any
such workflow scheduling can include cost, makespan, load balancing, reliability aware-
ness, security awareness, keeping a check on energy consumption, and abiding by service
level agreements (SLAs) – different customer has a different set of SLA requirements. The
HEFT algorithm is designed with only one objective: makespan.

The same research article also discussed another algorithm named Critical Path on a Pro-
cessor (CPOP). HEFT performs better than CPOP; therefore, most researchers considered
it a base protocol while proposing their version of cloud workflow scheduling algorithm
for multiprocessors. The Heterogeneous N Predecessor Decisive Path (HNDP) algorithm
is also proposed further to improve the system’s performance [68]. It is an extension of
the CPOP protocol. This algorithm injects/ integrates the task-duplication based approach
with HEFT. Whenever the processor resource becomes idle, it is utilized to execute the
predecessors of tasks. Efficient utilization of idle slots further improves performance. Later,
a Longest Dynamic Critical Path (LDCP) algorithm is proposed [69]. In line with HEFT,
CPOP, and HNDP, this algorithm is of single objective nature and attempts to reduce the
makespan of a workflow.

1 3

2994

On Developing Framework for Schedulable Priority-Driven Systems: A…

It is to note that task-duplication approaches are best suited to communication-intensive
applications only. The reason is simple: task-duplication helps reduce communication over-
head, resulting in reduced makespan value. However, from an energy consumption perspec-
tive, the benefits of task duplication come at the cost of increased energy consumption.
Running a precedence-constrained parallel workflow on a multiprocessor computing node
can be better facilitated when the energy consumption aspect of it is considered as well, in
addition to factors like makespan and processor utilization. The HEFT protocol is further
improved, and an energy-conscious component is incorporated. Two energy-conscious heu-
ristics – Energy Conscious Scheduling (ECS) and ECS + idle – were proposed for workflow
scheduling [70]. Both the heuristics are different in the way that they measure energy con-
sumption differently. The Dynamic Voltage Scaling (DVS) technique, in-built into recent
processors, is utilized by the above heuristics. These heuristics are a bi- criterion in nature
as they consider two objectives: makespan and energy consumption. The Cost and Energy
Aware Scheduling (CEAS) algorithm [71], as well, is developed for workflow scheduling
on a multiprocessor system with a focus on execution cost and energy consumption. Here,
the energy consumption is reduced through custom task merging methods. In addition to
energy consumption, it is also tuned to take care of budgetary requirements.

Researchers found that the HEFT protocol does not work well in terms of balancing
loads amongst virtual machines. An Enhanced HEFT (E-HEFT) algorithm is proposed
to address the load balancing problem [72]. The E-HEFT is a bi-criterion algorithm that
attempts to fulfill two objectives, i.e., makespan and load balancing. The modified HEFT
(M-HEFT) algorithm is a bi-criterion algorithm that considers makespan and load balancing
[73]. However, no comparative study is available to date to showcase which one among the
above two (E-HEFT and M-HEFT) is superior from a performance perspective. The effort
should be made in this direction as leveraging positive features of both schemes through
logical integration might result in an improved version of the algorithm.

For any real-time embedded applications, a heterogeneous Multiprocessor System-on-
chips (MP-SoCs) environment can be utilized as it can facilitate parallel processing while
keeping a check on power consumption. Any hardware system whatsoever could not be
free from faults. MP-SoCs are vulnerable to two types of faults – transient and permanent.
Transit fault occurs only for a very small period, and the system recovers on its own from
this type of failure. However, as the name suggests, the impact of permanent faults can-
not be averted until the hardware causing the fault is replaced/ repaired. The measure of
transit fault is done using the reliability component named soft-error reliability (SER). The
measure of permanent fault is done using the reliability component named Lifetime Reli-
ability (LTR). The system must address the reliability-related issues simultaneously. The
HEFT algorithm does not consider the SER-LTR co-optimization problem. The deadline-
constrained reliability-aware HEFT (DRHEFT) protocol has been developed to address this
problem [74]. The performance results show that the DRHEFT does well in terms of forg-
ing a better trade-off between SER and LTR compared to other existing state-of-the-art
reliability-aware HEFT algorithms.

Researchers tried exploring a few other less common techniques as well to address the
multiprocessor workflow scheduling problem. The Multiple Priority Queues Genetic Algo-
rithm (MPQGA) is developed for scheduling tasks of heterogeneous computing systems
[75]. Here, a genetic algorithm-centered approach is utilized for the priority assignment of
tasks. Similarly, the Clustering Based HEFT with Duplication (CBHD) algorithm attempts

1 3

2995

S. Pandey, U. Shanker

to integrate the positive features of both clustering and task-duplication [76]. This reduces
makespan, balances load among processors, and increases processor utilization.

 Table 2 briefs cloud scheduling protocols discussed in this section, their objectives,
and pros/cons. As seen in Table 2, the cloud computing research community has kept
the clock ticking by coming up with improved versions of cloud resource scheduling
algorithms regularly to meet the constantly changing customer requirements. Antici-
pating that in coming years, with a boost in big data and the internet of things (IoT)
domain, more applications would require massive computing power. That means the
computer science community still has a long way to go. Readers interested in more
detailed discussions in this regard may refer to [77].

5  Conclusion and Future Work

The choice of priority assignment scheme has always been critical in assessing the per-
formance of time-constrained applications. In this survey article, the progress made in the
field of priority assignment techniques is presented in a time-series manner from a holistic
point of view. An attempt is being made not to tie the core priority assignment problem
with any specific application; instead, the focus was to investigate the already existing and
near-future application domains that prioritize their processes in one way or another. To
conclude, it is expected that in the near future, more custom applications will be integrated
with the prioritization concept to make them address the real problems end customers face
these days.

5.1  Future Research Directions

As it can be concluded from the discussions, the research domain on designing a priority
assignment policy is not new. However, the design requirements change with the change
in application nature. As a result, this topic has been studied across knowledge domains.
Unfortunately, as far as our literature survey is concerned, researchers put little to no effort
into looking at this problem holistically and investigating the pros and cons of priority
assignment schemes across domains.

We are of the firm opinion that leveraging cross-domain algorithmic ideas has the poten-
tial to benefit the research in this direction. In the future, after reading extensive research
literature on priority assignment schemes, we anticipate following key research directions
requires further extensive investigation by the computer science community in the coming
days.

1.	 Designing priority assignment schemes for complex distributed real-time systems is
critical since most of the applications we rely on are distributed [11]. Managing the exe-
cution of a task distributed across a number of processors depends on multiple factors.

2.	 The research area of priority assignment policies for transaction scheduling has been
widely discussed. The RTDBS and DRTDBS research domains considered designing
the priority assignment scheme as a soul part of their framework [3]. However, very

1 3

2996

On Developing Framework for Schedulable Priority-Driven Systems: A…

little effort has been made to develop custom priority schemes for the MDRTDBS. This
issue needs to be addressed as the community will rely more on mobile devices in the
next few years.

3.	 In the context of priority inversions and overload conditions, the growing complexity
of applications warranted designing priority schemes to provide increased concurrency
among competing transactions [6].

4.	 Maurya 2018: An extensive effort is needed in the context of designing a general bench-
mark to assess the performance of workflow scheduling algorithms in a heterogeneous
computing environment. Some effort in this direction has been made in [78]. However,
developing an accurate benchmark for this purpose requires further exploration.

Open-source benchmarks will not only fasten the research in these directions but also attract
more interest from around the globe – this will help researchers focus on improving the
existing algorithms instead of trying to implement what is already implemented. We can
achieve this only through a more open, transparent, and collaborative approach.

Funding  The financial support from Banaras Hindu University (BHU), India, under IoE Grant is
acknowledged.

Data Availability  This research work utilizes no data or dataset.

Code Availability  Since the article is of survey type, coding the already existing idea was not of our interest.
However, an attempt is made to ensure that all the articles surveyed are from authentic sources with pointers
to code repositories. The past research articles are assumed to be correct regarding conclusions drawn and
the results presented.

Declarations

Following declarations are made to ensure transparency.

Conflict of Interest  The authors of this paper have no conflict of interest regarding the publication of this
research article.

References

1.	 Xu, J., & Parnas, D. L. (2000). Priority scheduling versus pre-run-time scheduling. Real-time systems,
18(1), 7–23

2.	 Kao, B., & Garcia-Molina, H. (1993). An overview of real-time database systems. Real Time Comput-
ing, 127, 261–282

3.	 Shanker, U., Misra, M., & Sarje, A. K. (2008). Distributed real time database systems: Background and
literature review. International Journal of Distributed and Parallel Databases, Springer Verlag, vol. 23,
no. 02, pp. 127–149

4.	 Lam, K., & Kuo, T. (2002). Mobile distributed real-time database systems. Real-Time Database Systems
(pp. 245–258). Boston, MA: Springer

5.	 Arun, A., Pandey, S., & Shanker, U. (2021). A Multi-Replica-Centered Commit Protocol for Distrib-
uted Real-Time and Embedded Applications. International Journal of System Dynamics Applications
(IJSDA), 10(4), 1–19

6.	 Pandey, S., & Shanker, U. (2020). Transaction Scheduling Protocols For Controlling Priority Inversion:
A Review. Computer Science Review, 35, 100215

7.	 Minker, J. (2014). Foundations of deductive databases and logic programming. Morgan Kaufmann

1 3

2997

S. Pandey, U. Shanker

8.	 Pandey, S., & Shanker, U. (2021). Performance Issues in Scheduling of Real Time Transactions. Pro-
ceedings of the 26th International Conference on Database System for Advance Applications (DAS-
FAA-2021), Taipei, Taiwan

9.	 Buyya, R., Broberg, J., & Goscinski, A. M. (2010). Cloud computing: Principles and paradigms (87
vol.). John Wiley & Sons

10.	 Yi, S., Li, C., & Li, Q. (2015). A survey of fog computing: concepts, applications and issues. In Proceed-
ings of the 2015 workshop on mobile big data, pp. 37–42

11.	 Davis, R. I., Cucu-Grosjean, L., Bertogna, M., & Burns, A. (2016). A review of priority assignment in
real-time systems. Journal of systems architecture, 65, 64–82

12.	 Fineberg, M. S., & Serlin, O. (1967). Multiprogramming for hybrid computation. In Proceedings of fall
joint computer conference, pp. 1–13, November 14–16

13.	 Choi, S., & Agrawala, A. (1998). Scheduling aperiodic and sporadic tasks in hard real-time systems.
14.	 Jeffay, K., Stanat, D., & Martel, C. (1991). On non-preemptive scheduling of periodic and sporadic

tasks. In IEEE real-time systems symposium, pp. 129–139
15.	 Isovic, D., & Fohler, G. (2000). Efficient scheduling of sporadic, aperiodic, and periodic tasks with

complex constraints. In Proceedings 21st IEEE Real-Time Systems Symposium, pp. 207–216
16.	 Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time

environment. Journal of the ACM (JACM), 20(1), 46–61
17.	 Leung, J. Y. T., & Whitehead, J. (1982). On the complexity of fixed-priority scheduling of periodic,

real-time tasks. Performance evaluation, 2(4), 237–250
18.	 Goossens, J., & Devillers, R. (1997). The non-optimality of the monotonic priority assignments for hard

real-time offset free systems. Real-Time Systems, 13(2), 107–126
19.	 Lehoczky, J. P. (1990). Fixed priority scheduling of periodic task sets with arbitrary deadlines. Proceed-

ings 11th IEEE Real-Time Systems Symposium, pp. 201–209
20.	 George, L., Rivierre, N., & Spuri, M. (1996). Preemptive and non-preemptive real-time uniprocessor

scheduling. Doctoral dissertation, Inria
21.	 Swaroop, V., & Shanker, U. (2010). Mobile distributed real time database systems: A research chal-

lenges. IEEE International Conference on Computer and Communication Technology (ICCCT),
pp. 421–424

22.	 Warren, W. (2022). 9 Attributes of Live Real Time Databases [Online]. Available: https://raima.com/
live-real-time-databases/

23.	 Oracle Database Lite Documentation Library. (2010). [Online]. Available: https://docs.oracle.com/cd/
E12095_01/index.htm

24.	 Kim, Y., & Son, S. (1995). Predictability and consistency in real-time database systems. Advances in
real-time systems, pp.509–531

25.	 Baruah, S. (2019). Mixed-Criticality Uniprocessor Scheduling. In Y. C. Tian, & D. Levy (Eds.), Hand-
book of Real-Time Computing. Singapore: Springer

26.	 Yu, P. S., Wu, K., Lin, K., & Son, S. H. (1994). On Real-Time Databases: Concurrency Control and
Scheduling. Proceedings of the IEEE, vol. 82, no. 01, pp. 140–157

27.	 Haritsa, J., Livny, M., & Carey, M. (1991). Earliest deadline scheduling for real-time database systems.
Proceedings Twelfth IEEE Real-Time Systems Symposium, pp. 232–242

28.	 Pang, H., Livny, M., & Carey, M. J. (1992). Transaction Scheduling in Multiclass Real-Time Database
Systems. Proceedings of IEEE Real-Time Systems Symposium (RTSS), p. 23–34

29.	 Datta, A., Mukherjee, S., Konana, P., Viguier, I., & Bajaj, A. (1996). Multiclass transaction scheduling
and overload management in firm real-time database systems. Inf Syst, 21(1), 29–54

30.	 Dogdu, E. (2006). Utilization of execution histories in scheduling real-time database transactions. Data
& Knowledge Engineering, 57(2), 148–178

31.	 Semghouni, S., Amanton, L., Sadeg, B., & Berred, A. (2007). On new scheduling policy for the
improvement of firm RTDBSs performances. Data & Knowledge Engineering, 63(2), 414–432

32.	 Kaddes, M., Amanton, L., Berred, A., Sadeg, B., & Abdouli, M. (2013). Enhancement of Generalized
Earliest Deadline First Policy. In Proceedings of the 15th International Conference on Enterprise Infor-
mation Systems (ICEIS), pp. 231–238

33.	 Kaddes, M., Abdouli, M., Amanton, L., Sadeg, B., Berred, A., & Bouaziz, R. (2020). A probabilistic
analysis of transactions success ratio in real-time databases. International Journal of Computer Aided
Engineering and Technology, 12(4), 405–422

34.	 Hong, D., Johnson, T., & Chakravarthy, S. (1993). Real-time transaction scheduling: a cost conscious
approach. ACM SIGMOD Record 22(2), 197–206

35.	 Shanker, U., Misra, M., & Sarje, A. (2006). Some performance issues in distributed real-time database
systems. Proc. VLDB Ph.D. Work,Conv. Exhib. Cent. (COEX), Seoul, Korea

36.	 Shanker, U. (2008). Some Performance Issues in Distributed Real Time Database Systems. PhD Thesis.
Indian Institute of Technology Roorkee

1 3

2998

https://raima.com/live-real-time-databases/
https://raima.com/live-real-time-databases/
https://docs.oracle.com/cd/E12095_01/index.htm
https://docs.oracle.com/cd/E12095_01/index.htm

On Developing Framework for Schedulable Priority-Driven Systems: A…

37.	 Pandey, S., & Shanker, U. (2018). Priority Inversion in DRTDBS: Challenges and Resolutions. Pro-
ceedings of the ACM India Joint International Conference on Data Science and Management of Data
(CoDS-COMAD ‘18), pp. 305–309

38.	 Pandey, S. (2020). Resolving Conflicts amongst Distributed Real Time Transactions, PhD Thesis, Dept.
of CSE, M. M. M. University of Technology, Gorakhpur-273010, 2016-20, June 12.

39.	 Kao, B., & Garcia-Molina, H. (1997). Deadline assignment in a distributed soft real-time system. IEEE
transactions on parallel and distributed systems, 8(12), 1268–1274

40.	 Lee, V., Lam, K., & Kao, B. (1999). Priority scheduling of transactions in distributed real-time data-
bases. Real-Time Systems, 16(1), 31–62

41.	 Shanker, U., Misra, M., & Sarje, A. K. (2005). Priority assignment heuristic to cohorts executing in
parallel. Proceedings of the 9th WSEAS International Conference on Computers, World Scientific and
Engineering Academy and Society (WSEAS), pp. 01–06

42.	 Shanker, U., Misra, M., & Sarje, A. K. (2005). Priority Assignment Heuristic and Issue of Fairness to
Cohorts Executing in Parallel. WSEAS Transactions on COMPUTERS, 4(7), 758–768

43.	 Chen, H. R., Chin, Y. H., & Tseng, S. M. (2001). Scheduling value-based transactions in distributed
real-time database systems. In Internationa Parallel and Distributed Processing Symposium. IEEE
Computer Society., vol. 1, pp. 978–979

44.	 Pandey, S., & Shanker, U. (2020). MDTF: A Most Dependent Transactions First Priority Assignment
Heuristic. In Mehdi Khosrow-Pour, Ed., Encyclopedia of Organizational Knowledge, Administration,
and Technologies (1st ed., pp. 742–756). IGI Global

45.	 Pandey, S., & Shanker, U. (2020). A contention aware EQS priority assignment heuristic for cohorts in
DRTDBS. .The Journal of Supercomputing 77(7), 6629-6663

46.	 Lam, K., Kuo, T., Tsang, W., & Law, G. (2000). Concurrency control in mobile distributed real-time
database systems. Information Systems, 25(4), 261–286

47.	 Lee, V. C., Lam, K. W., & Kuo, T. W. (2004). Efficient validation of mobile transactions in wireless
environments. Journal of Systems and Software, 69, 1–2

48.	 Lei, X., Zhao, Y., Chen, S., & Yuan, X. (2009). Concurrency control in mobile distributed real-time
database systems. Journal of Parallel and Distributed Computing, 69(10), 866–876

49.	 Singh, P. K., & Shanker, U. (2017). Priority Heuristic in Mobile Distributed Real Time Database Using
Optimistic Concurrency Control. 23RD IEEE Annual International Conference in Advanced Computing
and Communications (ADCOM), Bangalore, India, pp. 44–49

50.	 Singh, P. K., & Shanker, U. (2018). A New Priority Heuristic Suitable in Mobile Distributed Real Time
Database System. In International Conference on Distributed Computing and Internet Technology.
Springer. pp. 330–335

51.	 Singh, P. K., & Shanker, U. (2018). A priority heuristic policy in mobile distributed real-time database
system. Advances in data and information sciences (pp. 211–221). Singapore: Springer

52.	 Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin,
A., Stoica, I., & Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4),
50–58

53.	 Grossman, R. L. (2009). The case for cloud computing. IT professional, 11(2), 23–27
54.	 Wu, M. Y., & Gajski, D. D. (1990). Hypertool: A programming aid for message-passing systems. IEEE

transactions on parallel and distributed systems, 1(3), 330–343
55.	 Kwok, Y. K., & Ahmad, I. (1996). Dynamic critical-path scheduling: An effective technique for allo-

cating task graphs to multiprocessors. IEEE transactions on parallel and distributed systems, 7(5),
506–521

56.	 Sih, G. C., & Lee, E. A. (1993). A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures. IEEE transactions on Parallel and Distributed systems, 4(2),
175–187

57.	 El-Rewini, H., & Lewis, T. G. (1990). Scheduling parallel program tasks onto arbitrary target machines.
Journal of parallel and Distributed Computing, 9(2), 138–153

58.	 Kruatrachue, B., & Lewis, T. (1988). Grain size determination for parallel processing. IEEE software,
5(1), 23–32

59.	 Hwang, J. J., Chow, Y. C., Anger, F. D., & Lee, C. Y. (1989). Scheduling precedence graphs in systems
with interprocessor communication times. SIAM Journal on Computing, 18(2), 244–257

60.	 Kim, S. J. (1988). A general approach to mapping of parallel computations upon multiprocessor archi-
tectures. In Proc. International Conference on Parallel Processing. IEEE Computer Society, vol. 3

61.	 Yang, T., & Gerasoulis, A. (1994). Scheduling parallel tasks on an unbounded number of processors.
IEEE Transactions on Parallel and Distributed Systems, 5(9), 951–967

62.	 Liou, J. C., & Palis, M. A. (1996). An efficient task clustering heuristic for scheduling dags on multipro-
cessors. In Workshop on resource management, symposium on parallel and distributed processing, pp.
152–156

1 3

2999

S. Pandey, U. Shanker

63.	 Ahmad, I., & Kwok, Y. (1994). A new approach to scheduling parallel programs using task duplication.
In IEEE Internatonal Conference on Parallel Processing, vol. 2, pp. 47–51

64.	 Hou, E. S., Ansari, N., & Ren, H. (1994). A genetic algorithm for multiprocessor scheduling. IEEE
Transactions on Parallel and Distributed systems, 5(2), 113–120

65.	 Correa, R. C., Ferreira, A., & Rebreyend, P. (1996). Integrating list heuristics into genetic algorithms
for multiprocessor scheduling. In Proceedings of the 8th IEEE Symposium on Parallel and Distributed
Processing, pp. 462–469

66.	 Braun, T. D., Siegal, H. J., Beck, N., Boloni, L. L., Maheswaran, M., Reuther, A. I., Robertson, J.,
Theys, M., Yao, B., Hensgen, D., & Freund, R. (1999). A comparison study of static mapping heuristics
for a class of meta-tasks on heterogeneous computing systems. In IEEE Proceedings of the Eighth Het-
erogeneous Computing Workshop, pp. 15–29

67.	 Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and low-complexity task sched-
uling for heterogeneous computing. IEEE transactions on parallel and distributed systems, 13(3),
260–274

68.	 Baskiyar, S., & Dickinson, C. (2005). Scheduling directed a-cyclic task graphs on a bounded set of
heterogeneous processors using task duplication. Journal of Parallel and Distributed Computing, 65(8),
911–921

69.	 Daoud, M. I., & Kharma, N. (2008). A high performance algorithm for static task scheduling in hetero-
geneous distributed computing systems. Journal of Parallel and distributed computing, 68(4), 399–409

70.	 Lee, Y. C., & Zomaya, A. Y. (2011). Energy conscious scheduling for distributed computing systems
under different operating conditions. IEEE Transactions on Parallel and Distributed Systems, 22(8),
1374–1381

71.	 Li, Z., Ge, J., Hu, H., Song, W. H. H., & Luo, B. (2015). Cost and energy aware scheduling algorithm
for scientific workflows with deadline constraint in clouds. IEEE Transactions on Services Computing,
11(4), 713–726

72.	 Samadi, Y., Zbakh, M., & Tadonki, C. (2018). E-HEFT: enhancement heterogeneous earliest finish
time algorithm for task scheduling based on load balancing in cloud computing. In IEEE International
Conference on High Performance Computing & Simulation, pp. 601–609

73.	 Dubey, K., Kumar, M., & Sharma, S. C. (2018). Modified HEFT algorithm for task scheduling in cloud
environment. Procedia Computer Science, 125, 725–732

74.	 Zhou, J., Zhang, M., Sun, J., Wang, T., Zhou, X., & Hu, S. (2020). Drheft: Deadline-constrained reliabil-
ity-aware heft algorithm for real-time heterogeneous mpsoc systems. IEEE Transactions on Reliability,
71(1), 178-189

75.	 Xu, Y., Li, K., Hu, J., & Li, K. (2014). A genetic algorithm for task scheduling on heterogeneous com-
puting systems using multiple priority queues. Information Sciences, 270, 255–287

76.	 Abdelkader, D. M., & Omara, F. (2012). Dynamic task scheduling algorithm with load balancing for
heterogeneous computing system. Egyptian Informatics Journal, 13(2), 135–145

77.	 Kumar, M., Sharma, S. C., Goel, A., & Singh, S. P. (2019). A comprehensive survey for scheduling
techniques in cloud computing. Journal of Network and Computer Applications, 143, 1–33

78.	 Maurya, A., & Tripathi, A. (2018). On benchmarking task scheduling algorithms for heterogeneous
computing systems. The Journal of Supercomputing, 74(7), 3039–3070

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Dr. Sarvesh Pandey  is presently Assistant Professor in the Computer
Science - MMV, BHU, Varanasi, India. He received his Ph.D. degree
(2020) in Computer Science & Engineering from M. M. M. University
of Technology, Gorakhpur-273010, India. His broad areas of research
include distributed real-time database systems, cloud computing and
advanced data systems. He has published more than 25 research papers
in various journals/conferences. He is active review member of vari-
ous reputed journals, conferences, and book series.

1 3

3000

On Developing Framework for Schedulable Priority-Driven Systems: A…

Dr. Udai Shanker  is presently Professor in the Department of Com-
puter Sc. & Engineering of M. M. M. University of Technology, Gora-
khpur-273010. For his imitation of the most modern of approaches and
also for his exemplary devotion to the field of teaching and sharing his
profound knowledge with students to make better future citizen of
India, he has been a role model for the new generation of academi-
cians. Besides introduced radical and revolutionary changes that have
positively impacted the database world and student community, he is a
man well versed with all the intricacies of academics.

1 3

3001

	﻿On Developing Framework for Schedulable Priority-Driven Systems: A Futuristic Review
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Priority Scheduling in Real-Time Systems
	﻿﻿3﻿ ﻿Priority Scheduling in Deadline Driven Database Systems
	﻿﻿3.1﻿ ﻿Real-Time Database Systems
	﻿﻿3.2﻿ ﻿Distributed Real-Time Database Systems
	﻿﻿3.3﻿ ﻿Mobile Distributed Real-Time Database Systems

	﻿﻿4﻿ ﻿Priority Scheduling of Tasks in Cloud-Based Real-Time Database Applications
	﻿4.1﻿ ﻿The HEFT Algorithm and its Variants

	﻿﻿5﻿ ﻿Conclusion and Future Work
	﻿5.1﻿ ﻿Future Research Directions

	﻿References

