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Abstract
As of late, Convolutional Neural Networks have been very successful in segmentation and 
classification tasks. Magnetic resonance imaging (MRI) is a favored medical imaging method 
that comes up with interesting information for the diagnosis of different diseases.MR method 
is getting to be exceptionally well-known due to its non-invasive rule and for this reason, auto-
mated processing of this sort of image is getting noticed. MRI is effectively and widely used 
for tumor detection. Brain tumor detection is a popular medical application of MRI. Automat-
ing segmentation using CNN assists radiologists to lessen the high manual workload of tumor 
evaluation. CNN classification accuracy depends on network parameters and training data. 
CNN has the benefit of learning image features automatically directly out of multi-modal MRI 
images. In this survey paper, we have presented a summary of CNN’s recent advancement in 
its technique applied on MRI images. The aim of this survey is to discuss various architectures 
and factors affecting the performance of CNN for learning features from different available 
MRI datasets. Based on the survey, section III (CNN for MRI analysis) comprises three sub-
sections: A) MRI data and processing, B) CNN dimensionality, C) CNN architectures.

Keywords Magnetic resonance images · Convolutional neural networks · Brain tumor 
detection · Analysis

1 Introduction

Magnetic Resonance Imaging is a radiology method suited for medical imaging. MRI scans pro-
duce three-dimensional detailed images of the interior of a body for medical analysis. Analysts 
and doctors can now able to inspect the inside of the human anatomy thoroughly. There are many 
applications in MRI imaging, such as brain tumor segmentation and classification; cardiac seg-
mentation; prostate segmentation, and tissue segmentation. It requires an extensive amount of 
human labor for MRI segmentation. It can take hours to segment scans manually and may be 
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prone to errors. Conventional feature extraction methods are tedious for picking significant fea-
tures for learning the model. Brain MRI depicting brain tumor is shown in Fig. 1. 

Researchers prefer deep learning approaches mostly Convolutional Neural Net-
works (CNNs) for this process. It can automatically learn features efficiently. A prop-
erly trained CNN delivers higher precision and accurate segmentation which lowers the 
costs of medical imaging. CNN based detects the anomalies on the MRI image more 
precisely the human eye. They are just neural networks that use convolution layers based 
on numerical operation: convolution.

A typical CNN classification process can be summarized in Fig. 2. First, an input MRI 
image is pushed into CNN. Then, the input image goes through multiple steps of the 
CNN model: Segmentation, Feature extraction, Feature selection, and Classification per-
formed by different layers in the network [1]. Finally, CNN predicts the class of images.

Owing to advanced image processing and faster computation suitability CNNs are 
widely used nowadays. But there are few challenges faced by researchers which they 
have tried to overcome. One important challenge is related to data. CNN’s require enor-
mous data for training. Various data augmentation techniques (like flipping, transla-
tions, rotation) have been applied [2, 3]. A patch-based approach [3, 4] is also applied to 
resolve the issue of insufficient data samples. Some models in literature used only posi-
tive samples on account of a limited number of samples for training [5]. Another tech-
nique like fine-tuning or pre-training [6, 7] is also widely used for better performance 

Fig. 1  Brain MRI of a diffuse 
midline glioma. [14]

Fig. 2  A standard CNN process
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of CNN in the medical area. MRI pre-processing methods like intensity normalization, 
adaptive contrast enhancements, [8] are also implemented in the literature for dealing 
with noise and intensity variation in MRI scans.

Traditionally, 2D CNNs are used for 2D images but it is a very challenging task to apply 
it in 3D images as it captures only 2-dimensional spatial information and ignores the infor-
mation in the third dimension. Using 3D convolutions solves this problem [9]. Several 
3D-based CNNs have been presented by researchers in literature other than 2D CNNs.

Architecting CNN is the most important factor for image segmentation or classification in MRI 
medical applications. There are various architectures developed in the literature by implementing 
traditional CNN architecture variants or by proposing architectures different from classical ones 
[10].

P. Mohamed Shakeel et.al [11] analyzed machine learning propagation neural networks 
(MLBPNN) utilizing infra-red sensor imaging technology. The imaging sensor was coor-
dinated through wireless infrared imaging sensor which is created to transmit the tumor 
warm information to a master clinician to screen the prosperity condition. Peng Liang et.al 
[12] combined the concept of wireless network and used the optimized depth getting to 
know set of rules to calculate and analyze the statistics produced by the MRI image seg-
mentation approach of cervical cancer.

In this survey, analysis of MRI data, different dimensionality of CNN model, and vari-
ous CNN architectures are discussed.

2  Convolutional Neural Networks

CNN is a supervised deep-learning algorithm that is like an artificial neural network that 
preserves spatial relationships in the data and has fewer associations between the layers. 
The image grid structure is fed through the layers which preserve these relationships in the 
CNN. In the first few layers, CNNs look for low-level features like edges and corners. As 
we get deeper, more complex high-level features are recognized by using patterns recog-
nized in the first few layers. The most basic use case of CNN is to perform the classifica-
tion of images by looking at some patterns into several classes [13].

A CNN has 3 different kinds of layers: Convolutional Layer, Pooling Layer, and Fully 
Connected Layer. It has multiple layers of Convolution + ReLU and Pooling layers con-
nected one after another and performs feature extraction task whereas the FC layer act as a 
classifier. Each of these layers has different parameters that can be optimized and perform 
a different task on the MRI input datasets [14]. A CNN can be created by stacking different 
convolution, pooling, and fully connected layers [15]. Figure 3 illustrates different layers of 
a CNN.

2.1  Convolution Layer

It is the first layer in CNN and known as the feature extractor layer. Image features (like 
edges) are get extracted within this layer that can be used later in the network. This layer 
incorporates a set of filters which is a 2D matrix and an input image 2D matrix of pixels. For 
example, a 3 × 3 filter and a 5 × 5 input image can be used to produce a 3 × 3 output image 
by convolving the filter with the input image. The output image is known as a feature map.

Convolution operation includes:
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(1) Filter is carried out throughout the input image via a sliding window
(2) Performing element-wise product of filter within the image.
(3) Adding up altogether the element-wise products. The end result is the destination pixel 

of the output image.
(4) Repeat the above steps for all the locations. A feature map will be generated for each 

convolution operation.

Different filters can perform different operations like edge detection, blur, and sharpen. 
After applying all the filters on an input image, a tensor of feature maps is obtained.

Rectified linear unit (ReLU) is an activation function, and it is applied to every value 
of the feature map generated by performing convolution operations (mentioned above). It 
extends of convolution layer. This function increases the non-linearity of CNN by remov-
ing all the negative values from the convolution and changing them to zero. All the posi-
tive values remain the same. It provides better feature extraction This function produces 
rectified feature maps. This layer is also referred to as Convolution + ReLU which performs 
convolution followed by an activation function.

2.2  Pooling Layer

A lot of information contained in a convolution layer’s output is unessential.  As an 
instance, in case we utilize an edge-detecting filter and discover a strong edge at a certain 
region, probabilities are that we’ll additionally discover enormously sturdy edges at loca-
tions 1 pixel moved from the first one. We’re no longer locating anything contemporary. 
Pooling layers remedy this issue [13].

This layer is generally used between two convolution layers. It reduces the size of fea-
ture maps by retaining important information. It keeps down the number of features from 
the convolutional layer and generates a condensed shape of characteristic maps. Each fea-
ture map is down-sampled using this layer by performing a specific function.

Pooling function can be of different types:

(1) Max
(2) Average
(3) Min.

Fig. 3  Different layers in CNN [69]
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Max pooling function is widely used as it works better than others. For example, a 2 × 2 
max filter traverses the 4 × 4 input image to generate the maximum value within the region 
and place the max value into the 2 × 2 output image at the corresponding pixel [13]. Simi-
larly, average-pooling extracts the average value in a filter region, and min-pooling takes 
the minimum value in a filter area.

2.3  Fully Connected Layer

The reason for this dense layer is to use high-level features extracted in preceding layers 
(convolution and pooling) for classifying the input image. This layer involves flattening 
and transforms a 2D pooled feature map into a 1D feature vector before classification. The 
generated feature vector is fed into the FC layer for processing. Each neuron of the previ-
ous layer is connected to the next layer hence fully connected, unlike the convolution or 
pooling layer.

Finally, an activation function such as sigmoid or softmax is used to classify the output 
or predict the class labels. It is the last layer in the classification task in the network.

In some modern CNN models [16–19], the dropout technique is applied on the dense 
layers to reduce over-fitting by removing neurons during the training phase.

3  CNN for MRI Analysis

This section presents a broad survey of CNN based on MRI input data processing, dimen-
sionality, the architecture of the model.

3.1  MRI Data and Processing

CNN’s are highly dependent on which type of input images are fed in the network. Difficult 
datasets are small, imbalanced, or heterogeneous. There are multiple MRI data sets avail-
able publicly for various purposes like BRATS for brain tumor detection. The four most 
commonly used MR modalities are T1-weighted (T1W), T2-weighted (T2W), T1-Gadolin-
ium (T1Gd), and Fluid attenuated inversion recovery (FLAIR).

Annotation of MR images is a challenging task due to incorrect labeling of MR 
sequence types or modalities. Muhammad Sara Ranjbar et al. [16] demonstrated automatic 
annotation of MRI sequence types by using a deep CNN which can successfully detect 
patterns. Current works struggle with enhanced modalities and generate good results on 
non-enhanced T1W MRI scans. Jens Kleesiek et  al. [20] presented a 3D CNN for brain 
extraction to address this issue which can deal with non-enhanced and contrast-enhanced 
T1w, T2w, and FLAIR contrasts.

A few current studies investigated CNNs based on multi-modalities as input. As an 
instance, Jose Dolz et al. [21] proposed two strategies: early and late fusion to deal with 
the trouble of low contrast brain MRI images. Similarly, Zeju Li et  al. [22] additionally 
carried out early and late fusion with nearby slices, and experiments confirmed that early 
fusion can enhance segmentation consequences and late fusion can make it sensitive even 
if the tumor had low contrast. In early fusion, multi modalities were merged at the input, 
and in late fusion, independent channels were employed for every modality. Brain tumors 
are generally badly contrasted and making it tough to differentiate wholesome tissue from 
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the tumor. Mina Ghaffari et al. [23] integrated multimodal MR images to get more compre-
hensive information and to overcome the poor contrast of brain tumor MR images. Some 
different specialized MR modalities known as fMRI and sMRI having complimentary 
brain information or features were combined for ADHD classification. Liang Zou et al. [9] 
showed that multi-modality CNN using fMRI and sMRI together as input achieves high 
accuracy as compared to single modality CNN for analysis of Attention deficit hyperactiv-
ity disorder (ADHD). Yan Wang et al. [24] also proposed multi-modality CNN by using 
fMRI and DTI together as input which is effective enough for multimodal MRI analysis for 
Alzheimer’s Disease.

Data augmentation, a technique to increase a variety of training data by applying opera-
tions like flipping, rotation, translations, reflections on images has been applied by some 
researchers. Other than generating new samples, it also helps in reducing over-fitting and 
class imbalance issues coming from the dataset [25]. By making use of data augmentation 
methods one can achieve satisfactory segmentation results on small datasets [26]. It also 
increases the generalizability of the segmentation outcomes [23]. Intensity inhomogeneity 
in MR scans is also a challenge. It may be caused by spontaneous movements of objects 
while scanning. N. Khalili et  al. [27] proposed a data augmentation technique in which 
intensity inhomogeneity artifacts are brought synthetically in training data to cope up with 
intensity inhomogeneity artifacts. This method can doubtlessly take over pre-processing 
steps, such as bias field corrections, and complements the segmentation performance using 
CNN. It also helps in dealing with low-quality data. Insufficient or less training data may 
result in poor performance of CNN. Subhasis Banerjee et al. [24] observed that training 
brain MRI without data augmentation CNN model causes a drop in performance accu-
racy as it leads to over-fitting. Zhiqiang Tian et  al. [7] stated that CNN performs better 
with more training datasets. It is observed that by applying data augmentation operations 
on the dataset, the performance of CNN can be improved (Table 1). Guy Amit et al. [28] 
suggested that with adequate data augmentation, the domain-specific trained networks 
can outperform specific classifiers. Hiba Mzoughi et al. [2] confirmed with experimental 
results that with the aid of applying only the flipping technique, CNN classification accu-
racy can give promising results outperforming recently unsupervised and supervised state-
of-art approaches for classification of gliomas brain tumor. Muhammad Sajjad et  al. [1] 
also improved accuracy by employing extensive data augmentation for the classification 
of multi-grade brain tumors and experiments showed convincing performance compared 
to existing approaches. Richard Ha et al. [17] employed data augmentation to limit over-
fitting and advanced accuracy in predicting auxiliary lymph node metastasis using a breast 
MRI dataset. However, aggressive data augmentation may also degrade the performance 
of CNN in the case of fixed-budget training [5]. Data augmentation strategies that can ruin 
positional details of brain MRI scans need to be averted as it will impact the performance 
of the classifier. Xu Han et al. [29] added salt and pepper noise to increase the number of 
training samples in preference to using rotation or flipping. Most of the researchers applied 
to pre-process in CNN-based classification or segmentation task.

Pre-processing methods like intensity normalization are applied for coping with 
low contrast MRI images and heterogeneity caused by multi-site multi-scanner acqui-
sitions of MRI images. It is proved that combined with data augmentation, intensity 
normalization as a pre-processing step is found to be very powerful for brain tumor 
classification [2, 30] and eliminates over-fitting [31]. It also enhances image quality by 
removing noise. MRIs usually suffer from an inconsistent intensity problem known as 
bias field distortion which may affect the performance of CNN. For consistent intensity 
range, bias field distortion correction can be performed on input MRI scans [32–35]. 



1071A Survey on Convolutional Neural Networks for MRI Analysis  

1 3

Data Pre-processing is carried out earlier than feeding images to the network for train-
ing. Sometimes, MRI scans are corrupted by rician noise at some stage in the acqui-
sition. Low-level image processing tasks such as image denoising for MRI scans are 
necessary for efficient disease diagnosis. Prasun Chandra Tripathi et al. [36] proposed a 
CNN-DMRI model for denoising of MRI scans and experimental findings conducted on 
synthetic as well as real MRI of unseen noise levels suggested that this model achieves 
promising results. R.R. Janghel et al. [37] suggested that by applying some image pre-
processing technique before sending to the network for feature extraction increase the 
performance of CNN model. The proposed pre-processing algorithm in this work was to 
convert 3D fMRI to 2D fMRI which saves the computation cost and generates interest-
ing features for early diagnosis of Alzheimer’s Disease. Generally, a dataset has extraor-
dinary sizes of MRI scans however CNNs ought to have a definite typical image size. 
Image resizing is one pre-processing approach to deal with different sizes of images. 
In this technique, all the images of the dataset are resized to a similar size [29, 38, 
39]. Table 2 shows issues of different MRI data processing techniques. Details of fre-
quently used MRI datasets are provided in Table 3.

3.2  CNN Dimensionality (2D/2.5D/3D)

CNN can be classified on the basis of the dimension of the input patch. There are three 
approaches used in the literature: 2D, 2.5D, and 3D. Total number of publications for each 
CNN dimensionality from 2015 to 2020 is given in Table 4.

The overall concept behind using a 2D CNN is to use 2D convolution filter to classify 
MRI scans supported slices. Another approach is to apply 2.5D CNN that could cope with 
some amount of spatial information. This approach is hardly ever used in the literature. 
They could strike very good stability between overall performance and computational costs 
by means of using 2D as well as 3D convolution. Yunzhe Xue et al. [40] designed a new 
2.5D CNN architecture that takes 2D slices as input and looks into all 3 orientations with 
their 3 normalizations. The output from this 2D CNN architecture is combined into a 3D 
volume which is then passed through a 3D CNN for post-processing for segmenting stroke 
lesions in brain MRI images. And yet a better method is 3-D CNN which offers overall bet-
ter performance and copes with richer spatial information than a 2.5D CNN. In 3D CNN, 
3D convolutional kernels are applied on whole volumetric patches and are passed to the 
network.2D-CNNs can only use single slices as inputs and can’t supply inter-slice informa-
tion. 3D CNNs remedy this hassle by leveraging inter-slice information which could cause 
advanced performance.

Recently, 2D CNN is extended to 3D CNN architectures to extract many learnable 
parameters and complicated features [25]. Hiba Mzoughi et  al. [2] offered a 3D CNN 
approach for brain tumor classification to merge both local and global contextual infor-
mation with reduced weights. It additionally generates the foremost discriminative fea-
ture map in comparison to the 2D CNN approach which captures only 2-dimensional 
spatial information. Liang Zou et  al. [41] proposed 3D CNN for ADHD classification 
using rs-fMRI which can learn 3D local patterns and may boost the classification accu-
racy even with less training data. Also, a comparative study by Wei Feng et al. [42] indi-
cates that 3D-CNN has the potential to capture the 3D context of MRI scans, whereas 
2D-CNN can only filter scans of 2D local patterns and 3D-CNN was found superior to 
2D-CNN for detection of Alzheimer’s Disease. In addition, Jose Dolz et  al. [21] also 
confirmed performance improvement over 2D CNN by using 3D CNN. Masaru Ueda 
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et al. [31] proposed a 3D CNN model to make full use of the potential of volume data in 
age estimation from brain MRI. Also, the extended 2D CNN model proposed by Mari-
ana Pereira et al. [43] provided the best performance when compared to 3D CNN-based 
ones. Different data dimensionality influences the performance of the final results of 
a CNN [44]. However, experimental results showed that performing slice-by-slice 2D 
segmentation to correct 3D reconstruction is effective for both 2D and 3D tasks [45]. 
Usage of 3D context information with the assistance of a relatively less expensive 2D 
convolution filter can be implemented for segmentation tasks. Raghav Mehta et al. [46] 
introduced a CNN model which utilizes only 2D convolution operating on 3D image 
making the model memory efficient. Bijen Khagi et  al. [47] also presented an idea of 
classifying 3D MRI images however permitting the 2D features generated from the 
CNN framework. Vinutha N et  al. [48] suggested that the model performs well when 
the training sample size is large and the feature vector is reduced. Seyed Sadegh et al. 
[49] also proposed CNN with 3 parallel 2D pathways that circuitously grasp 3D image 
information without the requirement for computationally high-cost 3D convolutions. To 
efficiently combine the strength of both long-range 2D context and short-range 3D con-
text, a hybrid 2D-3D CNN architecture is also possible. Pawel et  al. [50] introduced 
one such model within which features are imported within the portion of the network 
where the features maps are comparatively small and experimental results showed that 
this model performed better than standard 2D or 3D CNN.Processing 3D images in the 
network are tedious. 3D-CNNs utilize numerous parameters which increase their com-
putational expenses. As compared to the 2D-CNN, the 3D-CNN performs greater com-
plex computations which increase memory load due to the moreover, added a degree of 

Table 2  Issues or limitations of MRI data processing techniques

Sr.no Techniques Issues/Limitations

1 Single modality CNN Poor performance as compared 
to multi-modality CNN

2 Without data augmentation Over fitting and class imbalance
3 Aggressive data augmentation Performance degradation

Table 3  MRI Datasets Sr.no Dataset Size Source

1 Brain MRI images for 
brain tumor detection

9 MB Kaggle [74]

2 BRATS2020 43 GB Kaggle [75, 76]

Table 4  Dimensions of different 
CNN models studied

Dimensionality No. of Publications

2D 50
2.5D 2
3D 31
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size.3D-CNN may also overfit the data and need more computational resources to avoid 
it. It is observed that due to high speed and low computational costs, most of the authors 
have implemented 2D CNN (Fig. 4) as compared to 3D CNN even though it is proved 
to be a better feature extractor [4]. To reduce its expensive computational cost, Qi Dou 
et al. [51] proposed a cascaded framework under 3DCNNs in order to speed up process-
ing and remove redundant computations. Table 5 provides limitations of 2D CNN and 
3D CNN techniques.

3.3  CNN Architecture

A basic CNN architecture has the following components:

(1) The first layer is the input layer where data is fed into CNN for classification.
(2) Convolutional layer extracts feature from input images by applying various filters.
(3) Pooling layer which is placed after the convolution layer scales down the dimension of 

the input image.
(4) Fully connected layer recognizes patterns of features and flattens the output generated 

by previous layers.
(5) The Last layer is the output layer that determines the class for the image.

The speed and accuracy of CNN for performing various tasks depends on architecting 
CNN, how the layers are designed, and the network parameters used in each layer. Table 6 
gives a brief description of some CNN architectures employed by researchers in MRI 
medical imaging. Traditional CNN network architectures such as LeNet-5, AlexNet, Goog-
leNet, VGG, U-net, ResNet achieved good results at the ILSVRC [52] were adopted by a 
few of the researchers Traditional CNN network architectures such as LeNet-5, AlexNet, 
GoogleNet, VGG, U-net, ResNet achieved good results at the ILSVRC [43] were adopted 
by few of the researchers is developed on a large dataset and it is reused for a different 

Fig. 4  Dimension-wise different 
CNN models from 2015 to 2020

60%
3%

37%

Comparison

2D

2.5D

3D

Table 5  Issues or limitations of 
CNN Dimensionalities

Sr. no Techniques Issues/Limitations

1 2D CNN Can’t supply inter-slice information
Captures only 2D spatial information

2 3D CNN Memory inefficient
Expensive computations
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Table 6  Description of some CNN Architectures

Architecture Description

LeNet-5 [53, 54] Developed in 1998
Pull out low to mid-level features
Comprises two conv layers, two pooling layers and two fully connected 

layers
AlexNet [39, 47, 55, 56] Developed in 2012

Classical deep CNN
8 layers less complex architecture

GoogleNet [53–55] Developed in 2014
22 layered architecture
Contains inception modules

VGG[1, 16, 37, 38, 57, 58, 77] Developed by Simonyan and Zisserman in 2014
Uses small filter (3 × 3)
Deeper networks and training up to 19 convolution layers

U-Net [13,19,27,45,51,
54,55,59,63,67,83,87] Developed in 2015 for 2D segmentation

Consist of two parts: up sampling and down sampling
Have bypass connections that concatenates features from down sam-

pling to up sampling paths
Have up sampling layers to increase image dimensionality
Fully convolutional network

ResNet [34, 39, 43, 56, 57, 63, 64] Developed in 2016
Deepest structure ResNet50
Skip connections for copying activations from layer to layer
Preserves information flow through the network
Permits the gradients to be back propagated to prior layers

Fully convolutional Network 
(FCN) [5, 7, 20, 26, 60, 78]

Does not contain any fully connected layers
Contains 1 × 1 filters to perform task of fully connected layers
Can be carried out to input images of any size

SegNet [61, 62, 71] Deep full CNN architecture
Encoder-decoder network
Hierarchical structure of down sampling encoder mapping with each 

corresponding up sampling decoder
InputCascadeCNN [1] Two-way processing of image

Consists of two streams:7 × 7 filters for local features and 13 × 13 filters 
for global features

Last layer is a convolutional application of a fully connected layer
SkipNet [3] A variation of SegNet model having five blocks

Innermost encoder-decoder is eliminated
Skip connections between corresponding encoder to decoder

IntNet [3] Extends VGG architecture
Propogation of convolutional feature maps from encoder to corre-

sponding decoder
Binary linear interpolation is applied to intermediate prediction maps

Se-Net [3] Squeeze and- excitation (SE) block extension of skip net
Employed sub-pixel based interpolation
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but related task. In simpler words, people fine-tune pre-existing CNN models trained on 
the non-domain dataset and retrain them on domain-specific datasets via transfer learning. 
Saman Saraf et al. [53, 54] classified Alzheimer’s disease by using two traditional CNN 
architectures: LeNet-5 and GoogleNet where an accuracy of 98.84% was achieved with 
structural MRI data and an accuracy of 99.99% were achieved with fMRI. V.BHanumathi 
et al. [55] analyzed the performance of AlexNet, VGGNet, and GoogleNet classifiers for 
brain tumor images and concluded that GoogleNet performs 10% more accurately than 
AlexNet and VGGNet. Muhammed Talo et al. [56] also compared the performance of the 
already pre-trained model AlexNet, Vgg-16, ResNet-18, ResNet-34, and ResNet-50 for 
multi-class brain disease detection, and experimental results showed that deep Res-Net-50 
has attained the highest accuracy of 95.23% among five models. Deeper architectures like 
ResNet-50 having more layers performs well in classification task as compared to shal-
lower architectures having fewer layers like AlexNet. Mahjabeen Tamanna Abed et al. [57] 
used 3 different deep networks: VGG19, ResNet50, and InceptionV3 via transfer learning 
and concluded that deep neural networks are certainly powerful regarding producing par-
ticular alternatives primarily based on complicated datasets. However, Subhasis Banerjee 
et al. [24] inferred that going deeper with convolutions did not help improve the perfor-
mance of CNN. AlexNet was proven to be a good feature extractor. Also, it is an efficient 
transfer learning framework for the classification of brain tumors [39]. Sérgio Pereira et al. 

Table 6  (continued)

Architecture Description

Hough CNN [44] Based on voting strategy

Implements voting by making use of features produced by intermediate 
layers

Can be applied to different modalities
AtriaNet [45] 16- layered fully convolutional neural network

Dual pathway architecture to process local and global information
Uses 13 successive convolutions followed by 3 other convolutions for 

merging
SegAE[35] Auto encoder FCN

Fully convolution layers on 3 resolution scales
Unsupervised training

3D-DA-Net [50] Includes two branches and merges spatial information via the adding 
operation

Bottom Branch comprises two layers: a 3D convolutional layer and a 
3D max-pooling layer

Top branch incorporates five layers: four 3D convolutional layers with 
four 3D deconvolutional layer and a 3D max pooling layer

DC Net [79] Architectural shape is based totally on U-Net and V-Net
Positional encoding introduced in learning phase

Had Net [80] Contains 5 types of processing layers
4 inception layers
Volumetric convolutions

DemNet[77] Altered version of VGG-16 architecture
Dropout layers after every pooling layers
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[30] also found that shallower architectures give a low performance. Bijen Khagi et al. [47] 
compared accuracies for scratch trained CNN features and AlexNet CNN features for clas-
sification of 3 class Alzheimer’s disease, even though consequences had been no longer 
promising however it could be concluded that AlexNet performs better than scratch trained 
CNN softmax classification supported probability score. But, Guy Amit et al. [28] showed 
that small-size CNN can learn features more accurately than pre-trained domain non-
specific VGGNet for classification of breast MRI lesions. Sajjad et al. [1] utilize the pre-
trained model VGG-19 having 19 layers for multi-grade tumor classification and achieved 
an accuracy of 95.58%. Similarly, Rachna Jain et al. [58] used a pre-trained VGG-16 as a 
feature extractor for the 3-way classification of Alzheimer’s Disease and demonstrated that 
VGG-16 was able to extract important features even though it was trained on non-domain 
specific images. R.R.Janghel et  al.[37] also employed VGG-16 as a feature extractor for 
Alzheimer’s Disease which generates output quickly and accurately due to less complexity. 
It can be concluded that fine-tuning a pre-trained model saves huge labor required to build 
a model from scratch. Also, it is advantageous in reducing computational costs.

Various researchers have fine-tuned only a few layers of traditional pre-trained CNN 
architectures. Muhammad Sara Ranjbar et al. [16] used a variation of VGG Net architecture 
instead of using full architecture for annotation of magnetic resonance imaging sequence 
type. Mariana Pereira et al. [43] utilize 2 layers of Resnet34 architecture instead of using 
the full pre-trained model and proposed a prolonged 2D model for multiclass Alzheimer’s 
Disease classification by achieving an accuracy of 68.6% and performs nicely compared to 
the state-of-the-art AD classification method. Further, Seyed Sadegh et al. [49] have used 
U-net CNN architecture and augment it with the auto context algorithm for brain extrac-
tion. Mina Ghaffari et al. [23] compared changed U-net with a common U-net and showed 
that the proposed model accomplished higher brain tumor segmentation accuracy than the 
generic U-net. This turned into feasible by means of changing the skip connections with 
specific DenseNet blocks for transmitting semantic records of its encoder component to 
the decoder component. Another approach of modified U-net is to use multiple U-nets in 
parallel for optimizing the ability of the model. Additionally, Sadegh Charmchi et al. [59] 
optimized U-Net architecture and proposed a modified shallow U-Net for left ventricle seg-
mentation using MRI. Yunzhe Xue et al. [40] employed 9 end-to-end U-nets in multi-path 
and multi-modal systems for capturing contextual information of brain MRI scans from all 
three planes and their normalization.

Another CNN model that is broadly used in literature is Fully Convolutional Networks. 
Unlike conventional CNN, it does not contain dense layers or absolutely connected layers 
at the end of the CNN network. Phi Vu Tran et al. [60] proposed the first FCN model for 
pixel-wise labeling in cardiac MRI and carried out state-of-the-art segmentation accuracy 
on multiple metrics. In contrast, the primary study to fine-tune a pre-trained FCN model 
was performed by Zhiqiang Tian et al. [7] for prostate segmentation and it is found that 
utilizing fine-tuned FCN could give promising segmentation results. A different FCN 
architecture based on encoder-decoder known as SegNet is used by researchers for pixel-
wise segmentation tasks. Bijen Khagi et  al. [61] segmented carefully associated brain 
MRI scans based totally on pixel-labeling with promising outcomes utilizing the encoder-
decoder architecture of SegNet layer and suggests that like semantic segmentation of out-
door scenes images, CNN can be fruitful in medical MRI segmentation as well. Similarly, 
Fang Liu et al. [62] applied SegNet for high resolution pixel-wise multi-class tissue classi-
fication and showed that using SegNet as the heart of segmentation method yields accurate 
and fast cartilage and bone segmentation. Prasun Chandra Tripathi et al. [36] employed an 
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encoder-decoder structure that performs up-sampling and down-sampling of images effec-
tively to preserve important features of the images while denoising of MRI scans.

Few hybrid CNN models are also presented in the literature. Dinthisrang Daimary 
et  al. [63] proposed 3 hybrid CNN models: Res-SegNet, U-SegNet, and Seg-UNet to 
acquire the characteristics of SegNet, ResNet, and U-Net which are the foremost famous 
CNN models for semantic segmentation and showed that hybrid models achieved high 
accuracy as compared to the opposite CNN models for brain tumor segmentation. 
Another hybrid model by using classical ResNet architecture as the base is presented in 
the literature. Ahmet Çinar et al. [64] developed a hybrid model by replacing the final 
5 layers of ResNet50 by means of 10 CNN layers and this improved model achieved 
better results than the classical architectures such as InceptionV3, GoogleNet, Alexnet, 
Resnet50, and Densenet201 models. Raheleh Hashemzehi et  al. [65] also proposed a 
new hybridization of neural a convolutional neural network (CNN) and neural autore-
gressive distribution estimation (NADE) which extracts prominent features for image 
classification and was found a beneficial tool for brain tumor detection. Hari Mohan Rai 
et al. [38] also proposed a combination of U-Net and Le-Net known as LU-Net having 
fewer layers with some modifications for detection of brain tumor and was found to be 
superior to Le-Net and VGG-16 models by achieving an overall accuracy of 98% due to 
its less complex architecture.

Many researchers have implemented the ensemble learning technique of CNNs. In 
ensemble learning, predictions of multiple trained base learners are combined into a sin-
gle output. Jose Dolz et al. [21] demonstrated the benefit of combining multiple image 
modalities as input employing either early fusion or late fusion with overall execution 
enhancement over a single CNN. Li Sun et al. [8] to utilizes an ensemble of 3 different 
CNNs for brain tumor segmentation and evaluation results suggest that the ensemble 
method can reduce model bias and performs better than individual ones. Mostefa Ben 
naceur et  al. [66] also adopted the ensemble learning technique by proposing Ensem-
bleNet which takes the benefit of parallel architecture in less time and was found to gen-
erate highly accurate results for segmentation of brain tumors. Similarly, Pierrick Coupe 
et al. [67] uses an ensemble of many CNNs and proposed a model called AssemblyNet, 
which includes 2 assemblies of U-Nets. Reza Rasti et al. [68] developed a new model 
called ME-CNN for a mixture of an ensemble of CNNs and experimental results for 
breast cancer diagnosis indicate aggressive classification performances in contrast with 
existing single classifier as well as ensemble method.

4  Conclusion and Future Scope

This survey paper is centered on the viability of CNN for MRI analysis. It is used in 
various medical applications. This survey conveyed useful approaches to understand-
ing the CNN and MRI domain and different techniques. In this survey, analysis of MRI 
input data and pre-processing is discussed. It can be concluded that pre-processing tech-
niques & data augmentation can enhance the overall performance of the CNN model 
and can deal with poor quality MRI and fewer data. Furthermore, CNN dimensionalities 
and architectures are also analyzed.2D CNNs are broadly implemented in the literature 
due to low computation costs. One can also use 3D CNN when the cost is not an issue. 
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Comparative analysis of various CNN architectures adopted for medical applications is 
also summarized in this study.

In the future, we will investigate more CNN-based techniques adapted in literature 
and their effect on the performance of the CNN model for MRI data. For different medi-
cal imaging like CT scanning or X-Ray, CNN can also be analyzed.
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