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Abstract
This paper has proposed an adaptive control scheme based on a hybrid neural network 
(HNN) to address the problem of uncertain nonlinear systems with discrete-time having 
bounded disturbances. This proposed control scheme is composed of a neural network 
(NN) and differential evolution (DE) technique which is used to initialize the weights of 
the NN and the controller is designed in such a manner so that the stability can be ensured 
and the desired trajectory can be achieved. The designed HNN is employed to approximate 
unknown functions present in the system. By using the concept of system transformation, 
the adaptive law and controller are designed and the whole system is proved to be stable in 
the sense of semi-globally uniformly ultimately boundedness (SGUUB) with the assistance 
of Lyapunov theory. Finally, the validity and effectiveness of the results are proved through 
two simulation examples.

Keywords  Hybrid neural network · Uncertain nonlinear systems · Lyapunov method · 
Bounded disturbances · Differential evolution

1  Introduction

In the past two decades, a great deal of attention is devoted by the researchers to the area 
of uncertain nonlinear discrete-time systems such as robot manipulators, servo motor, 
and underwater vehicle systems [1–3]. Due to the development of technology control 
devices and objects are becoming more complex and not possible to control via a linear 
control model [4, 5]. Therefore the control of nonlinear systems is becoming much more 
challengeable since not all states are measurable and it becomes more difficult in the 
presence of disturbances and hence drawing a lot of attention from researchers [6–9]. 
Due to uncertainty and disturbances, it has been acknowledged that the methodologies 
to control uncertain nonlinear systems are comparatively more difficult than the linear 
control [10]. Bounded disturbances often exist in many practical problems and become 
the cause of the instability of control systems. Therefore, designing an efficient control 
scheme and its stability attract the attention of researchers. However, due to limitations 
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in modeling, measurement and observations many physical systems are affected by 
parameter uncertainties.

Uncertain systems appear very often in the numerous practical plants, in this con-
nection the adaptive neural network (ANN) control and the control based on fuzzy 
logic systems (FLS) have achieved extensive accomplishments and improvements to 
approximate nonlinear functions present in such systems [11–14]. Many methods were 
developed like back-stepping, sliding mode control, observer-based system, and robust 
control which are used to tackle such nonlinear systems [15–18]. An adaptive tracking 
control methodology was discussed for uncertain nonlinear single-input and single-out-
put (SISO) systems [19] and multi-input and multi-output (MIMO) systems in [17, 20, 
21]. Tracking control of uncertain systems is more difficult in presence of diverse forces 
which may interfere with the systems [22]. Among many diverse forces, the dead zone 
is one force that is symmetric and asymmetric in nature [23]. Adaptive tracking control 
is developed for switching systems with non-symmetric dead-zone [24], in addition to 
this, observer-based adaptive control and some fuzzy based adaptive control techniques 
addressing nonlinear systems with discrete-time and bounded disturbances with dead-
zone are presented in [25–28] while nonlinear time-delay problem with unknown non-
linear dead-zone is presented in [27, 29, 30].

In the assessment with continuous systems, discrete-time systems have more practi-
cal consequences. Although a large number of the real-time processes are continuous in 
nature, they are demonstrated mostly utilizing discrete-time as they are effectively feasible 
[31]. Keeping into view this advantage, the discrete-time systems are taken into considera-
tion. Many adaptive control techniques were developed to approximate the unknown func-
tions for nonlinear discrete-time systems [23, 30, 32, 33]. The time-changing parameters in 
the systems may cause major challenges in tracking performance. Another important issue 
is time-delay input for nonlinear systems which usually makes a system complicated. Back-
stepping based adaptive control design employing intelligent systems like neural networks 
or fuzzy logic systems (FLS) gives more fruitful results for nonlinear systems [17, 34–36].

Motivated by the aforementioned discussion, it has been noticed that an adaptive con-
trol strategy based on NN or FLS, ensured the basic system stability, but how to attain the 
preferred trajectory remains to be studied additionally. To enhance the theory of adaptive 
control, especially for nonlinear systems with discrete-time, we propose an adaptive con-
troller for uncertain nonlinear systems with discrete-time on the basis of a hybrid neural 
network. In the proposed hybrid neural network controller, we use the evolutionary differ-
ential evolution method to initialize the weight and biases of the neural network with mean 
square error (MSE) as the fitness function. In this work, we address HNN adaptive control-
ler to attain the reference signal for uncertain nonlinear systems with discrete-time having 
bounded disturbances and immersion of utterly unknown functions.

The primary endowments of this work are summed up as follows:

(1)	 An evolutionary method named differential evolution is used for the initialization of 
the weight vector of the neural network. Employing the HNN and feedback approach, 
the proposed control scheme is capable of successfully tracking the reference signal. 
The considered adaptive HNN is used to approximate unknown functions involving 
dead-zone.

(2)	 The proposed adaptive control scheme surmounts the requirements of affine form and 
linear parametric situation, i.e. it is not required to be assumed that the nonlinear 
uncertainties are needed to be linear with unknown parameters.
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(3)	 By the use of the Lyapunov method, the semi-global uniformly ultimate boundedness 
(SGUUB) of the system is verified. The unknown functions are be approximated by the 
proposed HNN controller and the error signal converges in a compact set containing 
zero, which is shown and verified by the using simulation examples.

The remaining part of this paper has been structured in the following manner. The formula-
tion of the problem for uncertain nonlinear systems with discrete-time having dead-zone and 
preliminaries is presented in Sect. 2. In Sect. 3, the HNN controller is discussed, and Sect. 4 
deals with the stability analysis of the system using the Lyapunov method. Section 5 provides 
the simulation results and description, and the conclusion of this paper carries out in Sect. 6.

Notation: Following are the notations that will be used throughout this paper.
In the whole of the article, all work is done using standard notations. ℜm denotes 

an m-dimensional Euclidean space; � i(k) stands for the ith state of the system and  
� i(k) =

[
�1(k), �2(k), ⋯ , �i(k)

]T
∈ ℜi represents state vector where T is the transpose of 

vector/matrix and s(k) be the supremum of �(∙) ; �(k) represents tracking error; �() represents 
approximation error for NN and � is a constant. y(k) and yd(k) represents obtained and the 
desired trajectory respectively.

2 � Problem Formulation and Preliminaries

Let us take into consideration the under mentioned nonlinear stochastic pure-feedback systems 
as follows:

where, � i(k) =
[
�1(k), �2(k), ⋯ , �i(k)

]T
∈ ℜi , where i = 1, 2, ⋯ , n,�(k) ∈ ℜ and 

y(k) ∈ ℜ be the state vector, input and output of the system respectively;d(k) ∈ ℜm stand 
for external bounded disturbances such that ‖d(k)‖ ≤ dM , and �i(� (k));∀i = 1, 2,⋯ , n and 
�i(� (k));∀i = 1, 2,⋯ , n are unknown smooth and bounded functions with all its partial 
derivatives are also continuous. The dead zone function �(k) in Eq. (1) is defined as:

where�(k) ∈ ℜ is known as dead zone for the input, bl < 0 and br > 0 be the unknown 
dead zone parameters while �r and �l are the unknown smooth nonlinear function. The 
functions �r(�(k)) and �l(�(k)) are smooth functions.

where

(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�1(k + 1) = �1

�
�1(k)

�
+ �1

�
�1(k)

�
�2(k)

⋮

�n−1(k + 1) = �n−1

�
�1(k),⋯ , �n−1(k)

�
+ �n−1

�
�1(k),⋯ , �n−1(k)

�
�n(k)

�n(k + 1) = �n

�
�1(k),⋯ , �n(k)

�
+ �n

�
�1(k),⋯ , �n(k)

�
�(k) + d(k)

y(k) = �1(k)

(2)𝜏(k) =

⎧
⎪⎨⎪⎩

𝜑r(𝜐(k)) ∶ 𝜐(k) ≥ br

0 ∶ bl < 𝜐(k) < br

𝜑l(𝜐(k)) ∶ 𝜐(k) ≤ −bl

(3)�(k) =
[
Cr(�(k)), Cl(�(k))

] [
ℏr(�(k)), ℏl(�(k))

]T
�(k) + p(�(k))
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Let yd(k) be the reference signal for the system (1) and y(k) is the calculated output of the 
system (1). Then our objective is to minimize the usual quadratic cost function given in (4):

Definition  [37]

The Nussbaum gain N(� (k)) of a discrete sequence {� (k)} for discrete time satisfy fol-
lowing properties:

where,� is constant.
Then N(� (k)) defined as follows:

where, �s(k) = sup
k�≤k

{
� (k�)

}
 and H(� (k)) is defined as:

In this case, H
(
� (k1 + 1)

)
= −1 otherwise H

(
� (k1 + 1)

)
= 1.

If H
(
� (k1)

)
= −1 , then if 

k1∑
k�=0

N
�
𝜁 (k�)

�
Δ𝜁 (k�) < −𝜁3∕2

s
(k1).

In this case, H
(
� (k1 + 1)

)
= 1 otherwise H

(
� (k1 + 1)

)
= −1.

Result [37] If �s(k) holds uniform boundedness, then same is true for |H(� (k))| and if 
�s(k) is unbounded then |H(� (k))| oscillates between -∞ and + ∞. Using this result we 
establish lemma 1.

Lemma 1  [37] If the function V(� ) is such that it is positive definite and N(� ) is Nussbaum 
gain defined in Eq. (5) and if inequality (6) holds:

where c1 , c2 and c3 are constants then V(k),� (k) and RHS of Eq. (6) must be bounded.

Cr(𝜐(k)) =

⎧
⎪⎨⎪⎩

0, 𝜐(k) ≤ bl

𝜑
�

r
(br), bl < 𝜐(k) < br

𝜑
�

r
(𝜂r(𝜐(k))), br ≤ 𝜐(k) < ∞

, Cl(𝜐(k)) =

⎧
⎪⎨⎪⎩

𝜑
�

l
(𝜂l(𝜐(k))), −∞ < 𝜐(k) ≤ bl

𝜑
�

l
(bl), bl < 𝜐(k) < br

0, 𝜐(k) ≥ br

�
r
(𝜐(k)) =

{
1, 𝜐(k) > b

l

0, 𝜐(k) ≤ b
l

, �
l
(𝜐(k)) =

{
1, 𝜐(k) < b

r

0, 𝜐(k) ≥ b
r

,

𝜂
r
(𝜐(k) ∈ (b

r
,∞) and 𝜂

l
(𝜐(k) ∈ (−∞, b

l
)

(4)E =
1

2

n∑
k=1

(
y(k) − yd(k)

)2

𝜁 (0) = 0, 𝜁 (k) ≥ 0 and Δ𝜁 (k) = |𝜁 (k + 1) − 𝜁 (k)| < 𝜀;∀k

(5)N(� (k)) = �s(k)H(� (k))

H(� (0)) = 1 for k = k1

If H
(
𝜁 (k1)

)
= 1, then if

k1∑
k�=0

N
(
𝜁 (k�)

)
Δ𝜁 (k�) > 𝜁3∕2

s
(k1)

(6)V(k) ≤
k1∑

k�=0

(
c1 + �N

(
� (k�)

))
Δ� (k�) + c2� (k) + c3
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NN Approximation
In the control theory, there are several well-formulated methods for unknown function 

approximations namely the polynomial method, fuzzy logic, and neural network, etc. In 
this work we use a neural network as an unknown function approximator. The basic univer-
sal approximation result says that any smooth function �(� ) can be approximated arbitrar-
ily on a closed compact set with appropriate weight adjustment using NN. If �(� ) be an 
unknown smooth function can be written as:

where, �(�) is known as NN function approximation error and bounded by � i.e. ‖�(�)‖ ≤ � . 
The error function defined in Eq. (3) can be minimized via choosing optimal weight vector 
W , for this let us consider Lyapunov function as:

where e(k) = y(k) − yd(k) and Lyapunov function defined above is same as the usual quad-
ratic cost function. The derivative of Eq. (8) is given by:

where J =
�e

�W
. If arbitrary initial weight W(0) is updated by the rule 

where error e converges to zero under the condition that Ẇ exist along the convergence tra-
jectory. Using Eq. (10), Eq. (6) yields: V̇ = −‖e‖2 ≤ 0 and V̇ < 0 if e ≠ 0 . The difference 
equation representation of weight updating algorithm based on Eq. (10) is given by:

where� is known as learning rate.
The structure of the hybrid neural network proposed in this work can be seen in Fig. 1, 

where 
[
x1, x2, ..., xn

]
  is the input state vector and 

[
y1, y2, ..., ym

]
   is the initial weight 

matrix defined by using differential evolution, �   is the activation function and Vjk  is the 
weight matrix from hidden to output layer and 

[
y1, y2, ..., ym

]
  is the output vector.

3 � Adaptive Controller Design

In this part of paper, we will use pure feedback technique to design an adaptive controller 
�(k) in Eq. (1) or �(k) which is defined in Eq. (3). The detail system transformation, design 
procedure and stability analysis are described below:

Step 1: Let first design the virtual controller �(k) as defined in Eq. (3), start the virtual 
control design to stabilize the first part of Eq. (1) as follows:

(7)�(�) = WT�(�) + �(�)

(8)V =
1

2
e(k)eT (k)

(9)V̇ = −eT
𝜕e

𝜕W
Ẇ or V̇ = −eTJẆ

(10)W(t1) = W(0) +

t1

∫
0

ẆdtẆ =
‖e‖2
��JTe��2

JTe

(11)W(t + 1) = W(t) + 𝛼Ẇ(t)

(12)�2� (k) = −
1

�1

(
�1(k)

)[�1

(
�1(k)

)
− yr(k + 1)

]
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Similarly the virtual control design to stabilize the second part of Eq. (1) as follows:

Repeat the above procedure to get the final control �(k) , by examine the first (n-1) equation 
of system (1). For this let us denote:

where�i
(
� i+1(k)

)
= �i

(
�1(k + 1), ⋯ , �i(k + 1)

)
+ �i

(
�1(k + 1), ⋯ , �i(k + 1)

)
�i+1(k + 1)

Therefore:

After moving one step ahead system (1) can be expressed as:

Equations (15, 16) can be rewritten as:

(13)�3� (k) = −
1

�2

(
�1(k), �2(k)

)[�2

(
�1(k), �2(k)

)
− �2� (k + 1)

]

(14)�i(k + 1) = �i
(
�i+1(k)

)
;∀i = 1,⋯ , n − 2

� i(k + 1) =

⎡⎢⎢⎢⎣

�1(k + 1)

⋮

�i(k + 1)

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

�1

�
�1+1(k)

�

⋮

�i

�
� i+1(k)

�

⎤⎥⎥⎥⎥⎦
= Ψi

�
� i+1(k)

�
∈ ℜ

i;∀i = 1, 2,⋯ , n − 1

(15)
�i(k + 2) = �i

(
�1(k + 1), ⋯ , �i(k + 1)

)

+�i

(
�1(k + 1), … , �i(k + 1)

)
× �i+1(k + 1);∀i = 1,… , n − 2

(16)
�n−1(k + 2) = �n−1

(
�1(k + 1), … , �n−1(k + 1)

)
+ �n−1

(
�1(k + 1), … , �n−1(k + 1)

)
× �n(k + 1)

(17)
�i(k + 2) = �i

(
� i+2(k)

)
; for all i = 1, ⋅, n − 2

�n−1(k + 2) = Ψn−1

(
�n(k)

)
+ Φn−1

(
�n(k)

)
× �n(k + 1)

Fig. 1   Neural network
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where 

Using Eq. (15) and moving one step ahead the first (n-2) terms at the (k + 2)th step in 
(17) we have:

From Eq. (15) it is clear that

Similar way to above process, we have 

where �1
(
�n(k)

)
= �1

(
Ψ1

(
�n−1(k)

))
+ �1

(
Ψ1

(
�n−1(k)

))
× �2

(
�n(k)

)
 and

Now at the nth step, we have

where Ψ1

(
�n(k)

)
= �1

(
�1

(
�n(k)

))
and Φ1

(
�n(k)

)
= �1

(
�1

(
�n(k)

))
.

From Eqs. (16) to (20), Eq. (1) can be re-casted as:

From Eq. (19) to (20), we have

�i

(
� i+2(k)

)
= �i

(
Ψi

(
� i+1(k)

))
+ �i

(
Ψi

(
� i+1(k)

))
× �i+1

(
� i+2(k)

)
,

Ψn−1

(
�n(k)

)
= �n−1

(
Ψn−1

(
�n(k)

))
, Φn−1

(
�n(k)

)
= �n−1

(
Ψn−1

(
�n(k)

))

� i(k + 2) =

⎡⎢⎢⎢⎣

�1(k + 2)

⋮

�i(k + 2)

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

�1

�
�1+1(k + 1)

�

⋮

�i+1

�
� i+1(k + 1)

�

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

�1

�
Ψ2

�
�3(k)

��

⋮

�i

�
Ψi+1

�
� i+2(k)

��

⎤⎥⎥⎥⎥⎦

(18)� i(k + 2) = Ψi

(
� i+2(k)

)
; for all i = 1, 2,⋯ , n − 2

(19)
�1(k + n − 1) = �1

(
�n(k)

)

�2(k + n − 1) = Ψ2

(
�n(k)

)
+ Φ2

(
�n(k)

)
× �3(k + n − 2)

Ψ2

(
�n(k)

)
= �2

(
Ψ2

(
�n(k)

))

Φ2

(
�n(k)

)
= �2

(
Ψ2

(
�n(k)

))

(20)�1(k + n) = Ψ1

(
�n(k)

)
+ Φ1

(
�n(k)

)
�2(k + n − 1)

(21)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�1(k + n) = Ψ1

�
�n(k)

�
+ Φ1

�
�n(k)

�
× �2(k + n − 1)

⋮

�n−1(k + 2) = Ψn−1

�
�n(k)

�
+ Φn−1

�
�n(k)

�
× �n(k + 1)

�n(k + 1) = �n

�
�n(k)

�
+ �n

�
�n(k)

�
× �(k) + d(k)

y(k + n) = �1(k + n)
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Repeating above process, until �(k) appears

where Ψ
�
�m(k)

�
= Ψ1(k) + Ψ2(k) × Φ1(k) +⋯ + Ψn−1(k) ×

n−2∏
i=1

Φj(k) + �n(k) ×
n−2∏
i=1

Φj(k)

Then the output of the re-casted system is given as:

Let us define tracking error �(k) = y(k) − yd(k) , from Eq. (24) error is:

Since, the dead zone �(k) defined in Eq. (2) is containing unknown variables, therefore �(k) 
can be used for controller in terms of Eq. (3):

where, CT (�(k)) =
[
Cr(�(k)), Cl(�(k))

]
.

For simplification let us denote:

Then Eq. (26) becomes

By using implicit theorem, find the required control input �∗(k) such that following holds

With the neural network approximation as in Eq. (7), we get

where,�(�(k)) is the bounded input to the hidden layer and �∗(�(k)) error after approxima-
tion which is to be minimized, for this let us assume Ŵ is the approximation of W∗ and 
W = Ŵ −W∗ . Using this construct HNN controller for �(k) as

(22)�1(k + n) = Ψ1(k) + Ψ2(k) × Φ1(k) + Φ1(k) × Φ2(k) × �3(k + n − 2)

(23)�1(k + n) = Ψ
(
�m(k)

)
+ Φ

(
�m(k)

)
× �(k) + d1(k)

Φ
(
�m(k)

)
= �n(k) ×

n−1∏
i=1

Φj(k)

d1(k) = d(k) ×

n−1∏
i=1

Φj(k)

(24)y(k + n) = Ψ
(
�m(k)

)
+ Φ

(
�m(k)

)
× �(k) + d1(k)

(25)�(k + n) = Ψ
(
�m(k)

)
+ Φ

(
�m(k)

)
�(k) + d1(k) − yd(k + n)

(26)
�(k + n) = Ψ

(
�m(k)

)
+ Φ

(
�m(k)

)[
CT (�(k))ℏr(�(k))�(k) + p(�(k))

]
+ d1(k) − yd(k + n)

Γ
(
�m(k), �(k)

)
= Ψ

(
�m(k)

)
+ Φ

(
�m(k)

)
× CT (�(k)) × ℏr(�(k))�(k)

(27)�(k + n) = Γ
(
�m(k), �(k)

)
− yd(k + n) + Φ

(
�m(k)

)
× p(�(k)) + d1(k)

(28)Γ
(
�∗(k), �m(k)

)
− yd(k + n) = 0

(29)�∗(k) = W∗T�(�(k)) + �∗(�(k))
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where, 𝜀̂ is the estimation of �∗ and 𝜀 = 𝜀̂ − 𝜀∗ . Using mean value theorem and Eq. (28), 
(27) can be further written as:

where �#(k) ∈ [min {�∗(k), �(k)}, max {�∗(k), �(k)}]

Using Eqs. (29, 30, 31) becomes.

 where �(k) = W
T

�(�(k)) and d0(k) = g
(
�#(k), �m(k)

)
× �(�(k)) + d1(k) + Φ

(
�m(k)

)
p(�(k)).

Now, the parameter adjustment regulation are designed as

where, � is positive adaptation gain constant, �(k) is augmented error and k1 = k − n + 1.

Δ� (k) = � (k + 1) − � (k) =
�(k)×(1+|N(� (k))|)×�2(k+1)

B(k)
 . For the design of controller, the 

sequence {� (k)} must satisfy � (0) = 0, � (k) ≥ 0 and Δ𝜁 (k) = |𝜁 (k + 1) − 𝜁 (k)| < 𝜀; for all k.
The overall working of the control process can be well understood through Figs. 2 

and 3.

Algorithm  A step-by-step procedure of detailed implementation of the controller is as 
follows:

1.	 Select initial state and parameters.
2.	 Construct HNN and evaluate error, y(k) – yd(k).
3.	 Update the weight. Calculate the controller and construct equation
4.	 Use the controller υ(k) for the given system.
5.	 Go to step 3 for next updation.

(30)𝜐(k) = ŴT𝜎(𝜐(k)) + 𝜀̂(𝜐(k))

(31)
�(k + n) = Γ

(
�m(k), �(k)

)
− Γ

(
�m(k), �

∗(k)
)
+ d1(k) + Φ

(
�m(k)

)
p(�(k))

= g
(
�m(k), �

#(k)
)(

�(k) − �#(k)
)
+ d1(k) + Φ

(
�m(k)

)
p(�(k))

𝜀(k + n) = g
(
𝜁m(k), 𝜐

#(k)
)
×
(
W

T
𝜎(𝜐(k)) + 𝜀̂(𝜐(k)) − 𝜀(𝜐(k))

)
+ 𝜏1(k) + Φ

(
𝜁m(k)

)
× p(𝜐(k))

= g
(
𝜁m(k), 𝜐

#(k)
)
× (𝜋(k) + 𝜀∗(𝜐(k))) + d0(k)

(32)Ŵ(k + 1) = Ŵ
(
k1
)
− 𝜅N(𝜁 (k))𝜎

(
𝜐(k1)

)𝛼(k)𝜒(k + 1)

B(k)

(33)𝜀̂(k + 1) = 𝜀̂
(
k1
)
− (𝜒(k + 1)) × 𝜅

N(𝜁 (k)) × 𝛼(k)

B(k)

�(k + 1) = �

(
�(k + 1)

1 + |N(� (k))|
)

B(k) = 1 + �2(k + 1) +
‖‖‖�

(
�(k1)

)‖‖‖ + N(� (k))

𝛼(k) =

{
1, |𝜒(k + 1)| > 𝜅

0, otherwise
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Fig. 2   Working process of the Controller

Fig. 3   Flow Chart for the Algorithm
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4 � Analysis of Stability

Theorem: If a nonlinear system of the type (1) with dead zone. To construct the HNN con-
troller with parameter adaption law defined in Eqs. (32, 33) with appropriate design param-
eters, the feedback systems guarantee that system possess semi-global uniformly ultimate 
boundedness.

Proof: Let us consider the Lyapunov function:

where, V1(k) =
∑n−1

j=0
W

T�
k1 + j

�
W
�
k1 + j

�
and V2(k) =

∑n−1

j=0
�
2 �

k1 + j
�

From Eq. (34), we have

V(k) = V1(k) + V2(k)

(34)

W(k + 1) = W
(
k1
)
− � × N(� (k)) ×

(
�(k)

B(k)

)
× �

(
�(k1)

)
× �(k + 1)

ΔV1(k) = V1(k + 1) − V1(k)

= W
T
(k + 1) ×W(k + 1) −W

T(
k1
)
×W

(
k1
)

=
(
W

T
(k + 1) −W

T(
k1
))T

×
(
W

T
(k + 1) −W

T(
k1
))

+ 2W
T(
k1
)
×
(
W(k + 1) −W

(
k1
))

ΔV1(k) =

(
−�N(� (k))�

(
�(k1)

)�(k)�(k + 1)

B(k)

)T

×

(
−�N(� (k))�

(
�(k1)

)�(k)�(k + 1)

B(k)

)

+ 2W
T(
k1
)(

−�N(� (k))�
(
�(k1)

)�(k)�(k + 1)

B(k)

)

(35)
ΔV1(k) =

(
�2N2(� (k)) ×

‖‖‖�
(
�(k1)

)‖‖‖
2

×

(
�2(k)

B2(k)

)
× �2(k + 1)

)

+

(
−2�N(� (k))W

T(
k1
)
�
(
�(k1)

)
×

(
�2(k)

B2(k)

)
× �(k + 1)

)

�(k + 1) = �
(
k1
)
− � ×

(
�(k)

B(k)

)
× N(� (k)) × �(k + 1)

ΔV2(k) = V2(k + 1) − V2(k) = �
2
(k + 1) − �

2 (
k1
)

ΔV2(k) =
(
� (k + 1) − �

(
k1
))2

+ 2�
(
k1
)(
� (k + 1) − �

(
k1
))

ΔV2(k) =

(
−�N(� (k)) ×

(
�(k)

B(k)

)
× �(k + 1)

)2

+ 2�
(
k1
)(

−�N(� (k)) ×

(
�(k)

B(k)

)
× �(k + 1)

)
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From Eq.  (37) we get, �(k + 1) = g
(
�m(k1), �

#(k1)
)(

�(k1) + �(k1)
)
+ d0(k1)

where,k1 = k − n + 1 and g
(
�m(k1), �

#(k1)
)
 is not zero therefore multiplying both side by 

g−1
(
�m(k1), �

#(k1)
)
 , we get

Using Eqs. (38, 37) yields

Since,�(k + 1)1 + |N(� (k))| = ��(k + 1) we have

By the use of Young’s inequality xy ≤ 1

2
(x2 + y2) , we get

(36)= �2N
2(� (k))�2(k)

B2(k)
�2(k + 1) − 2�

(
k1
)
�
N(� (k))�(k)

B(k)
�(k + 1)

ΔV(k) =

(
�2N2(� (k))

(‖‖‖�
(
�(k1)

)‖‖‖
2

+ 1

)
�2(k)�2(k + 1)

B2(k)

)

− 2�N(� (k))W
T(
k1
)
�
(
�(k1)

)�(k)�(k + 1)

B(k)

− 2�
(
k1
)
�
N(� (k))�(k)

B(k)
�(k + 1)

ΔV(k) =

(
�2 × �2(k + 1) × N2(� (k)) ×

(‖‖‖�
(
�(k1)

)‖‖‖
2

+ 1

)
×

(
�2(k)

B2(k)

))

(37)−2�N(� (k)) × �(k + 1) ×

(
�(k)

B(k)

)
×
(
�(k) + �(k1)

)

(38)�(k) + �(k1) =
�(k + 1) − �0(k)

g
(
�m(k1), �

#(k1)
)

ΔV(k) =

�
�2N2(� (k)) × �2(k + 1) ×

�����
�
�(k1)

����
2

+ 1

��
�2(k)

B2(k)

��

− 2�N(� (k)) ×

�
�(k)

B(k)

�
×

⎛⎜⎜⎜⎝

�(k + 1) − �0(k)

g
�
�m(k1), �

#(k1)
�
⎞⎟⎟⎟⎠
× �(k + 1)

(39)

ΔV(k) =

(
�2N2(� (k)) × �2(k + 1) ×

(‖‖‖�
(
�(k1)

)‖‖‖
2

+ 1

)
×

(
�2(k)

B2(k)

))

+
2N(� (k))

g
(
�m(k1), �

#(k1)
)
[
−
�(k)�(k + 1)�(k + 1)(1 + |N(� (k))|)

B(k)
+ 2�

�(k)�(k + 1)�0(k)

B(k)

]
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and �2N2(� (k))

(‖‖‖�
(
�(k1)

)‖‖‖
2

+ 1

)
�2(k)�2(k+1)

B2(k)
≤ �2�(k)(1+|N(� (k))|)�2(k+1)

B(k)

and hence we have from Eq. (39)

Taking, summation on of Eq. (40), we get

Since, Ŵ(k), 𝜀̂(k), 𝜁 (k) and N(� (k)) are bounded and hence 1 + |N(� (k))| is also 
bounded. Since, Δ� (k) = �(k)(1+|N(� (k))|)�2(k+1)

B(k)
≥ 0 , and bounded which concludes that 

�(k) =
��(k)

(1+|N(� (k))|) is bounded and hence �(k) = 1

�
�(k)(1 + |N(� (k))|) is also bounded and 

since �(k) = y(k) − yd(k) where yd(k) is bounded and hence output of the HNN y(k) is also 
bounded.

5 � Simulation Examples

In this part of paper, two examples with simulation are provided to demonstrate the validity 
of the designed controller.

Example 1: Consider the below mentioned stochastic nonlinear system

2�N(� (k))�(k)�(k + 1)d0(k)

B(k)g
(
�m(k1), �

#(k1)
) ≤ �2N2(� (k))�2(k)�2(k + 1)

B2(k)
+

(
d0(k)

)2
(
g
(
�m(k1), �

#(k1)
))2

≤ �2N(� (k))

B(k)
Δ� (k) +

(
d0(k)

)2
(
g
(
�m(k1), �

#(k1)
))2

≤ �2Δ� (k) +

(
d0(k)

)2
(
g
(
�m(k1), �

#(k1)
))2

≤ �2Δ� (k)

(40)ΔV(k) ≤ −
2N(� (k))

g
(
�m(k1), �

#(k1)
)Δ� (k) + 2�2Δ� (k) +

(
d0(k)

)2
(
g
(
�m(k1), �

#(k1)
))2

V(k) ≤ −2

k∑
k�=0

N
(
� (k�)

)

g
(
�m(k1), �

#(k1)
)Δ� (k�) + 2�2� (k�) +

(
d0(k

�)
)2

(
g
(
�m(k1), �

#(k1)
))2
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where 𝜏(k) =

⎧
⎪⎨⎪⎩

0.3
�
𝜐2(k) − 0.5

�
, 𝜐(k) ≥ 0.5

0, −0.6 < 𝜐2(k) < 0.5

0.2
�
𝜐2(k) + 0.6

�
, 𝜐(k) < −0.6

 and reference trajectory is given 

by:yd(k) = 0.7 + 0.5sin
(
kT�∕5

)
+ 0.5cos

(
kT�∕10

)
where, T = 0.05.

By employing the proposed HNN controller, the system is capable of successfully 
tracking the reference trajectory with error quickly converging to a small neighborhood 
of zero. The tracking performance of the controller can be seen in Figs. 4 and 5 where 
Fig. 4 shows the tracking performance for tracking the reference trajectory and Fig. 5 
shows the tracking error. The performance of the proposed controller is compared with 
existing methods as shown in the Figs. 4 and 5. From Fig. 5, it can be clearly observed 
that the tracking error for the proposed controller is smaller than the other ones, and 
hence better results are obtained.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�1(k + 1) =
1.4�2

1
(k)

1 + �2
1
(k)

+ 0.3�2(k)

�2(k + 1) =
�2
1
(k)

1 + �2
1
(k) + �2

1
(k)

+ �(k) + 0.1 × cos(0.05k) × cos(�1k)

y(k) = �1(k)

Fig. 4   Tracking of desired trajectory yd (red line) using Hybrid NN (blue line)
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Example 2: Consider the below mentioned stochastic nonlinear system

and reference trajectory is given as yd(k) = 1.5sin
(
kT�∕5

)
+ 1.5cos

(
kT�∕10

)

where T = 0.05
By choosing initial states as [1, 1], the tracking performance of the proposed control-

ler can be seen in Figs. 6 and 7. From Fig. 6, it can be clearly observed that the controller 
has successfully tracked the reference trajectory with a very small error rapidly converging 
to zero. Fig. 7 shows the tracking error of the proposed controller in comparison with the 
existing controllers and it can be clearly seen that the proposed controller has achieved a 
better performance than the existing ones.

⎧
⎪⎪⎨⎪⎪⎩

�1(k + 1) = 0.2�1(k)cos�1(k) + 0.1�1(k)sin�1(k) + 3�2(k)

�2(k + 1) = 0.3�2(k)
�1(k)

1 + �2
1
(k)

− 0.6
�3
2
(k)

2 + �2
2
(k)

− 0.1�(k)

y(k) = �1(k)

Fig. 5   Error measured by hybrid model (blue line) and Neuro-fuzzy model (red line)
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6 � Conclusion

In this work, an HNN is used as a controller for nonlinear discrete-time systems in pres-
ence of a nonlinear dead zone. This HNN is designed on the basis of one-step advanced 
state prediction of higher-order nonlinear discrete-time systems. The discrete Nussbaum 
function is used in order to counter the knowledge of control directions. Also, it is verified 
that the feedback systems possess semi-globally ultimate uniform boundedness and output 

Fig. 6   Tracking of desired trajectory yd (red line) using Hybrid NN y (blue line)

Fig. 7   Error measured by hybrid model (blue line) and Neuro-fuzzy model (red line)
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tracking errors converge in the closed neighborhood of zero. The performance of the HNN 
model is envisaged by the two simulation examples. Results show that the HNN control 
model by the use of Nussbaum gain works as predicted in the analysis.
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