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Abstract
Link quality is important and can greatly affect the performance of wireless transmission 
algorithms and protocols. Currently, researchers have proposed a variety of approaches 
to implement link quality estimation. However, the estimated result of link quality is not 
accurate enough and the error is large, so they may lead to the failure of routing algorithm 
and protocol. In this paper, a novel method is proposed to achieve the more accurate esti-
mation of link quality than before. This method employs Bernoulli sampling-based algo-
rithm to complete the estimation of link quality. The problem is modeled as calculation of 
estimators based on Bernoulli sampling data. The authors further prove that the calculation 
results are accurate by probability theory. Furthermore, according to link quality estima-
tion, the authors also provide a centralized routing algorithm and a distributed improve-
ment algorithm in order to switch the data transmission on the better quality link. Finally, 
the extensive experiment results indicate that the proposed methods obtain high perfor-
mance in terms of energy consumption and accuracy.

Keywords Wireless sensor networks · Bernoulli sampling · Link quality · Approximate 
algorithm

1 Introduction

Wireless Sensor Networks have been widely used in many applications for gathering 
data from physical environment. In most of the applications, the scale of sensory data 
has already reached several petabytes each year. A large amount of sensory data needs to 
be transferred from sensor nodes to sink in order to make a deep analysis. However, data 
transmission depends on wireless link quality, which is affected by external conditions 
and node power. Therefore, it has become a research focus on how to estimate link qual-
ity accurately and select high-quality wireless links to ensure the efficient transmission of 
data. This is also the core topic of this paper.
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Data packet reception ratio (PRR) [1] is an important symbol of link quality. At pre-
sent, many network transmission algorithms and protocols are proposed to evaluate the 
link PRR. In the early studies [2–4], data dissemination protocols and algorithms can 
broadcast data to multiple neighbors at once [5–7]. In [5], the authors propose two algo-
rithms, which rely only on local two-hop topology information to reduce the number 
of transmission. In [6], the corresponding link PRR is obtained by receiving data from 
neighbor nodes and then used to determine the transmission route [7].

Among these researches, the bitmap schemes [1–3, 8–10] have demonstrated their 
effectiveness in achieving communication efficiency and reliability. These schemes 
can avoid network congestion and improve transmission efficiency. However, they are 
based on direct measurement method, which is the random experiments characterized 
by uncertainty. Specifically, in the experiments, a small amount of sensory data is trans-
ferred from a node to its neighbor. The authors observe the proportion of data received 
and lost, and obtain the measured value of PRR. However, according to the principle 
of probability theory, a small number of random experiments cannot obtain accurate 
results. Only when a large number of repeated experiments are done can accurate results 
be obtained.

Consider the coin toss experiments as an example, if a few randomized coin toss experi-
ments are performed, it is difficult to ensure that half of the experimental results are heads 
and the other half are tails. Only when a large number of repeated experiments are per-
formed can the frequency of heads be maintained at about 0.5 [11, 12]. Likewise, in a 
small amount of direct data transmissions such as the bitmap schemes [1–3, 8–13], if the 
actual PRR is 0.7, it is almost impossible to achieve that seventy percent of packets are 
correctly accepted and thirty percent of packets are lost. There is a large deviation between 
the measured PRR and the actual PRR. Only when a large amount of direct transmission 
experiments are implemented can the accurate result be obtained. Unfortunately, the node 
energy is limited, and the energy is almost exhausted after a large amount of transmission. 
Hence, the measurement of the link PRR loses meaning.

In order to obtain accurate link PRR, a lot of direct data transmissions are done, which 
leads to too much energy consumption. However, a small number of direct transmissions 
are difficult to achieve accurate PRR. Furthermore, the routing protocols and algorithms 
often choose the optimal path based on link quality. Inaccurate link quality directly causes 
wrong results of routing protocols. Therefore, it seems like a dilemma.

In order to solve this problem, in this paper, the authors use the Bernoulli-sampling 
theory [13] to accurately estimate the link PRR by sampling sensory data and transmitting 
a small amount of sampling data instead of direct data transmissions. Because the energy 
consumption of transmission is much larger than that of instruction execution and data 
sampling [13, 14], the energy consumption of data sampling is almost negligible. There-
fore, a small amount of sample data transmissions bring low energy consumption. In addi-
tion, the application of sampling theory can accurately estimate the link quality and ensure 
that the estimation results meet the requirements of high accuracy [15–17]. Because the 
link quality is obtained accurately, the subsequent routing protocols can also get accurate 
and reliable results [18].

Specifically, for arbitrary ε(ε ≥ 0) and δ (0 ≤ δ ≤ 1), the method proposed based on Ber-
noulli-sampling [19–21] theory computes (ε, δ)-approximate link PRR satisfying that the 
probability of the PRR’s relative error being larger than ε is less than δ. Both ε and δ rep-
resent the accuracy requirements of estimation results. Therefore, as long as ε and δ are set 
small enough, an appropriate sampling probability can be determined to ensure that the 
estimation result of link PRR meets the requirements of high accuracy.
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The purpose of link quality estimation is to choose the optimal transmission path. 
Because the sensor nodes are usually powered by batteries, energy consumption is the 
primary consideration. The authors use the expected transmission count (ETC) as the 
important indicator of energy consumption. The least link ETC means the lowest energy 
consumption. Therefore, the optimal transmission path means that the energy consump-
tion of data transmission in this path is minimum and the sum of link ETC in this path is 
minimum.

In this paper, the authors also propose an algorithm to calculate the ETC of all links 
according to (ε, δ)-approximate link PRR. Then, an optimal path algorithm is presented, 
which takes the sum of all links ETC in the path as the optimization objective, and finds 
the path with the smallest sum as the optimal path [23, 23, 24]. Finally, due to the distrib-
uted architecture of sensor network, a distributed improvement algorithm is proposed in 
order to decrease the time complexity. Moreover, this algorithm can find the optimal path 
from all sensing nodes to sink. The research of this paper has great practical significance 
for battery-powered WSNs.

The contributions of this paper are as follows:

1. A mathematical method to determine a sampling probability based on given (ε, δ) is 
proposed.

2. An approach to estimate the link PRRs and ETCs of all the links in WSNs based on the 
sampling probability is provided.

3. A centralized algorithm is presented to seek the most optimal path which guarantees 
that the sum of the link ETC from sensor node to sink is minimal.

4. A distributed improvement scheme is proposed in order to reduce the time complexity.

The rest of the paper is organized as follows. Section 2 discusses the related work. Sec-
tion 3 gives the problem definition. Section 4 describes the mathematic foundations of (ε, 
δ)-approximate link PRR. Section 5 proposes an algorithm to calculate the PRRs and ETCs 
of all the links in WSNs and also presents the search algorithms of the optimal path. The 
experimental results are shown in Sect. 6. Section 7 concludes the paper.

2  Related Work

Using sampling algorithm to evaluate link quality is a major innovation in this paper. In 
fact, the sampling-based approximate algorithms have been presented in several field, such 
as tradition database, aggregation analysis, P2P network and so on. However, none of them 
are about data transmission in WSNs.

In data transmission of wireless link, direct measurement [1–3, 8–12] is often used to 
obtain link PRR. In [1], the authors present the design of supporting layer for energy-effi-
cient reliable broadcast, in which direct measurement is used to obtain link PRR. In [9], the 
authors propose collective flooding, which achieves flooding reliability using the concept 
of collective ACK. Zhao et al. [8] improve collective flooding architecture. Direct measure-
ment is also used in both of these documents.

Currently, for the acquisition of link quality, direct measurement is simple and con-
venient. Therefore, it has been applied in many literatures. However, because direct 
measurement which can be regarded as a random experiment is always based on a small 
amount of direct data transmissions, there is a big deviation between the measured value 
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and the actual value according to the principle of probability theory. As a result, the 
inaccurate measurement of link quality directly leads to the failure of routing algorithm. 
On the other hand, although a large number of transmission can obtain accurate meas-
urement values, it consumes a lot of energy, so it has no practical significance.

To solve these problems, the authors present the estimation of link PRR based on 
Bernoulli-sampling theory. The transmission of a small amount of sampled data ensures 
a low level of energy consumption. Meanwhile, the application of the sampling theory 
can also ensure the accuracy of the estimation results. Precise link PRR makes routing 
algorithm reliable [25–27].

3  Problem Definitions and Assumptions

In this section, the authors firstly describe the mathematical model and related param-
eters, then the authors present the definition of the problem which are tackled in this 
paper.

Assuming that the sensor network is relatively stable. Therefore, the link quality 
remains almost unchanged for a small period of time. In this period, the author consid-
ers the problem of link quality estimation and data transmission.

In WSN, the clocks of sensor nodes are synchronized, which can be obtained by 
some technologies [18].

A sensor node may have several neighbor nodes. The authors obtain the link PRR 
from arbitrary node to one of the neighbor nodes.

Let p and N be the link PRR from arbitrary node u to its neighbor node v and the 
overall amount of data transmissions from node u to v, respectively. p̂ is the correspond-
ing estimation value of p based on the sampling algorithm.

X(i) is a random variable. If the i-th sensed data of node u is successfully received by 
v, X(i) equals 1, otherwise 0. If there are two or more nodes with the same X, the link 
quality may be almost the same, which has no impact on the scheme in this paper.

X = {X(1),X(2), ...,X(N)} is the set of random variables. The exact link PRR is

The above formula is the direct measurement method in order to achieve the PRR 
[1–3, 8–12]. The value of N cannot be too large. Otherwise, it is meaningless to trans-
mit a large amount of data and consume a lot of energy for the sake of precise link PRR. 
Therefore, the value of N is small. However, in this case, the results of direct measure-
ment are not accurate enough according to probability theory.

To solve this problem, the authors propose the improved scheme, which uses the Ber-
noulli sampling theory to transmit a small amount of sampling data instead of direct 
data transmission. This scheme can not only estimate link PRR accurately, but also 
ensure low energy consumption.

The estimated definition of link PRR is as follows:

Definition 1 ((ε, δ)-approximate value).   Î is called as an (ε, δ)- estimated value of I if and 
only if.

p =
1

N

N∑

i=1

X(i)
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for any ε ≥ 0 and 0 ≤ δ ≤ 1, where Pr {Y} is the probability of random event Y.

Definition 2 Let I and Î be the value p and p̂ , respectively. p̂ is called as (ε, δ)-estimated 
value of p if and only if p̂ and p meet (1).

If the estimated value p̂ satisfy (1), it also indicates that the relative errors of p̂ satisfy 
(1).

In definition 1, ε and δ are accuracy requirements. The smaller the values of ε and δ are, 
the higher the estimation accuracy is.

Definition 3 (Bernoulli sampling) Bernoulli sampling is a sampling method in which all 
elements of the population have the same probability to be independently selected [19, 
20]. Hence, for a given sampling probability q, a Bernoulli sample satisfies that every 
data is excluded in sampling set with probability 1-q and included with probability q 
independently.

In our design, every node acquires the Bernoulli sampling set, and then broadcasts the 
sampling data to its neighbors so as to estimate the link PRR.

Therefore, the determination of sampling probability is a key problem. Since the relative 
error of p̂ is also related to the sampling probability, the next section will discuss how to 
use ε and δ to give an optimal sampling probability and ensure that the estimator meets the 
requirements of high accuracy.

N is the overall amount of data transmissions, and N is also the number of elements in 
the sensory data set. Bernoulli sample set is a sample of the sensory data set. Let n denote 
the number of elements in the sample set. Because the value of n is small and n ≪ N , 
a small amount of sampling data transmissions are used to estimate the link PRR. This 
method not only estimates the link PRR accurately but also saves energy consumption.

Let X̂(i) be a random variable. If the i-th data in sampling set is successfully received 
by the neighbor node, X̂(i) equals 1. Otherwise 0. X̂ = {X̂(1), X̂(2), ..., X̂(n)} is the set of 
random variables (Table 1)

Definition 4  (Problem Definition 1) The problem of computing (ε, δ)-approximate  is 
defined as follows:

Input:

① Bernoulli sampling probability q
② ε(ε ≥ 0) and δ (0 ≤ δ ≤ 1).
③ X̂ = {X̂(1), X̂(2), ..., X̂(n)}.

Result : The estimation value p̂ from node u to its neighbor node v.

4  Mathematic Foundations

In this section, the authors firstly describe the estimation of PRR, and then present the 
acquisition of sampling probability in order to achieve precise estimation of PRR. Finally, 
the authors propose an approach to calculate the link ETC based on PRR, which lays the 
foundation for the presentation of the transmission algorithms.

(1)Pr

{|||(Î − I)
/
I
||| ≤ �

}
≥ 1 − 𝛿 or Pr

{|||(Î − I)
/
I
||| ≥ �

}
≤ 𝛿
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4.1  Computational Model of PRR

Definition 5 (Unbiased Estimation).Î is an unbiased estimation of I if and only if the 
expectation of Î is equal to I , that is,

Otherwise, Î is a biased estimation.

Definition 6 (Estimation of PRR). The estimator of link PRR can be calculated by.

where q represents the sampling probability.
The following theorem 1 indicates that p̂ is an unbiased estimator of the exact p.

Theorem 1 E(p̂) and Var(p̂) represent expectation and variance of p̂ , respectively.

(2)E(Î) = I

(3)p̂ =
1

qn

n∑

i=1

X̂(i)

Table 1  Symbols and notations

Notation Description

PRR Data packet reception ratio
ETC Expected transmission count
N The overall amount of data transmissions from arbitrary node u to neighbor node v
p Exact link PRR
p̂ Estimation value of p
Pr {Y} The probability of random event Y
n The number of elements in sample set
nmax The number of elements in the maximum sample set
X(i) A random variable that indicates whether the i-th sensed data of the node is 

accepted by the neighbor node
X̂(i) A random variable that indicates whether the i-th data in sampling set is accepted 

by the neighbor node
q sampling probability
r The lower bound of link PRR
(ε,δ) Accuracy requirement
B(q,N) Bernoulli distribution
Φ

�∕2 The �∕2 fractile of the standard normal distribution
ecs The energy consumption for sending a data packet by a sensor node
ecr The energy consumption for receiving a data packet by a sensor node
nbor(ui) The set of u′

i
s neighboring nodes

G = (V ,E) Wireless Sensor Network G, V is the set of nodes, and E is the set of links
edik The edge or link from node ui to uk
wgh(edik) The corresponding weight of edik
m The number of sensor nodes in WSNs
nbormax The maximum value of the number of neighbor nodes
Relative error of PRR |(p̂ − p)∕p|



2759A Novel Routing Algorithm with Bernoulli Sampling‑based Link…

1 3

and

Proof X̂(i) follows the (0–1) distribution. When X̂(i)=1 , it is represented that the data is 
sampled and successfully transmitted. Therefore, Pr{X̂(i) = 1} = pq.

X̂(i) 1 0

Pr pq 1 − pq

According to Bernoulli sampling, n can be considered as a random variable and obeys 
the Bernoulli distribution of the parameter (q,N) , that is, n ∼ B(q,N).

According to (3), this paper has

Due to n ∼ B(q,N) , the deriving process of this formula employs the conditional 
expectation.

Because the value of N is large, n = 0 is almost impossible to appear and has no practi-
cal significance. This paper assumes Pr(n = 0) = 0 , so

Similarly,

(4)E(p̂) = p

(5)Var(p̂) ≤
p(1 − pq)

q

E(p̂) =

N∑

n=1

E(p̂∕Y = n)Pr(Y = n)

=

N∑

n=1

1

qn
npq ⋅ Cn

N
qn(1 − q)N−n

=p

N∑

n=1

Cn
N
qn(1 − q)N−n = p

E(p̂) = p
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5  End of Proof

Theorem 1 shows that p̂ is an unbiased estimator of exact p.

5.1  Bernoulli Sampling Probability

The estimation method of link quality has been given according to (3). However, the 
estimation accuracy is also related to the sampling probability in addition to obtaining 
sufficiently small value of (ε, δ).

This section discusses how to calculate a sampling probability to insure that the esti-
mator is the (ε, δ)-approximate value and meets the requirements of high accuracy.

In general, because of the large size of WSNs, a sample usually includes more than 
30 sensory data. According to (3), p̂ follows the normal distribution based on central 
limit theorem [21]. Theorem 2 gives the sampling probability.

Theorem 2 If the sampling probability satisfies the following inequality:

p̂ is an (ε, δ)-approximate value of p , where Φ
�∕2 is the �∕2 fractile of the standard 

normal distribution, and r is the lower bound of PRR. If the link PRR is less than r , it is 
considered that the link is disconnected.

Proof Because of r ≤ p , the authors have.

Var(p̂) =

N∑

n=1

Var(p̂∕Y = n)Pr(Y = n)

=

N∑

n=1

Var(
1

qn

n∑

i=1

X̂(i))Pr(Y = n)

=

N∑

n=1

p(1 − pq)

qn
Pr(Y = n)

=
p(1 − pq)

q

N∑

n=1

1

n
Cn
N
qn(1 − q)N−n

≤
p(1 − pq)

q

N∑

n=1

Cn
N
qn(1 − q)N−n

=
p(1 − pq)

q

q ≥
1

r
⋅

Φ2

�∕2

�2
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According to (5), the authors have

Because p̂ follows the normal distribution and E(p̂) = p , according to theorems 1, the 
authors have

According to Definition 1, p̂ is an estimated value of p.

6  End of Proof

According to the theorem  2, the optimal sampling probability for calculating the (ε, 
δ)-approximhate results of p is greater than or equal to 1

r
⋅

Φ2

�∕2

�2
.

According to the link PRR, the authors can calculate the link ETC.

Definition 7 (expected transmission count(ETC)). The expected transmission count (ETC) 
of link is determined by.

According to the above theorems, in next section, the authors can propose an algorithm 
which obtains the PRRs and ETCs of all the links in WSNs. This algorithm lays the foun-
dation for putting forward the transmission algorithms in WSNs.

q ≥
1

r
⋅

Φ2

�∕2

�2
≥

1

p
⋅

Φ2

�∕2

�2

⇒ q ≥
1

p
⋅

Φ2

�∕2

�2

⇒ p2 ≥
p

q
⋅

Φ2

�∕2

�2
≥

p(1 − pq)

q
⋅

Φ2

�∕2

�2

p2 ≥
p(1 − pq)

q
⋅

Φ2

𝛿∕2

𝜀2
≥

Φ2

𝛿∕2

𝜀2
⋅ Var(p̂)

⇒ �p� ⋅ 𝜀 ≥ Φ
𝛿∕2 ⋅

√
Var(p̂)

Pr{�p̂ − p� ≥ Φ
𝛿∕2 ⋅

√
Var(p̂)} ≤ 𝛿

⇒ Pr{�p̂ − p� ≤ Φ
𝛿∕2 ⋅

√
Var(p̂)} ≥ 1 − 𝛿

⇒ Pr{�p̂ − p� ≤ �p� ⋅ 𝜀} ≥ 1 − 𝛿

(7)etc =
1

p̂
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7  Acquisition Algorithm of Link etc. and Search Algorithm 
of the Optimal Path

In Sect.  4, the authors point out the mathematical basis for the PRR and ETC estimation 
methods.

In this section, the authors firstly give the network model and parameters, and then propose 
an algorithm to calculate the PRRs and ETCs of all the links according to the mathematical 
theorems proposed in the previous section. Finally, according to the ETC of all the links, the 
authors propose a centralized algorithm and an improved distributed algorithm to find out the 
optimal path from all sensor nodes to sink.

Because the energy consumption of transmission is much greater than that of execution 
instructions, energy consumption in transmission becomes our top issues. The optimal path 
algorithms always take the sum of all the link ETCs in the path as the optimization goal and 
find the path with the minimum sum of link ETC as the optimal path for data transmission.

In the optimal path, the sum of all the link ETCs reaches the minimum, which means the 
least energy consumption. This is particularly important for the sensor nodes powered by 
battery.

7.1  Wireless Sensor Network Model and Parameters

Definition 8  (WSN Graph). A Wireless Sensor Network can be considered as a directed 
graph G = (V ,E) , in which V  is the set of sensor nodes, and E is the set of transmission 
links. Each link has a unique weight value which represents the ETC of this link.

In this paper, the authors assume that all the nodes are in a two-dimensional plane and 
have the completely different transmission power. If the node A is within the transmission 
radius of node B, there exists a link from B to A. This paper also assumes that every node 
has a unique ID and knows the IDs of all the one-hop neighbors.

Let m be the number of sensor nodes. For the arbitrary node ui ∈ V  , the set of u′
i
s neigh-

bors is represented by nbor(ui).

Suppose that the edge or link from node ui to uk is denoted by edik ∈ E . The correspond-
ing weight of edik is wgh(edik) , which also represents the link ETC from node ui to uk . Let 
ecs and ecr be the energy consumption for sending and receiving a data packet, respectively.

7.2  Acquisition Algorithm of Link PRR and ETC

According to the theorems 1 and 2, the authors can propose an algorithm which obtains the 
PRRs and ETCs of all the links in WSNs. In this paper, the authors use the sampling data to 
estimate the link PRR.

nbormax = max
1≤i≤m

||nbor(ui)||



2763A Novel Routing Algorithm with Bernoulli Sampling‑based Link…

1 3

In the algorithm1, each node broadcasts the packets to its neighbors in the initial 
stage. Each packet is identified by the packet sequence number and the node ID.

For example, in Fig. 1, node u1 has 4 neighbors. Suppose the set of random variables 
of u2 is X̂ = {1, 0, 1, 0, 0} , which indicates that u2 receives the first and third packets, and 
misses the rest of the packets.

Suppose that the sampling probability is q. According to (3), the link PRR from u1 to 
u2 can be calculated. In the same way, other link PRR can also be obtained. According 
to (7), the link ETC can be calculated.

Fig. 1  Example of calculating 
the link PRR
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In the first phase of algorithm1, since sink needs to calculate sampling probability and 
broadcast it to other nodes in the network, the computation complexity of sink is O(1) and 
the maximum communication complexity of each node is O(ecs × nbormax + m × ecr).

In the second phase, since each node performs Bernoulli sampling, the computa-
tion complexity of each node is O(1) . Because the number of elements in the sample 
data set is different, the authors can assume that the number of elements in the maxi-
mum sample set is nmax . The maximum communication complexities of each node is 
O(nbormax × nmax × ecs + m × nmax × ecr).

In the third phase, since each node only needs to calculate p̂ , the computation complex-
ity of each node is O(1) . Similarly, in the fourth phase, the computation complexity of each 
node is O(1).

In summary, the total computation complexities of each node is O(1) , and the total com-
munication complexities of each node is O(nbormax × nmax × ecs + m × nmax × ecr).

So far, the authors have solved the problem definition 1 and give all link ETCs. Next, 
the authors propose the routing optimization algorithms based on ETCs.

7.3  Centralized Optimal Path Search Algorithm

In algorithm 1, the authors use sampling data to obtain the PRRs and ETCs of all the links, 
which represent the quality of all the links.

According to the link ETCs, the authors propose the optimal path algorithms to ensure 
that the sum of all the link ETCs in the optimal path from the sensor node to sink is 
minimum.

In this section, the authors give the problem definition of the optimal path, and present a 
centralized optimal path algorithm.

Firstly, the authors take the WSN Graph displayed in Fig. 2a as an example. Suppose 
that the set of nodes is V =

{
u1, u2, u3, u4, u5

}
 and u5 is sink. u1, u2, u3, u4 are sensor nodes. 

The number associated with each edge indicates the weight or ETC calculated by algo-
rithm1. According to Fig. 2a, the authors seek the optimal path from u1 to sink. Figure 2b 
shows each possible path from nodes u1 to sink and corresponding sum of weights in the 
path.

Obviously, u1 → u2 → u3 → u5(sin k) is an optimal path, because the sum of the weights 
of all links in this path is minimum.

Because the energy consumption of transmission is far greater than that of execution 
instructions [13, 14], the energy consumption of data forwarding can be ignored. There-
fore, although the path u1 → u2 → u3 → u5 forwards data many times, the sum of the 
weights in this path is the minimum, which also means the minimum energy consumption.

From the above example, the authors introduce the concept of “optimal path”.

Definition 9  (optimal path). Among all the paths from a perceptive node to sink, the opti-
mal path must satisfy that the sum of all the link weights in this path reach the minimum.

Definition 10  (problem definition 2). The problem of the optimal path is defined as 
follows:

Input:

① WSN Graph G
② The weights (ETCs) of all the wireless link, which are calculated in algorithm 1.
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Result The optimal paths from all perceived nodes to sink.

According to Definition 10, the authors propose an optimal algorithm [23, 23, 24].
The algorithm maintains a set P of nodes, whose optimal path weights from the starting 

node have been determined. The authors repeatedly select the node uk ∈ V − P with the 
minimum weight and add uk to the set P.

In the following algorithm implementation, the authors denote by array E[k] the optimal 
path weights from the starting node to uk.

Fig. 2  a WSN Graph G b All 
possible paths from u

1
 to sink
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Lines 1 and 2 are initialization stages. Line 1 initializes the set P to the empty set. 
Line 2 initializes array E[k]. If there is a link from the starting node to uk , E[k] is the 
weight value of link. If there is not a link, E[k] = ∞.

Lines 3–7 are the while loop. Line 4 finds the smallest weight in the array E[m] 
and adds the corresponding node uj to the set P. Lines 5–7 is the adjustment phase of 
weights. For each node uk that is not be added to the set P, the algorithm calculates 
whether the sum of E[j] and wgh(edjk) which is the ETC of link from uj to uk is less than 
E[k]. If true, E[k] is modified. If false, it has not been modified.

Consider the architecture of Fig.  2a as an example, the execution process of algo-
rithm 2 is shown in Fig. 3.

The authors find the optimal path from u1 to sink. In Fig. 3, the dotted line indicates 
that there is such a link, but the corresponding node is not added to the set P. After the 
corresponding node is added to the set P, the dotted line becomes the solid line.

The sub-graph (a) of Fig.  3 is initialization. The circle of the thick line represents 
the node that has been added to the set P, in which there is only one starting node. The 
number indicates the weight of link from u1 to the corresponding node. In the sub-graph 
(a), because there does not exist a link from u1 to u3 , E[3] = ∞. The smallest weight is 
E[2] which is equal to 1.11, so the sub-graph (b) adds u2 to the set P. For the remaining 
nodes, the sub-graph (c) shows adjustment of weights. Because the sum of E[2] and 
wgh(ed23) is equal to 2.61 which is less than E[3] = ∞, the algorithm changes E[3] to 
2.61. According to the algorithm 2, the weights of remaining node cannot be modified. 
The sub-graph (d) finds the smallest weight E[4] = 1.9 and adds u4 to the P. The sub-
graph (e) is adjustment. The following sub-graphs are like this.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3  The execution of algorithm 2 according to the framework of Fig. 2a
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If the rest of nodes are considered as the starting nodes, the optimal path from all the 
nodes to sink can be obtained.

The time complexity of the algorithm is mainly concentrated in the while loop. The 
time complexity of algorithm 2 is o(m2) . If the optimal path from all the nodes to sink is 
obtained, the total time complexity is o(m3).

The implementation of the algorithm  2 is very simple. Even if the number of nodes 
is large, the algorithm can still be applied. However, the shortcomings are very obvious. 
Because of the centralized algorithm, it is easy to cause overloading of local nodes, while 
the rest of the nodes are very idle. In addition, the algorithm needs to know the topology of 
the entire network before running, which is almost impossible. The algorithm is often used 
as a theoretical basis.

7.4  Distributed Improvement Scheme for Optimal Path Algorithm

According to the shortcomings of the centralized algorithm, the authors improve the algo-
rithm 2 and propose a distributed implementation scheme, which can adapt to the distrib-
uted environment of sensor network. Besides, the distributed implementation also greatly 
reduces the requirement of time complexity.

Each node knows the neighbor nodes and the link weights or ETCs from itself to neigh-
bors. Algorithm 3 is a distributed improvement scheme running in arbitrary node ui.
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Stage 1 and 2 are initialization. In node ui , Ni is the set of nodes which have been 
considered whether they are intermediate nodes in the optimal path. In the initialization 
phase, Ni is an empty set. Nbi and Wi are ui ’s successor node in the optimal path and the 
sum of the link weights in the optimal path, respectively.

In Stage 3, the distributed algorithm firstly broadcasts the pivot node ux which is 
likely to be the relay node of the optimal path. Then, for all the nodes in WSN, the dis-
tributed algorithm continues to insert ux into the optimal path from ui to all the nodes. 
Finally, Wi saves the sum of the link weights in the optimal path from ui to all the nodes. 
Nbi preserves the successor node of ui in the optimal path.
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In this paper, the authors only consider the maximum energy cost. In Stage 1–2, the 
computation complexity is O(m) . In Stage 3, the computation complexity is O(m2) and the 
communication complexity is O(ecs) . Because ecs ≫ ecr , the authors neglect ecr.

So far, the authors solve the problem definition 2 and obtain the optimal paths from all 
the nodes to sink.

8  Experimental Evaluation

8.1  Testbed Experimentation

Data packet reception ratio(PRR) is of great significance across network environments. 
Because the wireless link is completely open, PRR is affected by environmental conditions 
and external interference. In order to evaluate the performance of our algorithms in WSNs, 
the authors use a testbed to perform the several algorithms mentioned in this paper. The 
testbed environment is an office building, in which a total of 50 TelosB nodes are randomly 
deployed on the walls of corridors and staircases, as shown in Fig. 4.

In the testbed environment, the transmission power is set at − 20 dBm in order that the 
perceptive nodes might form the multi-hop wireless networks. The default channel is 20. 
For broadcast, two adjacent nodes are considered as neighbors if the link PRR between 
them is greater than 0.2.

After deployment, all the nodes in WSNs are synchronized and begin to find out the 
neighbor nodes by sending out packets according to sampling probability, based on which 
the authors estimate the link PRR between two adjacent nodes.

Because the energy consumption of transmission is much larger than that of instruc-
tion execution and data sampling [13, 14], the energy consumption of data sampling is 
almost negligible. Therefore, the authors concentrate on the energy consumption of net-
work communication.

In the following experiments, firstly, each node sends out a small amount of packets 
based on sampling probability q in order to obtain the link PRR and ETC which is the 
input parameter of the optimal path algorithm. Then, they send out 30 data packets with 
a time interval of 1 s to carry out performance comparison with several algorithms. For 
the convenience of analysis, every data packet contains hop count, timestamp and previous 
hop’s node ID. Once the packet is accepted, the relay node may record the number of trans-
mission for each packet.

8.1.1  Performance Analysis of PRR Acquisition Algorithm

The purpose of this experiment is to investigate the relationship between the maximal 
relative error and the accuracy requirements. When ε and δ were increased from 0.01 to 
0.1, respectively, the relative error of link PRR is calculated. The experimental results are 
shown in Fig. 5.

The figure shows that the maximal relative error of calculating PRR is less than 0.1. 
When ε and δ are less than 0.1, all the approximations are close to the actual results. Fig-
ure 5 also shows that our acquisition algorithm of link PRR can meet the requirements of 
high precision.

Then, in the next experiment, the authors investigate the sampling probability and the 
energy consumption. When the sampling probability is increased from 0.7 to 0.8, the maximal 
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relative error is calculated. As shown in Fig. 6, when the sampling probability is above 0.7, 
acquisition algorithm of link PRR only needs a small amount of sample data to obtain high 
precision results.

For instance, when the sampling probability is 0.75, the relative errors of results are less 
than 0.03. Figure 6 indicates that the accuracy of calculation increases as the sampling prob-
ability increases, but this increase will result in more data sampling and greater energy con-
sumption. When the sampling probability is greater than 0.75, the accuracy is not improved 
obviously. So the sampling probability is about 0.75.

According to Fig. 6, when δ and δ decrease, the estimation accuracy increases gradually 
and the relative error decreases gradually. This result is consistent with definition 1.

Fig. 4  a on the walls of corridors b on the walls of the staircase



2772 C. Meng 

1 3

8.1.2  Comparison of Several Optimal Path Search Algorithms

The energy consumption of these algorithms proposed in this paper varies greatly under 
different network scale. In this experiment, the authors explore the impact of network scale 
on these algorithms.

The authors use the data from the testbed in office building. The results of the experi-
ment are shown in Fig. 7, which indicates the maximum energy consumption in all nodes. 
When each packet is transmitted in a network of 10 nodes and 30 nodes, respectively, the 
energy consumption mainly refers to the energy consumption of data transmission.

Figure 7 shows that when there are 10 nodes in the network, the difference of energy 
consumption is not significant. However, when the number of nodes is increased to 30, 
the energy consumption of centralized algorithm is much larger than that of distributed 

Fig. 5  Accuracy requirements

Fig. 6  Sampling probability and relative error
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algorithm. Because the distributed algorithm can distribute computation load to each node, 
the energy consumption is greatly reduced. Figure 7 also indicates that the distributed algo-
rithm can be applied to networks with a large number of sensor nodes.

In the following experiment, the authors compare the distributed algorithm with several 
representative algorithms proposed in the literature. The excellent transmission algorithms 
always consume less energy. The fundamental reason is that there is less link ETC.

Hence, the authors use the total number of transmission from sensor node to sink as 
the metric for evaluating the energy consumption of algorithms. Because of space con-
straints, the authors only choose four representative transmission algorithms as compari-
son objects, which named as CODEB algorithm [5], CorLayer Cluster(CC) [1], Multipoint 
Relay (MPR) [6] and Dominating Pruning (PRUN) [7] for the rest of this paper.

Firstly, the authors examine the effect of the algorithm with different network sizes. Fig-
ure 8 shows the total number of transmission for a packet.

It can be seen that the distributed algorithm has obvious advantages compared with 
the other algorithms. No matter how many nodes exist in the network, the distributed 
algorithm has the smallest number of transmission, which indicates that the distributed 
algorithm can consume the least energy. Furthermore, this advantage will become more 

Fig. 7  a the maximum energy consumption in all nodes b the maximum energy consumption in all nodes
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and more obvious as the scale of the network grows. This is mainly because the method 
proposed in this paper can accurately estimate the link quality. On this basis, the routing 
algorithm has achieved the best optimization effect.

Then, the authors explore the influence of different channels. The authors use 50 
TelosB nodes to conduct experiments in channel 12 and channel 26, respectively. The 
experiment results are in Fig. 9. The transmission power is set at − 20 dBm. As shown 
in Fig. 9, when the authors choose channel 12 for data transmission, the expected trans-
mission count (ETC) is obviously higher than that of channel 26. The reason is that 
WiFi signal interferes with the ZigBee protocol communication.

In China, the most frequently used channels in Wifi are 1, 6, and 11, which overlaps 
seriously with the ZigBee channel 12, so that the more data packets could be lost. How-
ever, channel 26 can be free from WiFi interference, and the transmission quality has 
been greatly improved.

No matter which channel is used for the experiment, the method in this paper can 
obtain accurate link quality estimation. Therefore, the distributed routing algorithm has 
excellent performance.
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8.2  Simulation Experimentation

In order to evaluate the performance of the algorithms in larger-scale networks, the authors 
use the NS2 to simulate the sensor network with 10,000 nodes. All the nodes are randomly 
deployed into a 1,000 m × 1,000 m rectangular region. The transmission range of each node 
is 50 m. For the convenience of comparison, the authors assume that when the Bernoulli 
sampling algorithm is adopted, the sink node knows the distribution of all the sensor nodes 
in advance.

8.2.1  PRR Acquisition Algorithm in Larger Scale Networks

In this experiment, the authors investigate the influence of network size on the sampling 
probability. The parameter (ε, δ) is: (0.02, 0.04) and (0.14, 0.08), respectively. When the 
network size is changed from 4000 to 10,000, the authors examine the sampling probabil-
ity required by the acquisition algorithm. The results of the experiment are in Fig. 10. It 
can be seen from the figure that the sampling probability of the acquisition algorithm is 
obviously reduced when the network size becomes larger. The reduction of sampling prob-
ability means that the packets that are required to estimate the PRR are also reduced, and 
the burden of the network is reduced. The experimental results show that the larger the 
network scale, the better the performance of the acquisition algorithm.

In the next experiment, the authors examine the impact of the network size and the sam-
pling probability on the accuracy of the acquisition algorithm.

When the network size increases from 1000 to 4000, and the sampling probability 
changes from 0.7 to 0.9, the authors calculate the relative error of the acquisition algorithm. 
The results of the experiment are shown in Fig. 11. When the size of the network is larger 
and the sampling probability is gradually improved, the relative error of the approximate 
results will be significantly reduced. The experimental results also show that the larger the 
network scale is, the better the performance of the acquisition algorithm is.

8.2.2  Comparison of Distributed Optimal Algorithm and Several Representative 
Algorithms

Due to the shortcomings of the centralized algorithm, it is not suitable for large-scale net-
works. Therefore, in the following experiments, the authors use the distributed optimal 

Fig. 10  Relationship between 
sampling probability and network 
size
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algorithm to compare with several representative algorithms in large-scale network simula-
tion. The authors also use the total number of transmission from sensor node to sink as the 
metric for evaluating the energy consumption of algorithms.

Firstly, the authors consider the total number of transmission with different link quali-
ties. In the testbed experiment, the link quality cannot be set arbitrarily, but it can be 
changed arbitrarily in the simulation. In this experimental scene, the authors choose 200 
sensor nodes. The experimental results are shown in Fig. 12. The expected transmission 
count of distributed algorithm varies from 50.8 to 31 when the average PRR varies from 
0.3 to 0.9. When the link quality is poor, the distributed algorithm reduces transmissions by 
at least 40% compared with other algorithms under the same condition. With the improve-
ment of link quality, our design can save at least 30% energy consumption when the link 
PRR reaches 0.9.

Then, the authors explore the impact of network density on our algorithms. In this 
experiment, the authors use 400 sensor nodes. The average link quality is about 0.8. The 

Fig. 11  Accuracy affected by the scale of the network and the sampling probability
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nodes are randomly deployed in a rectangular area. The smaller the perception area is, 
the larger the network density is. Figure 13 shows the number of transmission with dif-
ferent network densities. The x-axis represents the side length of the perceptual area. The 
increase of side length indicates the reduction of network density. When the perceptual area 
becomes large and network becomes sparse, the number of neighbors around sensor nodes 
decreases gradually. As a result, the number of transmission is correspondingly reduced.

From Fig. 13, the number of transmission does not change monotonically. The reason is 
that the nodes are randomly distributed in the area of perception. This non-uniform distri-
bution may cause a large number of nodes to gather in the local area, which increases the 
number of local transmission. Figure 13 shows that our algorithm saves at least 30% of the 
energy consumption.

In Figs.  12 and 13, because the link quality can be accurately estimated, the routing 
algorithm can always achieve excellent performance advantages regardless of the network 
environment.

9  Conclusion

In this paper, the authors propose a novel link quality estimation method and a PRR and 
ETC acquisition algorithm based on it, which can obtain the PRRs of all links in the net-
works. It is proved that the algorithm can meet the requirements of high precision. Accord-
ing to the link PRR and ETCs, the authors also propose a centralized path algorithm and 
a distributed improvement algorithm in order to find the optimal path from all the node to 
sink. Finally, the experiment results indicate that the performance advantage of the pro-
posed algorithms is obvious in terms of the algorithms accuracy and energy consumption.

Declarations 

Conflict of interest We declare that we do not have any commercial or associative interest that represents a 

80

100

120

140

160

180

200

60 80 100 120 140 160 180 200

N
u
m

b
e
r 

o
f 

tr
a
n
s
m

is
s
io

n

Side length

Comparison of the number of transmission

CODEB CC MPR

PRUN Distributed

Fig. 13  Impact of network densities



2778 C. Meng 

1 3

conflict of interest in connection with the work submitted.

References

 1. Wang, S., Kim, S. M., Liu, Y., Tan, G., & He, T. (2013). CorLayer: A transparent link correlation layer 
for energy efficient broadcast. In Proccedings of ACM MobiCom.

 2. Srinivasan, K., Jain, M., Choi, J. I., Azim, T., Kim, E. S., Levis, P., & Krishnamachari, B. (2010). The 
К-factor: Inferring protocol performance using inter-link reception correlation. In Proccedings Mobi-
Com (pp. 317–328).

 3. Zhu, T., Zhong, Z., He, T., & Zhang, Z. L. (2010). Exploring link correlation for efficient flooding in 
wireless sensor networks. In Proceedings NSDI.

 4. Thangaramya, K., Kulothungan, K., Logambigai, R., et  al. (2019). Energy aware cluster and neuro-
fuzzy based routing algorithm for wireless sensor networks in IoT. Computer Networks, 151(14), 
211–223.

 5. Yue, G., Yang, K., Zhao, S., & Poor, H. V. (2018). Design of network coding for wireless broad-
cast and multicast with optimal decoders. IEEE Transactions on Wireless Communications, 17(10), 
6944–6957.

 6. Wu, J., & Lou, W. (2006). Extended multipoint relays to determine connected dominating sets 
inMANETs. IEEE Transactions on Computers, 55(3), 334–347.

 7. Liu, C. (2016). Performance-guaranteed strongly connected dominating sets in heterogeneous wireless 
sensor networks. In Proccedings IEEE INFOCOM (pp. 1–9).

 8. Zhao, Z., Dong, W., & Guan, G. (2015). Modeling link correlation in low-power wireless networks. In 
Proccedings of IEEE INFOCOM.

 9. Zhu, T., Zhong, Z., & Zhang, Z.-L. (2013). Achieving efficient flooding by utilizing link correlation in 
wireless sensor networks. IEEE/ACM Translation on Networks, 21(1), 121–134.

 10. Alam, S. I., Sultana, S., Hu, Y. C., & Fahmy, S. (2013). SYREN: Synergistic link correlation-aware 
and network coding-based dissemination in wireless sensor networks. In Proccedings of MASCOTS.

 11. Zhao, Z., Dong, W., Bu, J., Gu, T., & Chen, C. (2014). Exploiting link correlation for core-based dis-
semination in wireless sensor networks. In Proccedings of IEEE SECON.

 12. Wang, S., Basalamah, A., Kim, S., Guo, S., Tode, Y., & He, T. (2014). Link correlation aware oppor-
tunistic routing in wireless networks. IEEE Transactions on Wireless Communications, 14(99), 1–1.

 13. Cheng, S. Y., & Li, J. Z. (2009). Sample based (ε, δ)-approximate aggregation in sensor networks. In 
Proccedings IEEE 29th int’l conference distributed computing systems (ICDCS) (pp. 273–280).

 14. Li, J., & Cheng, S. (2012). (ε, δ)-approximate aggregation algorithmsin dynamic sensor networks. 
IEEE Transactions Parallel and Distributed Systems, 23(3), 385–396.

 15. Wu, J., Lou, W., & Dai, F. (2006). Extended multipoint relays to determineconnected dominating sets 
in MANETs. IEEE Transactions on Computers, 55(3), 334–347.

 16. Guo, S., Kim, S. M., Zhu, T., Gu, Y., & He, T. (2011). Correlated flooding in low-duty-cycle wireless 
sensor networks. In Proccedings ICNP (pp. 383-392).

 17. Zhong, Z., Zhu, T., Wang, D., & He, T. (2009). Tracking with unreliable node sequence. In Procced-
ings IEEE INFOCOM pp. (1215–1233).

 18. Ben-El-Kezadri, R., Pau, G., & Claveirole, T. (2011). TurboSync: Clock synchronization for shared 
media networks via principal component analysis with missing data. In INFOCOM (pp. 1170–1178).

 19. Tile, Y. (2006). Sampling algorithms. New York: Springer.
 20. Lind, D. A., Marchal, W. G., & Wathen, S. A. (2011). Basic statistics for business and economics. 

Irwin: McGraw-Hill.
 21. Bernstein, S., & Bernstein, R. (2004). Elements of statistics II: inferential statistics. New York: 

McGraw-Hill.
 22. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2001). Section 24.3: Dijkstra’s algorithm. 

Introduction to algorithms. MIT Press (pp: 595–601).
 23. Knuth, D. E. (1977). A generalization of Dijkstra’s algorithm. Information Processing Letters, 6(1), 

1–5.
 24. Thorup, M. (1999). Undirected single-source shortest paths with positive integer weights in linear 

time. Journal of the ACM, 46(3), 362–394.
 25. Xiaoyong Yan, J., Cao, L., Sun, J., Zhou, S. W., & Song, A. (2020). Accurate analytical-based multi-

hop localization with low energy consumption for irregular networks. IEEE Transactions on Vehicular 
Technology, 69(2), 2021–2033.



2779A Novel Routing Algorithm with Bernoulli Sampling‑based Link…

1 3

 26. Xiaoyong Yan, L., Sun, J. Z., & Song, A. (2018). DV-hop localisation algorithm based on optimal 
weighted least square in irregular areas. Electronics Letters, 54(21), 1243–1245.

 27. Xiaoyong Yan, L., Sun, Z., Sun, J. Z., & Song, A. (2019). Improved hop-based localisation algorithm 
for irregular networks. IET Communications, 13(5), 520–527.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Chao Meng received the Ph.D. degree in computer science from Nan-
jing University of Aeronautics and Astronautics, Nanjing, China, in 
2014. His research interests include wireless network protocol.


	A Novel Routing Algorithm with Bernoulli Sampling-based Link Quality Estimation in Wireless Sensor Networks
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definitions and Assumptions
	4 Mathematic Foundations
	4.1 Computational Model of PRR

	5 End of Proof
	5.1 Bernoulli Sampling Probability

	6 End of Proof
	7 Acquisition Algorithm of Link etc. and Search Algorithm of the Optimal Path
	7.1 Wireless Sensor Network Model and Parameters
	7.2 Acquisition Algorithm of Link PRR and ETC
	7.3 Centralized Optimal Path Search Algorithm
	7.4 Distributed Improvement Scheme for Optimal Path Algorithm

	8 Experimental Evaluation
	8.1 Testbed Experimentation
	8.1.1 Performance Analysis of PRR Acquisition Algorithm
	8.1.2 Comparison of Several Optimal Path Search Algorithms

	8.2 Simulation Experimentation
	8.2.1 PRR Acquisition Algorithm in Larger Scale Networks
	8.2.2 Comparison of Distributed Optimal Algorithm and Several Representative Algorithms


	9 Conclusion
	References




