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Abstract
The present work explores the scope of cognitive radio networks (CRNs) to support the 
spectrum demand on future diverse application specific wireless services supported by 
long-range multi-hop relay-based transmission. The essential requirement is dynamic route 
establishment where the traditional non-adaptive routing algorithms are not sufficient to 
support it in dynamic wireless networks. To address this issue, reinforcement learning (RL) 
based self-adaptable Q-routing in the CRN with different network topologies is explored 
with an objective to obtain the best performance in the secondary throughput. The tradi-
tional Q-routing policy offers the worst-case time-complexity of O(ed) to find the optimal 
route. The excessive time complexity for the route establishment reduces the actual sec-
ondary data transmission time, this also increases the power consumption during transmis-
sion. To reduce the time complexity of Q-routing, the proposed work invokes a strict upper 
bound on the network topology, which reduces the time complexity to O(N2) and increases 
the secondary network throughput. The further study also reports that the complexity can 
be reduced to O(N) if the distributed relays follow a tree topology in the network configu-
ration. A large set of simulation results show that the tree structure-based Q-routing in CR 
enhances the network throughput by ∼ 6.83% , ∼ 7.21% over the other network topologies.
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1  Introduction

The promise and the potential of the Internet of Things (IoT) demands billions of intel-
ligent devices to be connected worldwide to the internet [1]. Each IoT object accumulates 
the intended information, processes and shares the same over its network to offer the qual-
ity of life-enhancing services [2]. According to the forecast, 20 billion IoT-enabled devices 
to be interconnected that will produce a market value of US$14.4 trillion across all kinds 
of industries [3]. Consequently, a huge amount of information to be generated and, more 
importantly, they need to be processed and transmitted over a wireless medium seamlessly 
and efficiently [4]. Hence, shortly spectrum regulatory bodies will face a massive demand 
of allocation in spectrum to support the intelligent IoT infrastructure [5]. Here, it is worth 
mentioning that the conventional static spectrum allocation policy already initiates the 
problem of spectrum scarcity to support the extensive growth in the wireless applications 
[6].

Cognitive radio (CR) is a promising technology to mitigate the spectrum scarcity prob-
lem by exploiting the opportunistic access of the licensed spectrum [7–9]. In the CRN 
(CRN), there are two types of users, namely the primary users (PUs) (i.e., licensed users of 
the spectrum) and the secondary users (SUs) (i.e., unlicensed users or cognitive users) [10, 
11]. In the underlay CRN mode, both PUs and SUs simultaneously transmit their respec-
tive data over the same spectrum in a power controlled manner so that SUs must maintain a 
limit of interference power level to guarantee the high quality-of-service (QoS) of PU net-
work [12]. The underlay mode of communication is recently explored and investigated in 
the CR enabled IoT framework to improve the network throughput [13, 14]. The underlay 
paradigm allows IoT devices to be operated as a secondary transmitter [13]. The massive 
deployment of IoT devices also needs an expansion its network coverage [14]. However, 
the long-range direct transmission from the secondary IoT transmitter ( SUT ) to the sec-
ondary receiver ( SUD ) requires a high transmission power which increases the interference 
power level to the PU [15]. It is worth mentioning that geographically distributed low-pow-
ered battery sources drive IoT sensors [16, 17]. Sometimes the presence of multiple coop-
erative SUs, over a particular area, forms a multi-hop relay assisted CRN [18–21]. Relay-
based network minimizes the transmission power consumption through the optimal relay 
selection (i.e., routing), which significantly reduces the interference power level, extends 
the coverage area, and enhances the network lifetime [16, 18, 19, 22–30]. In the energy-
constrained CRN, several reports explore the different aspects of relay power allocation 
and their optimal routing strategies to enhance the performance [18, 31–34].

1.1 � Routing in Cognitive Radio Networks

The work reported in [18] proposed an optimal power allocation scheme followed by an 
optimal relay selection strategy that minimized the actual transmission power consump-
tion and enhanced the secondary network lifetime. The work [18] applied the conventional 
Bellman-Ford (BFD) and Dijkstra’s routing algorithms to obtain the best route for second-
ary data transmission. It is seen that routing becomes more challenging in the dynamic 
channel states due to PU’s uncertain activities, variations in channel gain and availability, 
and mobility in the network [22]. The effectiveness of the traditional routing algorithms 
[18, 35] in the above-stated scenario is found to be inefficient, as the prior route set up 
policy is non-adaptable with the channel dynamicity [36]. Several self-adaptable routing 
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strategies are explored in the CRN to achieve the best performance during dynamic chan-
nel states [31, 36–41].

The specific searching policies and self-adaptability associated with the dynamic rout-
ing algorithm increase the computational time complexity. The algorithm proposed in [40] 
requires the worst-case time complexity of O(N4) . In contrast, the genetic algorithm-based 
adaptive routing strategy [39] increases the runtime complexity to O(N6) in multi-hop 
CRN, where N denotes the number of relay nodes. It is reported that the BFD algorithm 
has the worst-case time complexity of O(N3) [35], but the BFD algorithm suffers from its 
static route set up policy. The authors in [41] developed two different routing strategies 
to minimize the average transmission delay in the CR framework. However, the reported 
work did not investigate the time complexity of the proposed routing algorithms, which is 
an essential issue in the CRN [41]. The authors in [42] modified the low-energy adaptive 
clustering hierarchy (LEACH) protocol to ECO-LEACH for the routing in wireless sensor 
networks. The clustering process associated with LEACH is time-consuming and increases 
the optimal path setup time. The LEACH routing technique is also investigated in the 
CRNs form the aspects of energy conservation and security [43]. Reinforcement learning 
(RL) based Q-routing in CRN is explored recently due to its less time complexity, presence 
of tuneable control parameters, ease of implementation, fast convergence procedure, and 
self-learning capability in the dynamic CRN environment [36, 37]. Saleem et al. applied 
the typical Q-routing due to its self-adaptive nature to maximize the CRN throughput [36]. 
The Q-routing algorithm requires the run time complexity of O(ed) [44] to find the shortest 
paths in the deterministic network topology, the symbols ‘e’, and ‘d’, denote the number of 
links, and the maximum depth of the optimal path.

1.2 � Cross‑Layer Routing Algorithm

Recently, the use of a cross-layer design strategy to increase CRNs’ performance receives a 
lot of attention [45–49]. Several issues such as channel diversity, dynamic route discovery 
with spectrum selection, user mobility, and so on, are considered during routing protocol 
using a cross-layer architecture in CRNs. The idle channel for each relay is identified in the 
route establishment method via cross-layer design among the physical layer, MAC layer, 
and network layer, taking into account of opportunistic spectrum access strategy [45]. 
The multi-radio link quality source routing (MR-LQSR) protocol works with the layers as 
mentioned earlier to determine the best channel assignment and route selection strategy in 
cross-layer design [48]. In cross-layer routing design, every layer shares different informa-
tion among others, e.g., the collaboration of the physical and MAC layers can provide cru-
cial information regarding spectrum sensing to the routing algorithm, which helps to make 
routing decisions. It is an excellent paradigm for balancing guidance and resource perfor-
mance across layers which improve the data rate with high spectrum efficiency and reduces 
the data conflict error [34]. The mobility among the SUs or PUs influences the routing 
protocol to identify the idle channel, with the lack of information SU faces problem while 
transmitting or relaying the data. As a result, SU must be capable of accommodating the 
dynamic change in spectrum usage by PU. Therefore, the dynamic routing strategy offers 
an important role for the cross-layer design with a multi-channel and multi-path concept. 
Each relay can select the best channel for relaying the data based on the available local 
information. For designing the cross-layer routing protocol, the Q-learning algorithm is 
found to be suitable and explored in [33, 50]. In the present work, the Q-routing algorithm 
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is exploited intensively on different network topologies to find the best network layout, 
increasing CRNs throughput and energy efficiency.

1.3 � Scope and Contributions

The literature review indicates a good deal of works on routing in CRN, however, none of 
those works considers the issue of run time complexity in the process of secondary data 
transmissions. All the routing algorithms consume some time ( �t ) during the optimal path 
set up. This �t is dependent on the respective routing algorithm and the network topol-
ogy. Consideration of the �t from the available data transmission time (T) influences the 
required relay power and effects in actual network throughput. The present work considers 
the RL-based dynamic Q-routing due to its low time complexity over the other dynamic 
algorithms for the secondary data transmission.

The proposed work implies some unique properties on the network topology to reduce 
the worst-case time complexity of Q-routing from O(ed) to O(N2) . The work further inves-
tigates and reduces the routing complexity to O(N) if the network topology follows a tree-
like structure [31]. The present work maximizes the secondary network throughput in the 
underlay CRN mode under the constraints of a certain level of PU interference and a power 
budget for the secondary transmission. A closed-form expression is derived for the exact 
power allocation to the relay to maximize the network throughput. The optimal path setup 
time is considered and deducted from the actual data transmission time to get more accu-
rate power allocation to the relays. The multi-hop multi-path network is reformed to a tree-
like topology. Several constraints are imposed on the network to minimize the run time 
complexity of the Q-routing algorithm to obtain better CRN performance.

The brief contributions of the work are as follows:

•	 A simple tree structure formation algorithm is proposed, capable of converting any 
grid-like multi-hop network to a tree topology.

•	 The proposed tree structure topology for the multi-hop CRN significantly reduces the 
run time complexity of the Q-routing algorithm to O(N) which increases the network 
throughput and reduces the relay power consumption over the other network topologies.

The rest of the paper is organized as follows: the proposed system model is presented in 
Sect.  2, while the problem formulation and the proposed solution are stated in Sect.  3. 
Numerical results and analysis are demonstrated in Sect. 4 to highlight and compare the 
efficiency of the tree topology-based network. Finally, the concluding remarks are made in 
Sect. 5.

2 � System Model

The proposed system model is depicted in Fig. 1. It contains PU and SU networks oper-
ated on the same spectrum. The PU network consists of a PU transmitter (PUT ) and a PU 
receiver (PUR) , while the SU network includes a SU transmitter (SUT ) and a SU receiver 
(SUD) , and N number of decode-and-forward (DF) relays. The relays are denoted as 
R1,R2,…RN+1 , where R1 indicates the SUT and RN represents the SUD.

Figure  2 represents the proposed time frame structure of duration T operated in an 
underlay CRN mode. A suitable routing algorithm finds an optimal path in �t time in the 
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multi-hop CRN for relaying the data from SUT − SUD . This �t is deducted from the actual 
data transmission time. The remaining time slot T − �t is equally partitioned into the N 
number of TDMA slots and is accessed by the N number of different relays.

2.1 � Signal Modelling

The wireless channels between PUT − PUR link and the other links among the relays are 
modelled as Rayleigh flat fading channels. The signal transmitted from SUT is received by 
the relay Rm and it forwards the received signal to Rk . The power Pm is consumed by the Rm 
during this relaying process over the instantaneous channel �m . The average noise power 
over the link Rm − Rk is denoted by �m . The average SNR between Rm − Rk is represented 
by 𝛾̄m,k and is expressed as

The symbols d�m
 and ��m

 denote the distance and the path loss exponent of the Rm − Rk 
link, respectively. Due to the licensed user of the spectrum, PU does not impose any con-
straints on its own transmission while SUs maintain an interference power level ( Ith ) to 
PUR . The interference constraint on SU transmission is expressed as

(1)𝛾̄m,k =
(Pm,𝛷m

)d
−𝜃𝛷m

𝛷m

𝜂m

(2)
N∑

m=1

Pm,�m
d
−��m

�m
≤ Ith

Fig. 1   System model for CRN

Fig. 2   Proposed timeframe 
structure
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In the energy-constrained CRN, SU must minimize the power consumption during relaying 
to extend the CRN lifetime. Hence, a constraint on the total power consumption ( PT ) in the 
SU network is imposed.

The secondary network throughput between Rm − Rk is represented by Toutm and is 
expressed as

3 � Problem Formulation and Proposed Solution

This section aims to obtain the optimal values of Pm,�m
 for maximizing the overall sec-

ondary network throughput under the constraints of PU interference and secondary 
transmission power budget.

3.1 � Problem Formulation

The objective function F  is defined as

3.2 � Proposed Solution

Lagrange multiplier method and Karush–Kuhn–Tucker (KKT) conditions are applied 
to solve the proposed optimization problem. The Lagrangian function L(Pm,�m

) for the 
stated problem is represented as

where the symbol �1 and �2 are the Lagrange multiplier. Now, �L

�Pm,�m

 , �L
��1

 , �L
��2

 are calculated 
as

(3)
N∑

m=1

Pm,�m
≤ PT

(4)Toutm
=

�
T − �t

NT

�
log2

⎛⎜⎜⎝
1 +

(Pm,�m
)d

−��m

�m

�m

⎞⎟⎟⎠

(5)

F(Pm,�m
) = max

Pm,�m

N∑
m=1

Toutm

s.t i)

N∑
m=1

Pm,�m
d
−��m

�m
≤ Ith, ii)

N∑
m=1

Pm,�m
≤ PT

(6)L(Pm,�m
) =

N∑
m=1

Toutm
+ �1

(
PT −

N∑
m=1

Pm,�m

)
+ �2

(
Ith −

N∑
m=1

Pm,�m
d
−��m

�m

)
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There are two solutions (10) and (11) obtained for Pm,�m
 , where 

C =
∑N

m=1
d
−��m

�m
�m − �md

−��m

�m
 , and Y = �md

−��m

�m
−
∑N

m=1
d
−��m

�m
�m . The solution (10) can be 

used, provided that it satisfies the constraint in (2). On the other hand, solution (11) can be 
used, provided that it maintains the constraint (3).

3.3 � RL Based Q‑routing

Q-Routing is an RL-based self-adaptive algorithm. To obtain the optimal path from source to 
destination, each relay node in the network participates in the path establishment procedure. 
Relay node Rm searches the next suitable hop Rk for forwarding the data using the available 
local information at Rm . The Q-function Q(s, a) in the Q-routing algorithm is defined as

The symbols ‘s’ and ‘a’ denote the set of all relay nodes and the set of all existing links 
(see Fig. 3a) in the network, respectively. In the above equation, the state transition func-
tion Qm

t+1
(sm

t
, am

t
) signifies that at the tth instant the relay sm

t
= Rm forwards the data to the 

next relay ‘ Rk ’ by selecting the link am
t
 , where am

t
∈ a . The reward function is denoted by 

�(sm
t
, am

t
) . The reward function for the proposed work is defined in Eq. (4). The symbols ‘ � ’ 

(0 ≤ � ≤ 1) and ‘ � ’ (0 ≤ � ≤ 1) represent the learning rate and the discount factor in the 
reward function, respectively. Here, � = 0 indicates that the agent does not learn anything, 
while � = 1 signifies that the agent adapts only the most recent information. The optimal 
value of � = 1 is possible in fully deterministic environments, but in stochastic problems, 
the � value decreases to 0 for converging the solution. However, if � = 0, then the sys-
tem considers only the current reward and behaves like a greedy algorithm, leading to the 

(7)
�L

�Pm,�m

=
T − �t

NT

d
−��m

�m

�m + Pm,�m
d
−��m

�m

(8)�L

��1

= PT −

N∑
m=1

Pm,�m

(9)�L

��2

= Ith −

N∑
m=1

Pm,�m
d
−��m

�m

(10)Pm,�m
=

C −

√
Y
2 − 4

(
d
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�m

)3

�mPT

2N
(
d
−��m

�m

)2
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optimal local solution. For � = 1, the system is always looking for long-term high reward, 
and the future reward cannot be estimated accurately, which reduces the system’s overall 
performance.

Exploration and Exploitation of the network topology are the two main critical func-
tions in the Q-routing. In the exploration process, each relay node searches the alternative 
paths to obtain a better routing path over the current path. The information is gathered dur-
ing the exploration phase and is used in future decisions, known as exploitation. Thus, the 
current number of links in the network topology is directly proportional to the full explo-
ration’s minimal time requirement. The practical design of the network topology reduces 
the number of links. It decreases the number of exploration steps, resulting in a less time 
complexity solution for obtaining the optimal routing path.

3.4 � Q‑Routing Complexity for Strongly Connected Network

The proposed work explores the zero-initialized Q-routing strategy to support the dynamic-
ity of the CRN. The terminology ‘zero initialized’ refers to the reward values of all the 
existing links initialized to zero. For any network topology, the worst-case time complexity 
of Q-routing is O(ed) , where the symbols ‘d’, and ‘e’ represent the maximum depth and the 
total number of links in the network, respectively. The maximum depth (d) of the routing 
path from SUT to SUD is defined by the number of relays associated in the path and calcu-
lated as d = max

Rm,Rk∈s
d(SUT , SUD).

Figure 3a depicts a strongly connected network topology with a consideration that there 
is no direct link between SUT − SUD . The topology does not contain any duplicate links, 
i.e. if Rm ↔ Rk , then Rk ↮ Rm . Thus, the possible number of links in the network (Fig. 3a) 
is |N(N−1)

2
− 1|, and ≈ N(N−1)

2
 . If the network has no duplicate links then Q-routing termi-

nates after at most O(ed) steps. The maximum depth from the source to the destination 
nodes would be d = N − 1 . Hence, the worst case time complexity of Q-routing algorithm 
becomes O

(
N(N−1)

2
(N − 1)

)
,≡ O

(
N3−2N2+N

2

)
 , for very large N value the upper bound will 

be ≈ O(N3).

3.5 � Reduced Time Complexity to O(N2) of Q‑Routing

The strongly connected network is reformed to a grid-world network form, as shown in 
Fig. 3b. In the grid-world topology, a node can communicate with a certain maximum 

Fig. 3   a Strongly (fully) connected network b Reformed to grid network
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number of adjacent nodes. Thus a constant individual upper link bound is imposed on 
the network and denoted by the symbol ‘ B ’. From the Fig. 3b, the maximum B value is 
2. The linear boundary constraints on the network implies e ≤ BN . Hence, in the worst-
case O(ed) becomes O(BN(N − 1)) . Here, B is a constant term and the complexity is 
≡ O(BN2 − BN) . For the large number of N, it can be written as O(N2).

3.6 � Reduced Time Complexity to O(N1.5)

The rectangular grids are shown in Figs.  3b and 4a. The size of each grid is m × k . 
If the each grid has N number of relays then N = m × k . The number of maxi-
mum links in the grid is e = 4mk − 2m − 2k and the possible depth in the worst case 
is d = m + k − 2 . Hence, the required time complexity of O(ed) can be written as 
O{(4mk − 2m − 2k)(m + k − 2)} , ≡ O(4m2k − 2m2 − 12mk + 4mk2 + 4m + 4k) , which 
is ≡ O(m2k + mk2) . Now, if the grid is in square form then m = k , which implies 
O(m3 + m3), ≡ O(m3) . However, N = m × k is modified as N = m2 , then m =

√
N . 

Finally, the time complexity is obtained as O(
√
N3), ≡ O(N1.5).

3.7 � Complexity Reduction to O(N)

The worst-case complexity is further reduced. A constraint of linear total upper link 
bounds is imposed on the network topology. It implies that the total number of links 
linearly increases with the number of relays in the network. From Fig. 4a, it is observed 
that the constant individual upper bound is four (i.e., B = 4 ). The grid-world network 
of Fig.  4a is converted to a tree structure (see Fig.  4b) without reducing any existing 
links. In the tree-topology, the depths of all the relays in a particular level are the same. 
It means that d remains constant. Thus, in the constant upper bound and the liner total 
upper bound, the O(ed) is ≡ O(e) . Here, e = 4mk − 2m − 2k , ≡ O(4mk − 2m − 2k) , it is 
written as O(mk) , which implies the worst-case time complexity will be O(N).

Fig. 4   a Grid-world network b Converted to tree-topology



1434	 A. Paul, S. P. Maity 

1 3

4 � Numerical Analysis and Discussions

This section explains the simulation results for the performance analysis of Q-routing in 
different network topologies. Monte Carlo simulations of 10,000 times are performed to 
average the outcomes of each experiment to consider the wireless channels’ variability. 
Simulations are performed on 64-bit Matlab-2017, 2.13GHz Intel i5 processor with 8GB 
RAM through self-coding. Numerical values of the required system parameters in the simu-
lation environment are considered as follows: T = 100 ms, max d�m

= 10 m, min d�m
= 2.5 

m, min ��m
= 2 , max ��m

= 4 , PT = 1W , Ith = 1.25 W , �m = 0.10 W , � = 0.49 , � = 0.58 
and N = 36.

The execution time of Q-routing on the different network topologies are shown in 
Table 1. It is clearly observed that tree structure based network minimizes the path estab-
lishment time over all other network topologies for the same number of relays in the 
network.

Figure 5 illustrates the simulation results for the sum throughput vs. maximum power 
allocation in the secondary network. It is observed from the figure that tree topology-
based Q-routing outperforms all other network architectures. The throughput for the 
CRN is increased with the power level for all the network topologies. Here, ∼ 38.86% 
increase on throughput is observed for tree topology-based network, while the total 

Table 1   Q-routing execution time on different topologies

Number of 
relays

Fully connected Rectangular grid Square grid Tree topology

12 12.405 ms 10.515 ms 9.117 ms 7.371 ms
25 24.612 ms 21.339 ms 18.213 ms 16.297 ms
50 36.237 ms 29.811 ms 25.671 ms 24.332 ms

Fig. 5   Sum throughput of CRN vs maximum power budget
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power budget is increased from 0.2W to 0.35W. When the power is increased from 
0.85W-1W, the throughput is improved by only ∼ 6.27% . It is noted that the rate of 
throughput improvement is higher in the first case compared to the latter one. This hap-
pens due to the restriction of interference level at SU network. The tree topology-based 
Q-routing offers higher throughput at PT = 1W  by ∼ 6.83% , ∼ 7.21% , and ∼ 18.11% over 
the square grid, rectangular grid, and strongly connected network topologies, respec-
tively. This is justified as Q-routing in tree topology requires less time to obtain its opti-
mal path due to its less time complexity than all other cases. The less time needed in the 
path set up increases the data transmission period, which improves the throughput of the 
CRN.

Figure  6 demonstrates the performance comparison on the sum throughput vs. the 
interference power level. In this case, tree topology-based Q -routing outperforms all 
the other network topologies. It is observed from Fig. 6 that the tree network improves 
the throughput by ∼ 6.89% , and ∼ 52.89% at Ith = 0.25 W  over the square and the rectan-
gular grid based topologies, respectively. The self-adaptive Q-routing in all the different 
network topologies performs better than the typical BFD routing algorithm. The Q-rout-
ing in the strongly connected network, which is similar to BFD routing in terms of the 
worst-case time complexity of O(N3) , improves the throughput of the CRN by ∼ 37.21% 
at Ith = 0.75 W  compared to the BFD algorithm.

Figure 7 demonstrates the performance analysis on the network throughput with the 
variation in the discount factor ( � ) in Q-routing. The throughput is increased in all the 
cases when � value is increased from low to high. But suddenly, after a particular value 
of � , the throughput is decreased. This is due to � → 0 , the system considers only the 
current reward and behaves like a greedy, leading to the optimal local solution. And 
� → 1 , the system always is looking for a long-term high reward, and the future reward 
can’t be estimated accurately, which reduces the system’s overall performance. It is 
noted from the figure that for different network topologies, there exists a unique � value 
for which the throughput is maximized. The optimal value of the � is dependent on the 
network topology and its size. For the tree-based network, the optimal � value is 0.62, 
while for the square grid-based network, the optimal � value is 0.56.

Fig. 6   Sum throughput of CRN vs interference threshold
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Figure 8 illustrates the influence of the learning rate factor ( � ) in the required number 
of steps for convergence of Q-routing in the different network topologies. It is observed in 
Fig. 8 that initially, for the low value of � , the required number of steps are high for obtain-
ing the minimal path. The initial increment in � value reduces the number of steps up to a 
limit. However, after a particular value of � , the required number of steps again increase. 
The value of � → 0 indicates that the agent does not learn anything, while � → 1 signi-
fies that the agent adapts only the most recent information. The value � → 1 leads to the 
fact that network topology seems to be deterministic. It is observed that the tree structure-
based CRN converges faster than the other network topologies. The faster convergence rate 
reduces the path selection time, which enhances the network throughput. The tree topol-
ogy-based Q routing obtains its minimal route at � = 0.69 , and the route selection is faster 

Fig. 7   Sum throughput of CRN vs discount factor � in Q-routing

Fig. 8   Required steps for convergence vs learning factor � in Q-routing
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by 1.86, 2.33, and 3.1 times compared to the square grid, rectangular grid, and fully con-
nected network, respectively.

Figure 9 represents a 3D plot that shows the change in sum throughput (bps/Hz) of the 
SU network for the fixed value of � while � value varies. The plot is drawn only for the 
tree topology-based network. For the fixed value of � = 0.6 , initially the throughput is 
improved from 0.22 to 0.88 while the � value is increased from 0.12 to 0.57. The maximum 
throughput is achieved at � = 0.57 , and after that, for the same � value, the throughput is 
decreased. For each kind of network topology, there exists an optimal � and � values for 
which the system offers the maximum throughput.

Figure  10 compares the performance improvement in tree topology-based Q-routing 
over the other existing algorithms in the literature [18, 36, 42]. Figure 10 plots the sum 
throughput of the CRN vs. the number of relays in the CRN. It is observed that the proposed 
tree topology based Q-routing outperforms the SU throughput by ∼ 7.14%, ∼ 11.11%, and 
∼ 19.93% while compared to [36, 42], and [18] when the number of relay nodes is fixed 
to 35. The Q-routing technique proposed in [36] follows a random network architecture, 
which increases the run time complexity and plunges down the network throughput com-
pared to the tree topology-based Q-routing. On the other hand, the ECO-LEACH routing 
strategy initially adopts the clustering technique, and this reduces the secondary data trans-
mission time.

5 � Conclusions

The proposed work explores the Q-routing algorithm in the CRN. It is observed that the 
typical Q-routing enhances the network throughput by ∼ 37.21% over the popular BFD 
algorithm in a similar framework. The work investigates and explores the different network 

Fig. 9   Sum throughput (z-axis) vs � (x-axis) vs � (y-axis)
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topologies to reduce the run time complexities of the Q-routing. It is found that the worst-
case time complexity of Q routing can be decreased to O(N) from O(ed) if the network 
follows some particular constraints. Tree topology-based Q-routing provides enhanced 
throughput by ∼ 6.83% , ∼ 7.21% , and ∼ 18.11% over the square grid, rectangular grid, and 
strongly connected CRN topologies, respectively.
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