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Abstract
Worldwide, cervical cancer is the leading cause of death among women from cancer. The 
symptoms of this gynecological disease are difficult to recognize at early stage, especially 
in those countries that don’t have facility of screening programs. In diagnosis of cervical 
cancer, machine learning methods can be used to detect the malignous cancer cells at ini-
tial stage. The foremost apprehension in disease diagnosis involves data imbalance issue 
and non-uniform scaling in dataset. In this article, a prevalent oversampling approach Syn-
thetic Minority Oversampling Technique along with fivefold cross-validation is being used 
on unscaled and scaled data to handle these issues. A promising comparison is been made 
among the performance of most prevalent machine learning (ML) classifiers such as Naive 
Bayes, Logistic Regression, K-Nearest Neighbor, Support Vector Machine (SVM), Linear 
Discriminant analysis, Multi-Layer Perceptron, Decision Tree (DT) and Random Forest 
(RF) on unscaled data and scaled data obtained by Min–Max scaling, Standard scaling and 
Normalization. RF, SVM and DT are the top three ML algorithms obtained in cervical 
cancer diagnosis for which optimization possibilities are explored with feature selection 
methods as Univariate feature selection and Recursive feature elimination (RFE). Over-
all performance of Random Forest predictor with RFE (RF-RFE) is superior to all others 
being implemented.
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1  Introduction

Among the severe medical emergencies, cancer is the most lethal disease induced by 
tumor cells. Obsolete development of cells as tumors, is still being a major challenge 
ahead of technological world today. Cancer treatments of tumor cells involve chemo-
therapy and endoscopy also has high risks of destroying the healthy tissue cells. Cervi-
cal cancer is found as fourth most prominent category of death from cancer in between 
women. By World Health Organization (WHO), there were 604,127 new cases of cervi-
cal cancer found in 2020 with mortality of 341,831 patients, 6.5% of all cancer infected 
females. In 2020, more than 83% of deaths of cervical cancer infected patients occurred 
in the low and middle income nations [1]. Here alone in India, in 2020, 18.3% cases of 
cervix cancer observed in all women cancer patients that are 9.4% of all cancer infected 
patients. It has found third place in all cancer cases in India, total 123,907 new regis-
tered patients along with 77,348 deaths in 2020 [2]. Each type of cancer is categorized 
into malignant and benign cancer. Due to the lack of, early diagnosis, effective screen-
ing and treatment programs, causes it to be as one of the most malignant type of cancer. 
Cervical cancerous cells are developed in the cervix of female’s uterus and early stage 
symptoms are abnormal bleeding in vagina, increase in vagina discharge, menopause 
bleeding after going through menopause, pain during sex, pelvic pain, etc.

Cervical cancer is found in females infected with the Human Papilloma virus (HPV) 
that causes cervical tissue to be change abnormally. Sexual relations with different part-
ners, early age sexual relationship, long term usage of oral contraceptives; smoking, 
etc. lead to increase risk of cervical cancer [1, 3]. Most popularly, Pap test and HPV 
DNA test are recommended for screening of cervical cancer. Pap test (a.k.a. Pap smear 
test) is a cytology-based screening test in which a sample of cells is taken from cervix 
of a female and then tests for abnormality in cervix cells with cancer cells and also 
the cells that causes increase in chances of cervical cancer. HPV DNA test detects any 
type of HPV within the cells taken from the cervix that are responsible to lead cervical 
cancer. Pap smear and HPV tests both can be examine at similar time using the similar 
swab or by second swab. On suspicion of cervical cancer, patients have to go through 
the detailed diagnosis tests such as biopsy [4]. Presently, along with the conventional 
medical approaches, computer vision algorithms i.e. machine learning in cyber-physical 
system, interestingly playing a vital role in various medical applications such as diag-
nosis of diseases. Here in this paper, we applied some of the most popular machine 
learning (ML) approaches like NB, LR, KNN, SVM, LDA, MLP, DT and RF on cervi-
cal cancer data with some preprocessing methods. Analyzing with all the risk factors in 
disease diagnosis degrades the efficiency of classification model and also increases its 
computational complexity. So selection of relevant features also plays a vital role while 
analyzing the performance of a classification model. This article also realizes some of 
the popular feature selection methods for getting optimized performance in classifica-
tion of disease.



2337Performance Assessment of Machine Learning Classifiers Using…

1 3

2 � Background of ML Algorithms Used

2.1 � Naive Bayes (NB)

NB is another supervised classification model based on a conditional probabilistic 
approach utilizing the Bayes theorem to detect all the substances within the infor-
mation set. This classification method is often suited for high dimensionality data-
sets [5–7]. This approach classifies the problem based on joint posterior probability 
distribution:

Here, p(C∕X) , p(C) and p(X) gives the posterior probability, prior probability of 
class and probability of attributes respectively and X is the vector space of n attributes. 
Due to statistical independence among features, these classifiers are highly scalable 
and can utilize limited training data with high dimensional features. In [6], Weighted 
Principle Component Analysis (WPCA) is used along with NB classifier to achieve 
improved performance in pap smear cervix cell image classification for Herlev dataset. 
References [8–11] compare NB classifier prognosis performance for cervical data with 
other ML classification models.

2.2 � Logistic Regression (LR)

It is a statistical binary classification supervised learning method that fits linear regres-
sion algorithm to classify data in terms of discrete binary outputs based on logistic 
function. It intuits maximum-likelihood estimation by a search procedure to mini-
mize the probability error in predicted model and optimize best coefficients value for 
the data so that the threshold value for classification can be easily adjusted [12]. The 
essence of the algorithm involves the minimization of cost function:

Here, h�(x) denotes the hypothesis for logistic function, log h�
(
x(i)

)
 and 

log(1 − h�
(
x(i)

)
 gives the cost function when class y is ‘1’ and ‘0’ respectively for m 

training examples. Reference [13] proposed a LR classifier with fuzzy inference model 
utilizing combined grayscale-texture based features for Cervical Intraepithelial Neo-
plasia (CIN) image classification. Many researches [8, 10, 11, 14] utilized LR as one of 
the classifier to perform comparative analysis in cervical cancer classification. Refer-
ence [15] utilized logistic regression for probability estimation of knowledge, attitude, 
and perception (KAP) of Human Papillomavirus (HPV) infection and cervical cancer.
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2.3 � Linear Discriminant Analysis (LDA)

LDA is popularly known as dimensionality reduction approach however it proved an effective 
algorithm to classify objects in two or more groups or clusters based upon the features meas-
ured describing that objects. LDA is alternative of LR when there are more than two classes 
to be classified as LR has limited to binary classification problems. It comprises statistical 
characteristics of data determined for each of the class that is used to predict decision based 
on Bayes theorem [16]. Its objective lies in predicting the class, for an input x with the largest:

Here, �k = p(y = k) exactly, �k and 𝜀̂ denotes mean and the covariance matrix for class 
‘k’. Reference [17] implemented fuzzy-entropy based prime feature discrimination from seg-
mented cell nuclei for Herlev dataset. These segmented features are used with LDA as one of 
the classification model for abnormal cell detection.

2.4 � K‑Nearest Neighbor (KNN)

KNN is a non-parametric classification technique that uses feature similarity approach by 
searching the very similar data points among the available data to categorize them into a class. 
The KNN finds nearest K data points by determining the Euclidean distance (Other distance 
measures includes Manhattan, Minkowski and Hamming distance) to the given query point 
and identifies its class by determining the mainly repeated class label. The value of K is cho-
sen by parameter tuning, providing best suited prediction for the given data [18]. An input x is 
considered to belong from the class that evident largest probability among all:

Here, I(x) denotes the indicating function that is ‘1’ for argument x is true and 0 oth-
erwise, A is the set of K nearest points of input x. References [9–11, 17] utilized KNN 
classifier for comparative analysis with other classification models for cervical cancer 
classification.

2.5 � Multilayer Perceptron (MLP)

MLP is a neural network based proficient and robust method that is used for finding solu-
tion of nonlinear and complex classification problems. It comprises multiple neurons 
arranged in form of input layer, hidden layers and output layer. Here some the nodes i.e. 
neurons uses non-linear activation functions so that it can also find solution for the problem 
that are not linearly separable. Here the most complex task is to determine the hidden layer 
size [19]. The optimization objective of MLP model is based on minimization:

Here, F denotes transfer function, X is input to the model, W indicates weight matrix, d 
is desired response, Y denotes computed output vector, N is total count of hidden layers and 

𝛿k(x) = log𝜋k −
1

2
𝜇T
k
𝜀̂−1𝜇k + xT 𝜀̂−1𝜇k

p(y = j|X = x) =
1

k

∑

i∈A

I
(
y(i) = j

)

min ||F(X,W) − d||2

F(X,W) = Y =
(
y1, y2, y3,… , ynN+1

)



2339Performance Assessment of Machine Learning Classifiers Using…

1 3

nN+1 indicates total output layer neurons. As a consequence incorrect estimation of same 
may results in approximation error, generalization error and overfitting. In [14], MLP clas-
sifier is used for performance comparison with other classifiers for two-class classification 
on risk-factor cancer data using RFE and RF based ensemble method for feature selection.

2.6 � Decision Tree (DT)

DT is a supervised learning tree-like structure in which every single node in DT signifies 
an attribute value within an instance that is to detect for a class and each branch provides a 
value that assumed by a node [7, 20]. Selection of best split among training samples based 
on the measures in terms of class distribution:

Here, c is total number of targets and p(i|t) is the predicted sample belonging to class 
i at a specific node t. Conventional DT [8, 10, 21] algorithms as well as types of decision 
tress like ID3, C4.5, C5.0, CHAID, and CART [9], and J48 [10, 11] standalone and with 
ensemble approach performed efficiently in cervical cancer detection.

2.7 � Support Vector Machine (SVM)

Vapnik introduced the SVM approach to deal with classification as well as regression mod-
els. SVM is supervised discriminative linear approach to accomplish binary classification 
through an explicit hyper plane [7]. Optimization in SVM is based on the minimization of 
equation:

Here, C is the penalty factor for error, z�
(
�Tx(i)

)
 and z��

(
�Tx(i)

)
 denotes the cost func-

tion when class y is equals to ‘1’ and ‘0’ respectively and m indicates number of sam-
ples. In [22], SVM, support vector machine-recursive feature elimination (SVM-RFE) and 
support vector machine-principal component analysis (SVM-PCA) methods were used for 
cervical cancer detection with 90–94% accuracy for the risk-factor cervical cancer data. 
At early stage, SVM application was constrained to two-class classification, but afterward, 
kernel capacities for SVM presented that are valuable in multiclass classification [17, 23, 
24]. Reference [17] implemented SVM with linear kernel (SVM-linear) and radial basis 
function kernel (SVM-RBF) using fuzzy entropy based feature extraction mechanism for 
abnormal cells detection in pap-smear images. References [8–11, 14, 25] performed com-
parative analysis of SVM with other prediction models for cervical cancer prognosis.
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2.8 � Random Forest (RF)

Random forest by Breiman (2001) is based on ensemble method that is used for both clas-
sification and regression problems. Ensemble methods used to group weak learners to shape 
strong learner and use multiple learning approach to produce enhanced predictive result. It 
trains multiple numbers of DTs that returns with the class find in majority within the ensemble 
of overall DTs [26]. In RF, each DT predicts a class for the classification model and among 
all the predictions most voted class becomes our RF model prediction. Bagging approach in 
RF involves prediction for sample x′ by taking average of all predicted values obtained from 
individual DT’s:

Here, N is a parameter gives samples/tree. Generally RF algorithms perform slightly better 
than SVMs in many classification problems [27]. RF classifier [8, 10, 11, 14, 21, 25] performs 
efficiently for risk-factor cancer data as well as for pap smear cervix images in cervical cancer 
detection.

f̂ =
1

N

N∑

n=1

fn
(
x�
)

Table 1   Attributes description of Cervical Cancer dataset

S.no Attribute Type S.no Attribute Type

1 Age Integer 19 STDs: Pelvic inflammatory disease Boolean
2 Number of sexual partners Integer 20 STDs: Genital herpes Boolean
3 First sexual intercourse (age) Integer 21 STDs: Molluscum Contagiosum Boolean
4 Number of pregnancies Integer 22 STDs: AIDS Boolean
5 Smokes Boolean 23 STDs: HIV Boolean
6 Smokes (years) Float 24 STDs: Hepatitis B Boolean
7 Smokes (packs/year) Float 25 STDs: HPV Boolean
8 Hormonal contraceptives Boolean 26 STDs: Number of diagnosis Integer
9 Hormonal contraceptives (years) Float 27 STDs: Time since first diagnosis Integer
10 IUD Boolean 28 STDs: Time since last diagnosis Integer
11 IUD (years) Float 29 Dx: Cancer Boolean
12 STDs Boolean 30 Dx: CIN Boolean
13 STDs (number) Integer 31 Dx: HPV Boolean
14 STDs: Condylomatosis Boolean 32 Dx Boolean
15 STDs: Cervical Condylomatosis Boolean 33 Target variable 1: Hinselmann Boolean
16 STDs: Vaginal Condylomatosis Boolean 34 Target variable 2: Schiller Boolean
17 STDs: Vulvo-perineal Condyloma-

tosis
Boolean 35 Target variable 3: Cytology Boolean

18 STDs: Syphilis Boolean 36 Target variable 4: Biopsy Boolean
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3 � Methodology

3.1 � Data Description

The cancer patients’ data used here for diagnosis is available at UCI, collected at ’Hospital 
Universitario de Caracas’ in Caracas, Venezuela [28]. The dataset include 858 instances 
with 36 risk factors including 32 attributes and 4 target categories—Hinselmann, Schil-
ler, Cytology and Biopsy. The description of attributes in the given Cervical Cancer data 
is shown in Table 1. Hinselmann test uses colposcopy using acetic acid, while colposcopy 
using Lugol iodine includes Schiller test, Cytology and Biopsy. Malignant infected target 
described as ‘1’ and benign as ‘0’. In whole of the dataset, around 90–96% data belongs 
to benign class in each of four target variables. All the attributes values given are either 
boolean, integer or float type. To build an efficient learning model the data to be fed to it, 
should be proper and complete. As some of the samples within dataset have missing val-
ues, also each attribute have different scaling ranges thus it required to preprocess the data 
before feeding to a learning algorithm.

3.2 � Preprocessing of Data

In preprocessing, we eliminate the Instances and attributes with missing values. After elim-
ination, features 27 and 28 get removed along with samples having at least single missing 
value and only 668 samples with 30 features left. Variation in scaling range of features may 
cause a particular feature might take over rest of the features while analyzing the perfor-
mance in a dataset. If magnitude of attribute’s variance has much high order than the other 
ones, it may take over the objective function and build an estimator that may incapable of 
learning from rest of the attributes appropriately as being expected. In the given cervical 
dataset, attribute ‘age’ has high value of mean, variance and standard deviation as 27.265, 
76.168 and 8.727 respectively, while some of the attributes as ‘STDs: cervical condyloma-
tosis’ and ‘STDs: AIDS’ even have zero value of mean, variance and standard deviation. 
To restrain the weighing effect of the attributes with higher statistical mean and to obtain 
more numerically stable and improved optimization, all attributes should bring at the same 
scaling level by using different feature scaling approaches. Scaling methods are also quite 
helpful in speeding up the rate of computations within an algorithm. Here in this article, 
ML algorithms are analyzed on unscaled as well as with scaled data. For scaling, we use 
Min–Max Scaler, Standard Scaler and Normalization on available cancer data [29, 30]. 
Standard Scaler or Z-score Normalization scales the dataset in standard normalize distribu-
tion having unit variance with zero mean. If µand σ indicates mean and standard deviation 
respectively then standardization aims ~ N (µ, σ2) →  ~ N (0, 1) i.e. Z ~ N (0, 1), N stands for 
normal distribution. Standard score or Z-score for an instance referred by:

Standard scaling is preferred where contribution of distance measures equally 
requires for all the attributes. It proves much valuable if distribution of attributes is 
nearly normalized or Gaussian. Min–Max Scaler and Normalization are an alterna-
tive to Standard Scaler if the attribute’s distribution is not of Gaussian nature and the 
attributes may lie within a restricted space. Both Min–Max Scaler and Normalization 

Standardization z =
x − μ

σ
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scales the data between 0 and 1, along with the difference that distribution characteris-
tic is bounded and unit norm respectively for the two. Min–Max scaling conserves the 
outline of original distribution and finishes up with smaller value of σ that can sup-
press the consequence of outliers. Normalization scales each instance (row) instead of 
attributes (column), using Euclidian distance (l2 normalization) or Manhattan distance 
(l1 normalization).

Here x is the instance in a feature set (column) and in a sample (row) for Min–Max 
scaling and Normalization respectively, x’ is normalized value, xmin, xmax and xmean 
indicate minimum, maximum and mean value in a given set.

Among all the samples, only around 4–10% found of malignant category in all four 
target variables in given dataset. Its causes a worst consequence in computation of per-
formance metrics in data analysis and may cause the prediction to bias towards the 
majority class, when the number of one’s class is much more than the other class, i.e. 
in case of class imbalanced data [31]. Generally, the data for patients with positive 
results in the disease diagnosis is quite less than the negative group. The imbalance 
ratio for each of the target variable in the given dataset is shown in the Table 2. This 
imbalancing may consequence in prediction of high accuracy for the model even if the 
minority class being wrongly predicted, due to weightage of majority class in the data-
set. To achieve balance distribution among the classes, oversampling and undersam-
pling are the two ways but as the dataset is not being so large; oversampling approach 
is better than the other one. However, traditional oversampling approach is based on 
randomly replicating the instances that may cause overfitting hence a hybrid approach, 
synthetic minority oversampling technique (SMOTE) is used as a preprocessing 
method [32]. SMOTE is aimed on creating the new minority ‘synthetic’ instances by 
linear interpolation rather than duplicating them. A new minority instance is generated 
by SMOTE involves:

Here, x is one of the minority instances in set of minority class A, for each x ∈ A , 
rand(0, 1) implies any random number between 0 and 1 and ||x − xk

|| gives the Euclidean 
distance among the instance x and its kth nearest neighbor (for k = 1,2,…N, where N is 
sampling rate set in proportion of imbalance).

Min −Max Scaling x� =
x − xmin

xmax − xmin

Normalization x� =
x − xmean

xmax − xmin

x� = x + rand(0, 1) ∗ ||x − xk
||

Table 2   Imbalance ratio in 
cervical cancer dataset

S. no. Target variable Imbalance 
ratio (IR)

1 Hinselmann 21.26
2 Schiller 9.6
3 Cytology 16.13
4 Biopsy 13.84
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3.3 � Implementation of ML Algorithms

On preprocessed data, we apply the aforementioned ML algorithms with fivefold cross-
validation to find performance metrics. Cross-validation is a performance analysis 
method by reserving a set of samples for testing purpose and train the model by remain-
ing data. Repeatedly perform this for every set of samples in the dataset and compute 
the performance metrics for each trained model. Finally resultant performance metric 
is computed by taking mean of metrics for each trained model. K-fold cross-validation 
splits whole of the dataset in K-subsets, where one fold is used as testing set and oth-
ers as training set in each of the iteration, and repeated until each of the set in K-fold 
is used as testing set. Stratified K-folds cross-validation is used in this article available 
on Scikit-learn library for Python programming [33], for splitting the data into 5-folds 
(Fig. 1).

Apart from fivefold cross-validation, parameter selection method is being used to 
determine best parameters for each of the ML algorithm with given data. For each of 
the algorithm we used a range of values for each parameter and then identify the suit-
able combination of parameters. GridSearchCV function is available in Scikit-learn that 
compute finest parameters for each of the ML algorithm. Parameter grid is used while 

Fig. 1   K-fold cross-validation 
with K = 5

Table 3   Parameters grid for different ML classifiers

Classifier Parameter grid

NB –
LR {"penalty": [’l1’, ’l2’], ’C’: [0.001, 0.01, 0.1, 1, 10, 100, 1000], ‘solver’: [‘newton-cg’, ‘lbfgs’, 

‘liblinear’, ‘sag’, ‘saga’], ‘multi_class’: [‘auto’, ‘ovr’, ‘multinomial’]}
KNN {"n_neighbors": list(range(2,31,1)), ’algorithm’: [’auto’, ’ball_tree’, ’kd_tree’, ’brute’]}
SVM {’C’: [0.001, 0.01, 0.1, 1, 10, 100, 1000], ’degree’: [1–3], ’kernel’: [’rbf’, ’poly’, ’sigmoid’, 

’linear’], ’gamma’:[’auto’], ’probability’:[True]}
LDA {’solver’: ["lsqr"], ’shrinkage’: ["auto", None, 0.1, 0.3, 0.5, 0.7, 0.9]}
MLP {’hidden_layer_sizes’: [(x, y) for x, y in itertools.product([x for x in range(1, 3)], [x for x in 

range(5, 120, 5)])], ’activation’: ["tanh", "relu"], ’solver’: ["lbfgs", "sgd", "adam"], ’alpha’: 
[0.1, 0.001, 0.0001], ’learning_rate’: ["constant", "invscaling", "adaptive"]}

DT {"criterion": ["gini", "entropy"], "max_depth": list(range(2,31,1)), "min_samples_leaf": 
list(range(5,7,1))}

RF {’n_estimators’: [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000], ’max_features’: 
[’auto’, ’sqrt’], ’max_depth’: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110], ’min_samples_
split’: [2, 5, 10], ’min_samples_leaf’: [1, 2, 4], ’bootstrap’: [True, False]}
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using GridSearchCV that contain all possible parameters from which best are selected. 
The parameter grids used for simulation of ML algorithms are given in Table 3.

When we come to performance, accuracy is not only the criterion to determine best 
model. As most of the data belongs to benign category, overall accuracy has more 
weight for the benign cases. It specifies that overall accuracy can be very good even if 
the accuracy of malignant category is low. However, for correct diagnosis of disease, 
the prediction of malignant samples should also be accurate. Hence Precision, Recall, 
F-score, ROC-curve and AUC are used here for performance analysis to diagnose cor-
rectly [34, 35].

Here TP, TN, FP and FN refer to True Positive, True negative, False Positive and False 
Negative values. True Positive value indicates whose malignant type of cervical cancer 
detected correctly while True Negative value gives uninfected patient predicted correctly. 
False Positive value provides uninfected samples find with positive results while False Neg-
ative value gives cervical cancer infected patient whose result is found negative. Accuracy 
provides the proportion of correctly diagnose samples among all. Precision a.k.a. Positive 
Predictive Value (PPV) gives the ratio of actually infected persons to all positive detected 
samples value. Recall a.k.a. Sensitivity provides the fraction of correctly detected cancer 
infected patients to all the samples that are actually infected with cervical cancer. Recall 
is also called as True Positive Rate (TPR). F-score is the harmonic mean of precision and 
recall that has best prediction with value 1. Other constraints ROC-curve and AUC are 
related to each other in the context that ROC-curve is plotted among True Positive Rate 
(TPR) and False Positive Rate (FPR). AUC score gives area under ROC-curve. FPR is the 
ratio of positive detected cancer uninfected samples to the total uninfected samples. AUC 
is as close to 1 indicates a model with much better performance and lie between 0 (worst) 
and 1(best).

3.4 � Feature Selection Methodology

Computation cost of a learning model is directly proportional to dimensionality of attrib-
utes. Further performance improvement can be done by selecting the relevant risk factors 
that has more contribution in evaluation of classification model. Analyzing a learning 
methodology with irrelevant attributes may cause overfitting and increases computational 
complexity of model. Thus to create an effective classification model, redundant features 
should be eliminated from the dataset. Selection of certainly important features can be able 
to train an accurate model with enhanced performance. Filter method, Wrapper method 
and Embedded method are the three categories of methods for attribute selection [36, 37]. 
Among many of the available methods, two popular feature selection metholodologies i.e. 
Univariate feature selection and Recursive feature elimination has been used here.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-score =
2 ∗ Precision ∗ Recall

Precision + Recall
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3.4.1 � Univariate Feature Selection

Univariate feature selection is a type of Filter method based on examining the strongest 
correlation between attributes and target variables for each risk factor independently. This 
method works on various statistical tests that select the attributes having more impor-
tance and distinct information. Scikit-Learn provide SelectKBest(), SelectPercentile() 
and GenericUnivariateSelect() as the transforming object for univariate feature selection 
method. SelectKBest() retain K-maximum scoring attributes while eliminates all others, 
SelectPercentile() eliminates others except uppermost user-specified proportion scoring 
attributes and GenericUnivariateSelect() uses configurable tactic to carry out selection of 
attributes. For classification the univariate feature selection has a popular chi-square test 
as a statistical tool used with SelectKBest() univariate approach that is being used in this 
paper for selection of features. Chi-square test is used for discrete set of values and tests the 
independency among two samples. Chi-square is based on the intuition that a risk-factor is 
uninformative for classification if it is independent to the class variable. SelectKBest() with 
Chi-square involves selection of attributes with having K-highest chi-square scores that is 
computed between attributes and target categories.

Here Oi and Ei are observed and expected values for class i among total n set of features. 
This approach aims selection of attributes that are highly dependent on the categorical data.

3.4.2 � Recursive Feature Elimination (RFE)

RFE is a Wrapper method that involves recursive elimination approach for ruling out the 
important risk-factors in disease diagnosis. RFE is a kind of backward selection algorithm 
with the difference that it selects features based on ranking of attributes while backward 
selection eliminates them on the grounds of p-value score [38]. Dealing with classification 
problem RFE fits a learning model and retain the specified number of attributes that has 
highest importance or eliminate the weakest ones. An estimator is made fit on initial set of 
attributes for recursive selection of appropriate features by removing a few of the features 
in every loop based on ranking using the attributes ‘coef_’ or ‘feature_importances_’. RFE 
has the option to select specific number of features or select strongest features by default. 
Scikit-learn have RFE for recursive feature elimination and RFECV for finding optimized 
number of attributes using cross-validation approach. RFECV is useful in searching out 
finest set of attributes ranked based on validation score using K-fold cross-validation.

4 � Experimental Analysis

The cancer patient data has four target variables i.e. Hinselmann, Schiller, Cytology and 
Biopsy with 30, 63, 39 and 45 malignant infected samples respectively out of overall 668 
samples. Here, the performance metrics for the ML algorithms NB, LR, KNN, SVM, LDA, 
MLP, DT and RF are computed with fivefold cross-validation and parameter selection for 
unscaled and scaled data. Min–Max scaling, Standard scaling and Normalization are the 

Chi-square�2 =

n∑

i=1

(
Oi − Ei

)2

Ei
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Table 4   Performance metrics for 
Hinselmann test (unscaled data)

C/M NB LR KNN SVM LDA MLP DT RF

A 52.2 70.46 89.97 93.5 70.7 67.17 92.74 97.81
P 51.13 69.05 86.8 89.78 69.3 59.43 94.37 98.57
R 99.38 75.87 94.67 96.28 76.18 97.03 93.59 96.56
F 0.68 0.72 0.9 0.94 0.72 0.76 0.93 0.98
Ac 0.75 0.78 0.92 0.96 0.78 0.55 0.96 0.99

Table 5   Performance metrics 
value for Hinselmann test 
(MinMax scaler)

C/M NB LR KNN SVM LDA MLP DT RF

A 51.8 68.89 92.56 89.97 69.05 76.43 89.53 96.64
P 50.92 67.7 90.06 85.99 67.21 73.41 91.4 98.08
R 100 75.22 95.77 96.4 77.73 91.52 89.36 95.31
F 0.67 0.71 0.93 0.91 0.72 0.8 0.9 0.96
Ac 0.55 0.75 0.94 0.96 0.75 0.86 0.94 0.99

Table 6   Performance metrics for 
Hinselmann test (standard scaler)

C/M NB LR KNN SVM LDA MLP DT RF

A 51.65 71.45 93.26 93.63 70.6 77.92 93.54 97.81
P 50.84 68.16 90.24 89.94 67.73 76.48 94.18 98.77
R 100 75.24 97.18 97.34 77.43 89.68 94.93 96.72
F 0.67 0.71 0.94 0.93 0.72 0.78 0.92 0.98
Ac 0.53 0.76 0.94 0.97 0.76 0.82 0.95 0.99

Table 7   Performance metrics for 
Hinselmann test (normalization)

C/M NB LR KNN SVM LDA MLP DT RF

A 52.98 70.93 88.1 85.51 70.14 73.91 88.56 94.83
P 51.54 69.96 86.59 82.14 69.37 73.67 87.18 92.83
R 100 74.76 90.45 91.7 73.51 82.92 90.91 97.03
F 0.68 0.72 0.88 0.86 0.71 0.78 0.89 0.95
Ac 0.62 0.77 0.91 0.93 0.77 0.81 0.91 0.99

Table 8   Performance metrics for 
Schiller test (unscaled data)

C/M NB LR KNN SVM LDA MLP DT RF

A 51.24 61.07 84.55 89.75 60.83 56.53 87.27 93.72
P 50.63 64.05 81.56 87.14 64.32 63.9 88.26 95.19
R 100 51.9 89.42 93.39 50.74 48.76 86.45 91.9
F 0.67 0.57 0.85 0.9 0.56 0.57 0.87 0.93
Ac 0.66 0.65 0.86 0.94 0.65 0.67 0.93 0.98
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Table 9   Performance metrics for 
Schiller test (MinMax scaler)

C/M NB LR KNN SVM LDA MLP DT RF

A 51.16 61.98 87.85 86.59 62.23 69.26 85.29 93.64
P 50.59 69.6 86.08 76.9 70.4 69.83 84.32 92.24
R 100 45.79 90.41 85.12 45.29 76.36 86.61 94.55
F 0.67 0.55 0.88 0.81 0.55 0.73 0.85 0.9
Ac 0.52 0.63 0.9 0.89 0.62 0.77 0.9 0.98

Table 10   Performance metrics 
for Schiller test (standard scaler)

C/M NB LR KNN SVM LDA MLP DT RF

A 50.83 62.89 88.02 90.64 63.72 69.02 88.6 93.97
P 50.42 68.45 85.06 88.81 70.14 70.94 90.44 93.39
R 100 50.91 92.4 92.74 49.59 68.6 87.11 94.38
F 0.67 0.58 0.88 0.88 0.58 0.64 0.89 0.94
Ac 0.52 0.63 0.9 0.92 0.63 0.76 0.93 0.98

Table 11   Performance metrics 
for Schiller test (normalization)

C/M NB LR KNN SVM LDA MLP DT RF

A 51.24 62.48 85.7 78.6 60.98 66.03 80.33 90
P 50.63 66.86 83.38 78.38 66.99 64.58 78.75 88.66
R 100 54.88 89.42 78.84 56.03 64.46 82.48 92.07
F 0.67 0.59 0.86 0.78 0.6 0.65 0.81 0.9
Ac 0.6 0.66 0.88 0.86 0.67 0.72 0.86 0.96

Table 12   Performance metrics 
value for Cytology test (unscaled 
data)

C/M NB LR KNN SVM LDA MLP DT RF

A 53.66 66.61 84.82 90.82 65.66 57.14 90.02 95.55
P 51.91 67.06 81.99 89.42 66.95 47.46 92.84 97.28
R 99.52 68.84 89.35 95.07 66.46 79.52 88.88 93.33
F 0.68 0.67 0.85 0.92 0.66 0.69 0.9 0.95
Ac 0.6 0.72 0.87 0.95 0.71 0.52 0.95 0.99

Table 13   Performance metrics 
for Cytology test (MinMax 
scaler)

C/M NB LR KNN SVM LDA MLP DT RF

A 53.26 64.86 85.13 89.29 63.99 70.43 89.43 94.36
P 51.69 69.63 84.8 77.13 68.71 63.84 90.67 95.21
R 100 55.49 85.69 86.81 54.54 75.2 88.41 93.81
F 0.68 0.61 0.85 0.82 0.6 0.7 0.89 0.94
Ac 0.54 0.66 0.89 0.89 0.65 0.74 0.94 0.99
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Table 14   Performance metrics 
for Cytology test (standard 
scaler)

C/M NB LR KNN SVM LDA MLP DT RF

A 53.62 67.65 88.08 91.52 65.61 70.28 90.67 95.6
P 51.56 61.91 86.3 88.5 65.11 67.29 90.06 94.69
R 100 69.17 90.63 95.97 64.9 77.61 89.68 94.44
F 0.68 0.65 0.88 0.91 0.61 0.74 0.9 0.94
Ac 0.54 0.67 0.9 0.93 0.67 0.78 0.95 0.98

Table 15   Performance metrics 
for Cytology test (normalization)

C/M NB LR KNN SVM LDA MLP DT RF

A 52.7 66.85 86.56 79.18 66.53 66.92 83.07 91.66
P 51.4 66.33 84.63 74.59 65.94 67.28 82.65 91.57
R 99.36 70.43 89.5 89.83 70.43 73.77 85.22 92.37
F 0.68 0.68 0.87 0.81 0.68 0.71 0.84 0.91
Ac 0.55 0.71 0.89 0.85 0.71 0.73 0.88 0.97

Table 16   Performance metrics 
for Biopsy test (unscaled data)

C/M NB LR KNN SVM LDA MLP DT RF

A 52.4 67.81 89.17 92.07 67.01 61.46 90.06 95.99
P 51.24 72.64 85.55 89.19 73.64 67.66 90.06 97.09
R 99.84 56.98 94.39 95.99 54.89 67.96 89.74 94.4
F 0.68 0.64 0.9 0.92 0.63 0.68 0.9 0.96
Ac 0.73 0.75 0.9 0.96 0.75 0.75 0.94 0.99

Table 17   Performance metrics 
for Biopsy test (MinMax scaler)

C/M NB LR KNN SVM LDA MLP DT RF

A 51.92 63.49 89.57 89.6 66.88 63.11 87.49 95.99
P 50.99 70.12 87.48 82.18 70.06 70.32 85.84 96.24
R 100 50.73 92.46 88.77 48.15 74.11 89.75 95.84
F 0.68 0.58 0.9 0.85 0.56 0.75 0.88 0.96
Ac 0.64 0.67 0.91 0.93 0.66 0.81 0.93 0.99

Table 18   Performance metrics 
value of ML algorithms for 
Biopsy test (standard scaler)

C/M NB LR KNN SVM LDA MLP DT RF

A 52.88 67.93 89.89 92.69 67.33 62.22 90.97 96.18
P 51.08 73.43 87.31 87.4 74.33 69.03 90.58 97.79
R 99.84 49.29 93.42 95.35 53.34 71.09 89.81 95.36
F 0.68 0.57 0.9 0.91 0.64 0.73 0.89 0.96
Ac 0.59 0.64 0.92 0.96 0.65 0.79 0.93 0.99
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three methods used with oversampled data for getting scaled data of three kinds. A tabular 
comparison is made between evaluation parameters in terms of accuracy, precision, recall, 
F-score and AUC listed in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 
19 along with the comparison of ROC curves shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 16 and 17 for all target variables i.e. Hinselmann, Schiller, Cytology and 
Biopsy. The abbreviations used are as follows:

C, Classifiers; M, Performance metrics; A, Accuracy (%); P, Precision (%); R, Recall 
(%); F, F score; Ac–AUC.

Evaluation involves that the top three performing ML algorithms for all four targets are 
RF, SVM and DT, of which RF performance is superior in terms of the aforementioned 
evaluation metrics. The analysis reveals that RF gives maximum accuracy with Standard 
scaled data as 97.81%, 93.97%, 95.6% and 96.18% for target variables Hinselmann, Schil-
ler, Cytology and Biopsy respectively. For SVM in standard scaled data, accuracy for all 

Table 19   Performance metrics 
for Biopsy test (normalization)

C/M NB LR KNN SVM LDA MLP DT RF

A 52.16 64.37 89.09 82.02 63.17 61.95 86.36 93.75
P 51.11 67.82 86.65 83.34 67.18 61.15 84.51 93.41
R 100 59.24 92.78 80.43 57.15 72.55 89.73 94.87
F 0.68 0.63 0.9 0.82 0.61 0.68 0.87 0.94
Ac 0.68 0.71 0.91 0.9 0.7 0.72 0.89 0.99

Fig. 2   Comparison of ROC curves for Hinselmann test (unscaled data)
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Fig. 3   Comparison of ROC curves for Hinselmann test (MinMax scaler)

Fig. 4   Comparison of ROC curves for Hinselmann test (standard scaler)



2351Performance Assessment of Machine Learning Classifiers Using…

1 3

Fig. 5   Comparison of ROC curves for Hinselmann test (normalization)

Fig. 6   Comparison of ROC curves for Schiller test (unscaled data)
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Fig. 7   Comparison of ROC curves for Schiller test (MinMax scaler)

Fig. 8   Comparison of ROC curves for Schiller test (standard scaler)
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four targets is 93.63%, 90.64%, 91.52% and 92.69% respectively. DT gives accuracy of 
93.54%, 88.6%, 90.67% and 90.97% that is highest in Standard scaled observation for the 
four targets respectively. Other evaluation parameters are also quite good for RF, SVM and 
DT observed from the tabular data. ROC curve gives visible comparison for all the ML 
algorithms that gives RF with standard scaled data has maximum AUC scores of 0.99, 
0.98, 0.98 and 0.99 for four target variables respectively. Performance of NB classifier is 
worst among all eight predictors.

Observation shows that ML algorithms performance is finest when data is standard 
scaled in most of the cases, however unscaled data also provide high-quality result with a 
little bit difference in performance metrics. Min–Max Scaler also performs nearly Stand-
ard Scaler with most of the algorithms. Performance of normalization is worst among all. 
Concerning computation time,1 evaluation for unscaled data has poor computational effi-
ciency rather than scaled data as shown in Fig. 18. In terms of computational cost and per-
formance RF, SVM and DT with standard scaled data are the finest algorithms for cancer 
diagnosis data when all the risk-factors are involved in computation. Further computation 
efficiency can be enhanced by eliminating less important features using Univariate feature 
selection and RFE algorithm.

Fig. 9   Comparison of ROC curves for Schiller test (normalization)

1  System Configuration.
  Window 10 OS.
  Core i3, Integrated Graphics.
  4 GB RAM, 1 TB Hard disk.



2354	 N. K. Chauhan, K. Singh 

1 3

4.1 � Feature Selection Using SelectKBoost

SelectKBoost is a univariate feature selection approach that selects K-risk factors hav-
ing highest correlation with the target variables. Chi-square statistical test is being 
used here with SelectKBoost algorithm to determine feature importance as shown in 
Fig. 19. Top ten attributes obtained by SelectKBoost algorithm for four target catego-
ries of disease dataset are shown in Table 20. It is being observed that attributes 6, 13, 
14, 29 and 31 are common in all target variables. Table 1 show that Attribute 6 cor-
responds to smokes in year, Attribute 13 is number of STD diseases, Attribute 14 is 
STDs related to Condylomatosis, Attribute 29 is radiography test for Cancer disease 
and attribute 31 is radiography test for HPV disease. Except these attributes 26 and 32 
are common in three target variables. To obtain optimized performance top 16 relevant 
risk-factors are selected using SelectKBoost. The performance analysis is done with 
these 16 risk factors for previously obtained top three ML algorithms i.e. RF, SVM 
and DT with standard scaled data using fivefold cross-validation and parameter grid 
for classifiers as listed in Table 3. Removal of almost half risk factors from the data-
set doesn’t affect much on the evaluation metrics. Table 21 shows the implementation 
results that conclude RF, SVM and DT performance with 16-risk factors is approxi-
mately same as that obtained with complete set of attributes.

Fig. 10   Comparison of ROC curves for Cytology test (unscaled data)
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4.2 � Feature Selection Using RFE

RFE is being implemented here with fivefold cross validation for the three ML algorithms 
i.e. DT, SVM and RF with selection of 16 risk factors. SelectKBoost retains important 
features based on scores of Chi-square test and then performance is analyzed for ML meth-
ods, while RFE is a recursive sequence selective approach for optimal risk factors selection 
using ML classifier. Top 10 attributes among all 30 risk factors for DT-RFE, SVM-RFE 
and RF-RFE is shown in Tables 22, 23 and 24.

Table 22 shows DT-RFE gives risk factors 9, 13, 31 and 32 are common for all target 
variables and attributes 7, 17 and 29 are found in at least three target variables among top 
10 attributes. Attributes 3, 7, 9 and 13 are involves in each column of Table  23 among 
most important 10 risk factors for SVM-RFE. Table 24 for RF-RFE has attribute 6, 7, 9, 
13 and 31as found similar in all columns. The implementation results of DT-RFE, SVM-
RFE and RF-RFE are shown as Table 25 in terms of performance metrics. An optimized 
performance achieved with recursive feature elimination (RFE) with reduced 16-risk fac-
tors compared to analysis with complete set of 30 attributes. Random Forest (RF) again 
proves the best classifier ML algorithm in diagnosis of given cervix data. The predictor 
accuracy is 93.72%, 95.05% and 99.21% for DT-RFE, SVM-RFE and RF-RFE respectively 
in Hinselmann test. For Schiller test, accuracy of 89.33%, 92.17% and 96.13% is achieved 
for the three classifiers respectively. For Cytology test, DT-RFE, SVM-RFE and RF-RFE 
provide accuracy as 91.7%, 92.89% and 97.01% respectively. Accuracy is 91.11%, 93.81% 
and 98.53% respectively for these ML predictors in Biopsy test. Tabular data shows highest 

Fig. 11   Comparison of ROC curves for Cytology test (MinMax scaler)
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Fig. 12   Comparison of ROC curves for Cytology test (standard scaler)

Fig. 13   Comparison of ROC curves for Cytology test (normalization)
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Fig. 14   Comparison of ROC curves for Biopsy test (unscaled data)

Fig. 15   Comparison of ROC curves for Biopsy test (MinMax scaler)
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Fig. 16   Comparison of ROC curves for Biopsy test (standard scaler)

Fig. 17   Comparison of ROC curves for Biopsy test (normalization)
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Fig. 18   Average computation time for unscaled, Min–Max scaled, standard scaled and normalized data

Fig. 19   Feature importance using univariate selection (SelectKBoost)

Table 20   Top ten attributes on 
SelectKBoost

Hinselmann Schiller Cytology Biopsy

31 6 31 9
29 11 32 31
6 9 29 29
13 13 7 13
32 31 23 32
26 1 13 20
17 29 6 6
23 17 17 11
14 26 14 17
7 14 26 14
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precision of 98.5 for RF-RFE in Hinselmann test. Observation shows that RF-RFE gives 
highest recall score of 100% for Hinselmann and Biopsy test. Maximum F-score achieved 
is 0.99 again for RF-RFE in Hinselmann test prediction. RF-RFE also gives highest AUC 
score of 0.99 in three tests i.e. Hinselmann, Cytology and Biopsy. RF-RFE gives best 
results in terms of all performance metrics compared to other DT-RFE and SVM-RFE for 
four target variables.

5 � Comparison Analysis

Analysis with complete cervix data shows best results are obtained in RF, SVM and DT 
classifiers when data is standard scaled. Experimental results show that optimized perfor-
mance is achieved with elimination of risk factors that are more irrelevant. SelectKBoost 
and RFE significantly approached with the attributes that are more relevance in prediction. 
Most significant risk factors in both SelectKBoost and RFE are Attribute 6, 7, 9, 13, 29 
and 31 that appear in most of the columns. These risk factors are shown in Table 26 which 

Table 21   Performance metrics of DT, SVM and RF algorithms with SelectKBoost for K = 16

The best results are shown as bold

Target variables ML method Accuracy (%) Precision (%) Recall (%) F-score AUC​

DT 92.77 94.07 93.95 0.91 0.94
Hinselmann SVM 93.5 92.63 96.83 0.92 0.96

RF 97.69 98.18 97.49 0.97 0.99
DT 88.12 89.57 88.43 0.88 0.91

Schiller SVM 91.03 89.12 92.93 0.9 0.93
RF 92.63 92.27 92.33 0.92 0.97
DT 88.99 89.23 90.4 0.89 0.95

Cytology SVM 91.63 88.03 97.12 0.91 0.94
RF 95.72 94.22 95.09 0.93 0.99
DT 90.89 89.91 89.87 0.9 0.91

Biopsy SVM 93.19 88.34 94.9 0.91 0.95
RF 95.78 96.88 95.22 0.95 0.98

Table 22   Top ten attributes on 
DT-RFE

Hinselmann Schiller Cytology Biopsy

9 9 19 13
3 13 31 30
32 31 30 29
17 32 32 9
19 29 17 11
7 11 29 32
31 7 9 7
14 17 14 31
18 24 6 26
13 26 13 6
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Table 23   Top ten attributes on 
SVM-RFE

Hinselmann Schiller Cytology Biopsy

9 9 11 9
7 3 9 13
2 11 7 29
4 2 13 17
31 13 2 32
3 4 3 3
26 6 6 2
29 7 29 7
13 26 32 31
17 17 31 12

Table 24   Top ten attributes on 
RF-RFE

Hinselmann Schiller Cytology Biopsy

9 13 19 9
31 9 32 29
32 6 31 7
26 31 9 6
19 26 13 32
6 29 17 13
30 17 7 30
13 24 14 31
11 7 29 2
7 1 6 11

Table 25   Performance metrics of DT-RFE, SVM-RFE and RF-RFE algorithms with 16 selected features

The best results are shown as bold

Target variables ML method Accuracy (%) Precision (%) Recall (%) F-score AUC​

DT-RFE 93.72 96.18 96.2 0.92 0.96
Hinselmann SVM-RFE 95.05 92.29 99.36 0.95 0.98

RF-RFE 99.21 98.5 100 0.99 0.99
DT-RFE 89.33 90.82 91.96 0.93 0.95

Schiller SVM-RFE 92.17 91.77 96.79 0.91 0.95
RF-RFE 96.13 95.59 98.4 0.95 0.98
DT-RFE 91.7 90.99 92.39 0.92 0.95

Cytology SVM-RFE 92.89 90.68 97.96 0.93 0.94
RF-RFE 97.01 96.27 98.41 0.97 0.99
DT-RFE 91.11 90.9 91.19 0.9 0.93

Biopsy SVM-RFE 93.81 88.63 98.3 0.93 0.97
RF-RFE 98.53 98.07 100 0.97 0.99
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Table 26   Most relevant risk-
factors

Smokes (years) Smokes (packs/year)

Hormonal contraceptives (years) STDs (number)
Dx: cancer Dx: HPV

Table 27   Comparison of DT, SVM and RF with 30 features, 16 features (SelectKBoost) and 16 features 
(RFE)

The best results are shown as bold
*ML classifier with SelectKBoost

Target variables ML method Accuracy (%) Precision (%) Recall (%) F-score AUC​

Hinselmann DT 93.54 94.18 94.93 0.92 0.95
DT* (16 features) 92.77 94.07 93.95 0.91 0.94
DT-RFE (16 features) 93.72 96.18 96.2 0.92 0.96
SVM 93.63 89.94 97.34 0.93 0.97
SVM* (16 features) 93.5 92.63 96.83 0.92 0.96
SVM-RFE (16 features) 95.05 92.29 99.36 0.95 0.98
RF 97.81 98.77 96.72 0.98 0.99
RF* (16 features) 97.69 98.18 97.49 0.97 0.99
RF-RFE (16 features) 99.21 98.5 100 0.99 0.99

Schiller DT 88.6 90.44 87.11 0.89 0.93
DT* (16 features) 88.12 89.57 88.43 0.88 0.91
DT-RFE (16 features) 89.33 90.82 91.96 0.93 0.95
SVM 90.64 88.81 92.74 0.88 0.92
SVM* (16 features) 91.03 89.12 92.93 0.9 0.93
SVM-RFE (16 features) 92.17 91.77 96.79 0.91 0.95
RF 93.97 93.39 94.38 0.94 0.98
RF* (16 features) 92.63 92.27 92.33 0.92 0.97
RF-RFE (16 features) 96.13 95.59 98.4 0.95 0.98

Cytology DT 90.67 90.06 89.68 0.9 0.95
DT* (16 features) 88.99 89.23 90.4 0.89 0.95
DT-RFE (16 features) 91.7 90.99 92.39 0.92 0.95
SVM 91.52 88.5 95.97 0.91 0.93
SVM* (16 features) 91.63 88.03 97.12 0.91 0.94
SVM-RFE (16 features) 92.89 90.68 97.96 0.93 0.94
RF 95.6 94.69 94.44 0.94 0.98
RF* (16 features) 95.72 94.22 95.09 0.93 0.99
RF-RFE (16 features) 97.01 96.27 98.41 0.97 0.99

Biopsy DT 90.97 90.58 89.81 0.89 0.93
DT* (16 features) 90.89 89.91 89.87 0.9 0.91
DT-RFE (16 features) 91.11 90.9 91.19 0.9 0.93
SVM 92.69 87.4 95.35 0.91 0.96
SVM* (16 features) 93.19 88.34 94.9 0.91 0.95
SVM-RFE (16 features) 93.81 88.63 98.3 0.93 0.97
RF 96.18 97.79 95.36 0.96 0.99
RF* (16 features) 95.78 96.88 95.22 0.95 0.98
RF-RFE (16 features) 98.53 98.07 100 0.97 0.99
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contributes more in prediction. To make a logical comparison 16 most relevant risk factors 
are chosen in both SelectKBoost and RFE feature selective approach.

A detailed comprehensive performance comparison is made between the three best 
ML predictors i.e. RF, SVM and DT in Table  27 with all 30 risk factors, 16 risk fac-
tors obtained with SelectKBoost and 16 risk factors obtained for RF-RFE, SVM-RFE 
and DT-RFE. All these results are obtained on standard scaled cervix data with SMOTE 
for oversampling, GridSearchCV for parameter selection and fivefold cross-validation 
for performance scores computation. Tabular data makes a clear comparison among the 
implemented RF, SVM and DT classifiers with different approaches used for selecting 
risk factors.

RF-RFE is given great results with accuracy as 99.21%, 96.13, 97.01% and 98.53% 
for four targets Hinselmann, Schiller, Cytology and Biopsy respectively. Other parameter 
for RF-RFE gives that precision is 98.5%, 95.59%, 96.27% and 98.07%, recall score is 
100%, 98.4%, 98.41% and 100%, F-score is 0.99, 0.95, 0.97 and 0.97, and AUC score is 
0.99, 0.98, 0.99 and 0.99 for the four target variables respectively. Figure 20 shows the 
comparison of accuracy for implemented ML classifiers. Performance metrics with 16 
risk factors obtained from SelectKBoost approach are almost same to that obtained with 
complete set of features. However RFE approach significantly enhances the optimization 
in parameter metrics for RF, SVM and DT classifiers specifically in accuracy, precision 
and recall.

6 � Conclusion

This paper analyzes the performance of some of the most prominent ML algorithms for 
cervical cancer data and observes the effect of scaling on performance metrics to efficiently 
predict the samples of malignant type. NB, LR, KNN, SVM, LDA, MLP, DT & RF are 
the ML classifiers which made prediction for all 30 risk factors. RF, DT and SVM clas-
sifiers are ranked as top three that makes best prediction for all four target category with 
Standard scaled data, however the performance is not so much get affected with unscaled 
data and Min–Max scaled data except in case of normalization. Furthermore, classification 
is made with these predictors using relevant features having more importance in data by 

Fig. 20   Accuracy comparison of implemented ML classifiers
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feature selection algorithms. RF, SVM and DT classifiers using Univariate feature selec-
tion (SelectKBoost) and RFE make the predictors more efficient compared to the classifiers 
using with complete set of risk factors. There is significant reduction in computational cost 
and time when low information risk-factors are removed from the disease diagnosis data. 
RFE is proven better approach than SelectKBoost and the performance of RF-RFE algo-
rithm with 16 risk attributes is superior to other algorithms.
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