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Abstract
As security threats are increasingly diversified, a critical problem in Wireless Sensor Net-
work environments (WSNs) is detecting anomalies. WSNs are affected by several limita-
tions, such as limited energy, insufficient memory, weak computation power, and short 
communication range. Hence, it is necessary to improve the detection accuracy and con-
vergence speed of intrusion detection in such environments. In this article, we propose an 
intrusion detection model based on Time-Varying Parameter Improved Particle Swarm 
Optimization (TVP-IPSO) with Principal Component Analysis (PCA) and Support Vector 
Machine (SVM). The PCA is applied aimed at the data dimension reduction by compress-
ing the data to reduce energy consumption, and an intrusion detection algorithm based on 
SVM is considered to ensure high detection accuracy. To optimize the SVM algorithm and 
identify its optimal parameters, the TVP-IPSO is used to improve the intrusion detection 
algorithm’s detection precision and convergence speed. Experimental results show that the 
detection accuracy of TVP-IPSO-SVM is higher than GA-SVM and IPSO-SVM, demon-
strating that the proposed research has better adaptability, higher detection accuracy, and 
faster convergence speed when compared to other works presented.

Keywords  Low-complexity intrusion detection · Particle swarm optimization · Principal 
component analysis · Support vector machines · Time-varying parameter · WSNs

1  Introduction

Wireless Sensor Networks (WSNs) are the bridge between the physical world and informa-
tion technology. WSNs enable us to study physical world environmental phenomena via 
an abundant number of sensors, which collect information converted into digital format to 
be processed and transmitted via network and subsequently stored and analyzed into fog 
nodes.

Due to the rapid development and maturity of wireless communication facilities, sen-
sor technology, embedded application, and microelectronic technology, WSNs integrated 
into these technologies gain popularity and have significantly impacted various fields of 
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modern society. Furthermore, owing to their characteristics (i.e., small nodes, low cost, and 
low energy consumption [1]), WSNs are widespread in many contexts, such as environ-
mental pollution monitoring, smart grid, biomedical health management, and behavioral 
habit detection.

WSN is a kind of network with limited energy consumption and weak storage capac-
ity, in which nodes are often placed in "no man’s land". Considering factors such as the 
"openness" of the network, the fixed routing mechanism of the data, and the limitation of 
resources in terms of time and space, some critical and sensitive data could be subject to 
several attacks, resulting in serious security problems [2–4, 28].

Besides, as WSNs are closely related to scientific experimentations, human production 
activities, and daily activities, WSN has become an essential asset to consider when deal-
ing with the entire system’s security from the perspective of network security technology 
and system applications. Hence, the problem of network security should also keep pace 
with research.

A WSN is established based on the public Internet and wireless networks. When estab-
lishing these traditional computer networks, only consider connectivity’ convenience, but 
ignore the security threats. Like the protocol itself, the device itself all has some loopholes 
[5, 27].

For this reason, several techniques have been developed, such as firewall technology, 
anti-virus technology, encryption technology, authentication technology, and other secu-
rity methods [6–9, 21, 22, 26, 32]. Nevertheless, many of these technologies are based on 
passive defense methods, and most of them can only detect security problems that have 
occurred. The difference from the abovementioned technology is Intrusion detection tech-
nology, which has a specific active defense function [10].

By focusing on the security problems that affect WSNs, we propose a WSN intrusion 
detection model, referred as TVP-IPSO-SVM: Time-Varying Parameter Improved Parti-
cle Swarm Optimization with Principal Component Analysis (PCA) and Support Vector 
Machine (SVM). TVP-IPSO-SVM combines Principal Component Analysis (PCA) with 
Time-Varying Parameter Improved Particle Swarm Optimization (TVP-IPSO) and Sup-
port Vector Machine (SVM), that analyzes and compares sensor nodes’ data and determines 
whether there is an intrusion, according to the intrusion behavior characteristics. First, it 
maps the high-dimensional features in the input space to the new low-dimensional feature 
space through PCA, reducing the data dimension to optimize the amount of transmitted 
data. Next, it uses the SVM classifier to evaluate the attack. Aimed at reducing the training 
time and improve the classification performance of SVM, an improved PSO with Time-
Varying parameters is introduced by combining the advantages of Local Particle Swarm 
Optimization (LPSO) and Global Particle Swarm Optimization (GPSO) to optimize the 
parameters of SVM.

In TVP-IPSO, the particles learn mainly from the global and local optimal particles and 
the optimal particles in the population. It has a robust and comprehensive optimization 
ability that overcomes the drawbacks of the PSO algorithm, such as the rapid fall into local 
extremum points.

On top of that, the proposed model reduces the amount of data transmission between 
WSN nodes while reducing energy consumption and improving the detection rate. Overall, 
the main contributions include:

1.	 Application of the PCA to reduce the size of the intrusion detection data, exploiting the 
performance of the SVM classifier in processing imbalanced datasets,
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2.	 The use of time-varying inertial weights and learning factors introduce an improvement 
to the standard particle swarm optimization algorithm. The TVP-IPSO can search for 
the optimal value faster and avoid the search falling into an optimal local state,

3.	 Discovery of the SVM parameters through the proposed TVP-IPSO to provide a helpful 
intrusion detection model,

4.	 Design of a layered network structure as the WSNs model. The TVP-IPSO-SVM detec-
tion mechanism is loaded onto all nodes of WSNs that significantly saves the energy 
consumption caused by data transmission,

5.	 The performance of the proposed model is evaluated through different experimentations 
utilizing the KDD Cup99 public dataset and compared the feasibility and effectiveness 
of the model through two indicators: detection rate and false alarm rate concerning 
standard SVM, GA-SVM [11], and IPSO-SVM [13].

The remainder of this article is structured as follows. First, Sect. 2 provides some nec-
essary preliminaries and related work, while in Sect. 3, the PCA, SVM, and the proposed 
model for intrusion detection in WSNs are presented, besides explaining the logical func-
tioning of such a model. Next, the main aspects of the proposed TVP-IPSO-SVM algo-
rithm are introduced in Sect. 4, the performance of the proposed scheme is analyzed, and 
evaluations of the experimental results achieved are discussed in Sect. 5. Finally, the con-
cluding remarks and future research directions are given in Sect. 6.

2 � Background and Related Work

Nowadays, the aims of WSN security research are twofold. The former is the network 
attack defense mechanism, and the latter is the network intrusion detection mechanism.

A Network attack defense mechanism is the first line of defense of network security that 
mainly adopts critical management, secure routing, and authentication to ensure network 
security. However, with the development of attack technology, it is easier for attackers to 
break through the first line of defense to cause attacks and damage to the network. There-
fore, it is necessary to have a corresponding mechanism to detect the occurrence of attack 
behavior. As the second line of defense for network security, intrusion detection can detect 
abnormal data after the intrusion from the standard dataset and locate the intruder [29].

With the growth and extensive application of Machine Learning (ML), an increasing 
number of researchers have applied ML in intrusion detection systems, achieving excel-
lent results. Several research works [2–5, 30, 31, 33] have successfully chosen to adopt a 
modified neural network algorithm to implement an intrusion detection system. However, 
the neural network algorithm calculates the input error function repeatedly and transports 
the error from one layer to the previous layer. Therefore, in the process of behavior estab-
lishment, each link is weighted to learn, resulting in the slow convergence speed of the 
algorithm. We stress that the energy consumption of WSNs with a large number of nodes is 
undoubtedly fatal.

SVM is a machine learning technique based on the statistical learning theory proposed 
by Vapnik [6], which can be helpful in the intrusion detection process when there is insuf-
ficient prior knowledge. From the literature, network intrusion data have some charac-
teristics that SVM can exploit, such as small sample size, linear inseparability, and high 
dimension. Mukkamala et al. implemented an SVM technology for intrusion detection and 
carried out experimental verification using the neural network method [7]. The achieved 
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result showed that SVM is better than Decision Tree (DT), K-Nearest Neighbors (KNN), 
Neural Network (NN), and other algorithms.

From other related works [6, 7, 23, 24] dealing with SVM-based intrusion detection, 
one major issue is that the dimension of the input space is a critical factor that degrades its 
performance.

WSNs are applied in complex and harsh environments nowadays, so most of the sen-
sor nodes are randomly arranged to employ aircraft dissemination, making it possible for 
different sensor nodes in the network to collect the same data information. If all the data 
collected by sensor nodes are transmitted, the life cycle of the network is severely affected. 
Furthermore, the incorrect data in the network also affect the administrator’s decision. In 
particular, since most of the energy in WSNs is consumed for the process of data commu-
nication rather than node computing, "data disaster" will most likely lead to a large amount 
of transmission energy consumption.

Furthermore, when dealing with large-scale node deployment and real-time data per-
ception in WSNs, the increase of data complexity affects the accuracy of the intrusion 
detection process. Indeed, network connection data have a high characteristic dimension; 
data features have significant redundancy and uncertainty that significantly affect the valid-
ity of intrusion detection results [8]. Thus, the problem of intrusion detection in WSNs is 
still a deeply-felt research area since it deals with a massive amount of network traffic data, 
a high-dimensional training dataset that continuously changes the environment, and real-
time detection needs.

Sun et al. proposed the PCA method for feature dimensionality reduction to reduce data 
storage and calculate "data disaster" [8]. At the same time, Jing et al. addressed the prob-
lem of unbalanced training samples [9]. Ma et al. proposed the PCA-ELM (Extreme Learn-
ing Machine, ELM) method [10], in which they used the PCA to reduce the dimension of 
data and the ELM algorithm to create the classifier. This method improves the learning 
ability of small samples, reduces the learning time, and reduces the false detection rate and 
missed detection rate. Another hybrid method to improve the detection accuracy is pro-
posed by Kuang et al., who combined multi-layer SVM with Kernel Principal Component 
Analysis (KPCA) and Genetic Algorithm (GA) for intrusion detection [11], by using KPCA 
to decrease the dimensionality of the feature set and reduce the training time. However, the 
selection of SVM parameters, including penalty factor C, the nuclear function type, and the 
nuclear function parameters, significantly influences classification accuracy [12].

At present, researchers have proposed different algorithms for optimizing parameters 
in the context of Swarm Intelligence (SI) [2, 4, 11, 12], which has had a significant impact 
on the field of computational science over the past decade, inspired by the natural evolu-
tion of organisms and is especially useful for solving optimization problems. For example, 
Kalaivani et al. proposed an effective classifier based on Artificial Bee Colony (ABC) for 
intrusion detection[4]. Neha et al. introduced Salp Swarm Optimization (SSO) to optimize 
the hyperparameters of classifiers [2]. Likewise, some researchers have applied the Genetic 
Algorithm (GA) [11] and standard Particle Swarm Optimization (PSO) [12] to optimize 
SVM parameters.

Among other research directions, the PSO algorithm has been widely adopted in objec-
tive function optimization and neural network, as it is one of the most popular and practical 
techniques for optimizing SVM parameters. Nevertheless, the PSO algorithm [12] shows 
disadvantages, such as easy traps in local optimization, low accuracy of optimization cal-
culation, and slow convergence in the later period. Due to these shortcomings, to solve the 
parameters setting of SVM and provide the most appropriate feature subset, researchers 
have devoted much work to particle swarm optimization methods. Related, Aburomman 
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et  al. proposed an efficient way to optimize SVM parameters by using PSO to improve 
the accuracy of intrusion detection [12]. Also, S. Liu et al. proposed an intrusion detec-
tion model based on SVM and IPSO (Improved Particle Swarm Optimization, IPSO) [13], 
which has higher detection accuracy and faster convergence speed. Furthermore, H. Liu 
et  al. put forward a WSNs intrusion detection algorithm based on CS-CPSO (Complete 
Sine-Mapping Chaotic Particle Swarm Optimization, CS-CPSO) and SVM [14] to improve 
the detection accuracy and convergence speed of intrusion detection algorithms in WSNs. 
However, the methods proposed by Aburomman et al.  [12] and S. Liu et al.  [13] mainly 
focus on the phase mixing of various algorithms, and the convergence speed is slow in the 
later stages of evolution. H. Liu et al. [14] introduced the chaos model to realize the PSO 
algorithm simply, but its local search ability is weak, making it easier to fall into the local 
optimum. The proposed TVP-IPSO algorithm combines the advantages of the LPSO and 
GPSO algorithms to improve the ability to jump out of the optimal local solution, effec-
tively avoid computational blindness, and improve the convergence speed of the algorithm.

This investigation proposes a new intrusion detection model based on WSNs, which 
mainly focuses on two aspects. First, the PCA is adopted to reduce the characteristic 
dimension of data. Next, the TVP-IPSO algorithm is proposed to achieve the optimal 
SVM kernel parameters to establish the intrusion detection model of WSNs. This proposed 
model reduces the computation time and improves the accuracy of intrusion detection. The 
following section introduces the proposed TVP-IPSO algorithm.

3 � The Proposed Intrusion Detection Model

The proposed intrusion detection model for WSNs is based on PCA, SVM, and TVP-IPSO 
algorithms. PCA is a dimension reduction technique that is the most widely used in data 
analysis and compression [11]. The basic idea is to construct a series of linear combina-
tions of primitive variables to form several comprehensive geometric indicators, to remove 
the correlation of data, and make low-dimensional data maintain the variance information 
of original high-dimensional data to the greatest extent [15].

The learning ability and generalization ability of SVM depend on the choice of its 
parameters. In this paper, the Radial Basis Function (RBF) is adopted, so there are two 
parameters to be optimized, namely, the kernel function parameter �2 and the penalty 
parameter C, where the size of C is related to the tolerable error. At the same time, the pro-
portion of �2 is associated with the blank input range of learning samples.

This section mainly introduces the framework and implementation mechanism of the 
proposed model, including the underlying algorithms of PCA and SVM in detail. The 
TVP-IPSO algorithm for optimizing SVM parameters is described in the next section.

3.1 � WSNs Intrusion Detection Model Framework

Intrusion detection is essentially a classification problem, where the challenge is to distin-
guish between abnormal data and normal data. The intrusion data has high-dimensional 
features and contains many noise attributes. Therefore, PCA is adopted to reduce data 
dimension, and the SVM classifier is applied to intrusion detection.

Two stages characterize this model. In the first stage, a series of irrelevant and redundant 
data is deleted using PCA. In contrast, in the second stage, the data are classified accord-
ing to the training dataset and the test dataset. Next, we use the TVP-IPSO algorithm to 
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select the optimal parameters of SVM by particle iteration and position update. Then SVM 
is applied with the optimal parameters to model the intrusion detection training dataset 
and the established WSNs intrusion detection model to detect the test dataset. Lastly, the 
acquisition of intrusion detection ends. The framework of the proposed intrusion detection 
model is depicted in Fig. 1.

3.2 � Intrusion Detection Implementation Mechanism

Based on the analysis of the WSN network structure, in this paper, we have chosen to 
utilize a layered network structure for the representation of the proposed WSN network 
model, as shown in Fig. 2, which structure consists of three main parts: the common node, 
the sink node, and the cluster-head node [14]. The cluster-head node handles the informa-
tion collected by different member nodes in the cluster and then transfers the processed 
data to the sink node, thus reducing the data sent to the sink node and significantly saving 
the energy consumption caused by data transmission.

Before performing the WSNs intrusion detection, the TVP-IPSO-SVM algorithm 
needs to learn from offline experimental data to create the detection mechanism. After 
that, the TVP-IPSO-SVM detection mechanism can be placed in each node of the WSNs. 
Moreover, in the network intrusion detection phase, sink nodes, club-head nodes, and 
common nodes cooperate for detection. First, the sink node sends broadcast messages 
to the cluster-head node and activates the TVP-IPSO-SVM misuse detection mechanism 
in the cluster head node when it is threatened. Then, the detection mechanism for the 

Fig. 1   The proposed intrusion detection model framework
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cluster-head node is activated. Once such a mechanism detects an anomaly, the cluster-
head node sends the data of the exception node to the sink node.

On the other hand, if it cannot detect the anomaly, the cluster-head node sends broad-
cast messages to the common node in the cluster. Then, it activates the TVP-IPSO-SVM 
anomaly detection mechanism of the common node. Finally, the common node performs 
the detection of anomalous data. More precisely, if an exception is detected, the com-
mon node sends the anomalous data to the sink node through the cluster-head node. The 
sink node makes the final judgment according to the data information it has mastered.

3.3 � Principal Component Analysis

The core concept of PCA is to find the standardized linear combination of some origi-
nal variables with the most considerable variance and transform a large number of 
related variables into fewer unrelated variables. The linear combination of the most 
considerable variance in the original variables is the first principal component of the 
transformation.

The second principal component is a linear combination of the first main component 
and the original variable orthogonal to the second largest variance, and so on. In many 
datasets, the principal components that contribute the most variance to the original dataset 
are initially the main components. Therefore, the remaining data ignored as the minimum 
loss of dimension reduction variance. The following transformation process is given as fol-
lows. Let X1,X2,… ,Xn be the training samples, in which a set of m-dimensional vectors 
represent each value. Therefore, we use a matrix to represent the dataset:

The average observation value � is defined as:

The deviation �i can be obtained from the average value:

(1)Xm∗n =

⎡⎢⎢⎣

x11 ⋯ x1n
⋮ ⋱ ⋮

xm1 ⋯ xmn

⎤⎥⎥⎦
=
�
x1, x2,⋯ , xn

�
.

(2)� =
1

n

n∑
i=1

xi.

Fig. 2   The layered intrusion 
detection structure for the WSN 
network model
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The covariance matrix of the sample in the datasets can be constructed by:

When PCA is applied, Singular Value Decomposition (SVD) [15] usually calculates the 
eigenvector and eigenvalue corresponding to the sample covariance matrix H.

Let 
(
�1,�1

)
,
(
�2,�2

)
,⋯ ,

(
�m,�m

)
 be the m pairs of eigenvalues and eigenvectors of the 

covariance matrix H. We select the k eigenvectors with the highest eigenvalues. The for-
mula to determine the dimension of subspace k is:

where � is the ratio of the variables of the subspace to all the variables of the original 
space. Next, matrix A with size m × k is generated, in which columns contain k eigenvec-
tors. According to (6), the data represented by principal component data are projected into 
the k-dimensional subspace.

Principal component analysis has the characteristics of easy calculation and robust 
explanation. PCA algorithm measures information by the value of the variance of data. The 
higher the variation, the more data it contains; otherwise, the less information it contains. 
Therefore, PCA is transforming the coordinate projection of high-dimensional data to the 
direction with the most significant variance of data and forming a new coordinate system to 
represent the coordinate transformation of data.

3.4 � Support Vector Machine

SVM can solve the problem of constructing high dimensional data model effectively. Its 
advantages include strong generalization ability, high fitting accuracy, and an insensitive 
dimension. The working principle of SVM is as follows. Firstly, it transforms the input var-
iables of the lower dimensional space into a higher dimensional characteristic space by the 
appropriate nonlinear transformation. Then it constructs an optimal classification hyper-
plane, which separates the two types of input data correctly as much as possible. Therefore, 
the following constrained binary classification problem can be outlined.

Assuming that the training sample set is 
{
xi, yi

}
, xi ∈ Rn , where xi is the i th training 

sample in the input space, and yi represents the category to the example belonging to a 
group, the search of the optimal classification hyperplane under the condition of linear 
inseparability is equivalent to solve the optimization problem in (7), where (8) satisfies the 
requirements of (7):

(3)�i = xi − �.

(4)H =
1

n

n∑
i=1

(
xi − �

)(
xi − �

)T
=

1

n

n∑
i=1

�i ⋅ �
T
i
.

(5)
∑k

i=1
�i∑m

i=1
�i

≥ �,

(6)yi = AT
(
xi − �

)
= AT�i.

(7)min
1

2
w ⋅ w + C

n∑
i=1

�i
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where w is a vector and b is the threshold, C is the penalty parameter used to control the 
penalty degree of right and wrong sample distribution, �i is the relaxation variable used to 
measure the distance between delta yi and the hyperplane.

By constructing the Lagrangian function, the dual problem can be given as below:

where �i represents the ith training example of Lagrange multiplier coefficient regression, 
obtained by solving the double optimization problem in support vector learning.

If the sample set is of nonlinear relation,�(x) is firstly used to map the original sample 
set to the higher dimensional feature space for linear classification through nonlinear map-
ping. Nonlinear mapping using the kernel function is as follows K

(
xi, xj

)
= �

(
xi
)
⋅ �

(
xj
)
 . 

At the optimal solution of (9), the form of the optimization function is as follows:

SVM seeks the maximum geometric space of the hyperplane in the kernel space and real-
izes the nonlinear separation of feature space. Based on the relationship between the size 
of the training dataset and feature space, the use of RBF produces better results when the 
dimension of feature space is less than the training dataset. Therefore, we select RBF as the 
kernel function of the SVM, as follows:

where �2 is the radial parameter of basis kernel width. Finally, the decision function is:

where the threshold value is 
b = yj −

∑n

i=1
�iyiK

�
xi, xj

�.
In essence, intrusion detection aims to distinguish between normal activities and attack 

activities through the detector. Therefore, intrusion detection is a typical classification 
problem. As one of the most representative classification algorithms, the SVM algorithm 
has the following characteristics:

1.	 SVM uses a structural risk minimization principle to solve classification problems. Such 
problems can be high dimensions, small samples, and nonlinearity. Meanwhile, this 
classification algorithm can reinforce the generalization ability of the learning machine. 
After obtaining minor errors from training samples, it can still ensure small errors for 
test sets,

(8)s.t.yi
(
w ⋅ xi + b

)
≥ 1 − �i, �i ≥ 0, i = 1, 2,… , n

(9)m ∈
1

2

n∑
i,j=1

�i�jyiyj
(
�
(
xi
)
⋅ �

(
xj
))

−

n∑
i=1

�i

(10)s.t.

n∑
i=1

�iyi = 0,C ≥ �i ≥ 0, i = 1, 2,… , n.

(11)m ∈
1

2

n∑
i,j=1

�i�jyiyjK
(
xi, xj

)
−

n∑
i=1

�i.

(12)K
(
xi, xj

)
= exp

{
−xi − xj

�2

}
,

(13)f (x) = sgn

(
n∑
i=1

�iyiK
(
xi, x

)
+ b

)
,
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2.	 The analysis of the SVM classification function shows that the kernel function parameter 
� and penalty parameter C affect the classification performance of SVM. Therefore, it 
is imperative to study the selection of penalty parameters and kernel function param-
eters. Furthermore, an improved particle swarm optimization (TVP-IPSO) algorithm 
optimizes the SVM to find the suitable values of C and �.

3.5 � TVP‑IPSO‑SVM Algorithm

For the intrusion detection of WSNs with high-dimensional data samples, SVM has excel-
lent advantages. However, many experiments and analyses on the basic concepts of SVM 
in Sect.  3 show that the performance of intrusion detection models based on SVM is 
directly related to its parameters, i.e., kernel function parameter σ and penalty factor C. 
Therefore, if the parameters are not selected properly, the accuracy of intrusion detection 
will be lower.

To find the appropriate values of σ and C, the optimization of SVM parameters by PSO 
can optimize the classification performance of SVM to some extent. However, the standard 
PSO algorithm has precocious convergence during the optimization process, and the local 
searchability is weak. Although it converges quickly, it has insufficient iterative precision 
and slow evolution speed in the later phases. Nevertheless, the particle swarm shows con-
vergence, which is easy to sink into the optimal local solution [12].

To solve the above problem, we propose the TVP-IPSO algorithm, which introduces 
Time-Varying parameters based on the basic PSO algorithm. In TVP-IPSO, particles learn 
from global and local optimal particles and learn from the optimal particles in the popula-
tion, so they have strong global optimization ability.

The TVP-IPSO-SVM is described in detail next.

3.6 � PSO Algorithm

A particle swarm optimization algorithm consists of a random search algorithm developed 
by simulating the foraging behavior of birds, which is based on group cooperation [12]. 
The algorithm starts with a set of random particles (stray solutions) and then iteratively 
finds the optimal solution. PSO algorithm uses the speed-position search model, and each 
particle corresponds to an inserted solution in the solution space. The fitness function 
determines the fitness of the solution, defined according to the optimization objective. The 
specific description is as follows [30].

Firstly, we initialize a group of random particles with the size of n, so population 
Z =

(
Z1, Z2,… , Zn

)
 . Here, the position of the ith random particle in the d-dimensional 

solution space is expressed as Zi =
(
zi1, zi2,… , ziD

)
 , and the velocity is expressed as 

Vi =
(
vi1, vi2,… , viD

)
 . Then the optimal solution is generated through iterative search. At 

each iteration, the random particle updates its position and velocity by dynamically track-
ing two extremes.

The first extremum is the optimal solution (i.e., the optimal position of an individual 
random particle) generated by random particle search from the initial iteration to the cur-
rent iteration, which is called individual extremum Pi =

(
pi1, pi2,… , piD

)
 . The next extreme 

value is the optimal solution that is the optimal global location of all particles found by the 
entire particle population, which is called the absolute global value Pg =

(
pg1, pg2,… , pgD

)
.
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Before finding these two optimal values, particle i updates its position and velocity in 
d-dimension according to (14) and (15) in the lth iteration. Then, the particles continue to 
iterate to the set maximum number of iterations, or the fitness function value of the optimal 
position of the current group is equal to the preset minimum value:

where w is the inertia weight, which affects the overall optimization ability; c1 and c2 are 
acceleration constants (learning factors); rdl

1
 and rdl

2
 are random numbers on the interval 

[0, 1]. Again, l represents the current iterations times; zl
id

 is the position of particle i in 
the d-dimensional space of the lth repetition; vid ∈

[
vmin, vmax

]
 is the particle velocity that 

determines the update direction and size of the next generation.
The PSO algorithm is a random, parallel optimization algorithm, which advantages are 

that it does not need the objective function to have a specific property, and it can make the 
objective function converge to a final point in a short time. Besides, the PSO algorithm has 
low process complexity and is easy to implement [16]. However, the PSO algorithm also 
has the following shortcomings:

1.	 By analyzing the evolutionary (14) and (15), the particle’s speed is almost close to 0, 
because it always chases the current global best and best search. This problem causes 
particles to fall into local minima and unable to escape quickly.

2.	 To expand the search scope, we need to increase the number of particles in the particle 
swarm or reduce the chasing of particles to the global search of the whole particle 
swarm. Unfortunately, those operations lead the algorithm only to allow for global par-
ticle search, but whether the final result is an optimal global value cannot be guaranteed. 
This limitation reduces the global optimal search capability of the particles, and the 
algorithm is not easy to converge [17, 33].

3.7 � TVP‑IPSO Algorithm

An exciting feature of evolutionary algorithms is that they have strong global searchability 
in the early stages of algorithm iteration and a local search ability with higher accuracy 
in the later stages [18]. In other words,  the improvement of the optimization algorithm 
depends on the optimization ability and optimization speed.

Nevertheless, it relies on the cooperation and competition between groups for the stand-
ard PSO, and the particles themselves have no mutation mechanism. Therefore, once a 
local extreme value constrains a single particle, it is challenging to jump out of the local 
extreme value. The particle needs to use other particles to jump out of the local value [19].

The inertia weight is a critical factor in balancing algorithm categories and local search-
ability. Learning factors can also effectively solve the coordination problem between their 
own experience and social experience. These two parameters control the importance of 
group learning and particle self-learning. Therefore, necessary improvements are made to 
learning factors c1, c2, and the inertia weight w of standard PSO to improve the algorithm 
performance in the iterative process and ensure that it can find the optimal global solution.

Two versions of particle swarm optimization that are based on different topological 
structures are available, namely, local particle swarm optimization and global particle 
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swarm optimization [12]. LPSO has a slow convergence rate, but it is easy to out of the 
local optimal. On the other hand, GPSO converges quickly but sometimes falls into local 
optimum. In this paper, an improved algorithm for particle swarm optimization with time-
varying parameters (TVP-IPSO) is proposed based on the advantages of both LPSO and 
GPSO.

The use of acceleration factor and time-varying inertia weight leads us to the dynamic 
balance algorithm’s global and local search capabilities. In the early stage, particles are 
encouraged to search extensively in the search space, avoiding premature convergence of 
the algorithm due to aggregation in the optimal local value. In the later stage, particles are 
encouraged to move to the optimal amount to accelerate the convergence.

In this article, we propose a time-varying parameter particle swarm algorithm to dynam-
ically adjust the learning factors c1 and c2, and the inertia weight w. The algorithm adjusts 
the performance by the cooperation of learning factors and inertia weight. The recursive 
formula of the TVP-IPSO algorithm is as follows:

where � is a constant between [0, 1]; w is the inertia weight;c1 and c2 are acceleration 
constants; rdl

1
 and rdl

2
 are random numbers on the interval [0, 1];vl+1

id
 is the velocity of the 

l + 1th iteration of particle i in the d dimension;pl
1,d

 is the position of the optimal parti-
cle in the population of the l generation;lmax is the total number of algorithm iterations; 
wi,wf , c1i, c1f , c2i, c2f   are constants.

According to (18), increasing the total number of iterations lmax , the inertia weight w 
decreases non-linearly. The inertia weight w weighs the local search and global search of 
particle swarm, and its value directly affects the optimization ability of the particle swarm. 
When the weight becomes large, the global optimization ability of the particle swarm also 
increases.

In contrast, the weak local optimization capabilities help prevent the population from 
entering the optimal local solution. Therefore, this paper introduces dynamic inertial 
weight, which makes the PSO algorithm find a balance between global and local, signifi-
cantly improving the algorithm’s performance and promoting the extensive application of 
PSO.

Wang et al. show that the learning factors can significantly impact the algorithm’s per-
formance over time [18]. According to (19) and (20), and through the study on improving 
learning factors c1 and c2, the global and local search ability of the algorithm’s dynamic 
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balance is benefited. In the early stage, particles are encouraged to search extensively in 
the search space, avoiding premature convergence of the algorithm due to aggregation in 
the optimal local value. Though, particles are encouraged to move to the optimal amount to 
accelerate the convergence in the later stage.

For obtaining better SVM parameters, time-varying parameters are introduced based 
on the standard PSO algorithm. As a result, TVP-IPSO can have excellent global search-
ability and ensure local search accuracy, further enhancing the convergence speed of the 
algorithm.

3.8 � Fitness Function

Four performance indicators (or metrics) of intrusion detection systems are widely known 
and applied: true positive (TP), true negative (TN), false positive (FP), and false-negative 
(FN). The TP denotes the correct prediction of normal behavior, FP indicates that abnor-
mal data was not detected correctly, FN means that normal behavior is considered abnor-
mal. Finally, TN denotes the correct detection of anomalies [11].

The critical point is to use TVP-IPSO to find the optimal parameters of the SVM and 
improve intrusion detection capability. Therefore, the intrusion detection accuracy used on 
the SVM training set as the fitness function is defined as:

3.9 � Process of TVP‑IPSO‑SVM

Given that the energy available for nodes is limited in WSNs, TVP-IPSO is adopted to 
optimize SVM parameters and reduce both training time and energy consumption. Firstly, 
we use kernel parameter � and the penalty factor C of SVM to set the position Z of particle 
swarm, that is, Z = (C, �) . The location of the optimal solution is the optimal value of the 
two parameters of the SVM.

Following the abovementioned analysis, Fig. 3 shows the primary process of optimizing 
SVM parameters by TVP-IPSO in the proposed model.

Step 1 Initialize population according to kernel parameter � and the penalty factor C of 
the SVM. The particle position is zid =

(
Cid, �id

)
;

Step 2 Initialize TVP-IPSO algorithm parameters, including maximum iteration number 
kmax , speed vid , then set learning factors c1 and c2, and select random numbers rdl

1
 and rdl

2
 

on [0,1];
Step 3 Set the extreme individual value of the particle Pi as the current position, and 

take the global absolute value Pg as the best particle position in the initial population;
Step 4 Calculate the fitness value of particle fitness(i) according to (21);
Step 5 Adjust, according to fitness(i), the historical and global optimal values of the 

particle, referred to as Pi and Pg , respectively, to find the extreme global value and extreme 
point of the particle, then initialize the extreme individual value and extreme individual 
point;

Step 6 Update the parameters according to (18)-(20) and the position and speed of par-
ticles according to (16)-(17). Recalculate the corresponding fitness(i) and modify the itera-
tion coefficient as l = l + 1;

(21)fitness(i) =
TP + TN

TP + FP + TN + FN
.
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Step 7 Determine whether lmax has reached the maximum number of iterations. If lmax is 
reached, end the process; otherwise, return to Step 4;

Step 8 Decode the optimal Z, then obtain the optimal parameter combination (C, �).

3.10 � Complexity Analysis

This part analyzes the complexity of the algorithm proposed in this paper. From the above 
description of the traditional PSO algorithm and TVP-IPSO algorithm, it can be observed 
that the difference in the complexity of the two algorithms is mainly based on the number 
of particles and the running time required to replace the particles in each generation.

Fig. 3   The process of optimizing the parameters of SVM by TVP-IPSO
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More precisely, for the traditional PSO, the number of particles in each iteration is the 
same. Assume the number of particles in the ith iteration is Ni, where i = 1, 2,… ,m . Here, 
m represents the maximum number of generations, so N1 = N2 = ⋯ = Nm = N. The opera-
tion time required for each iteration of each particle is TT , so we can conclude that the total 
running time needed for the traditional PSO algorithm for optimization is N × m × TT.

On the other hand, for what concerns TVP-IPSO, the number of particles gradually 
decreases with each iteration, then N1 ≥ N2 ⋯ ≥ Nm . Again, assuming that the calculation 
time required for each iteration of each particle is TD , the total running time needed for the 
TVP-IPSO algorithm after optimization is ∑m

i
Ni × TD

 , which shows to be better than the 

traditional PSO algorithm.
Moreover, the space complexity of the proposed algorithm is mainly related to the SVM 

in this paper. In detail, the SVM runtime space complexity is O(k × d) , where k is the num-
ber of support vectors, and d is the dimension of data. It is important to note that this is 
because, before the execution of the proposed TVP-IPSO-SVM algorithm, we use PCA 
for data dimensionality reduction, which significantly reduced the space complexity of the 
algorithm.

4 � Results and Evaluation

This section first compares the proposed scheme with some of the most representative 
works proposed in state-of-the-art. Following next, taking the detection rate and false 
detection rate as the key points, we emphasize the main advantages of the model proposed 
in this paper applied to WSNs.

4.1 � Methodology

In this experimentation, the following goals are aimed:

1.	 Determine the influence of parameters obtained by different algorithms on SVM clas-
sification performance;

2.	 Verify the superiority of TVP-IPSO-SVM in terms of intrusion detection;
3.	 Verify the advantage of TVP-IPSO-SVM in WSNs compared with other algorithms.

In the experimental evaluation of the proposed TVP-IPSO-SVM scheme, we compared 
it with related works and evaluated it on multiple datasets. Finally, the analysis of the 
experimental results proves that the proposed scheme is better than other schemes in terms 
of safety and energy consumption. In particular, especially in detecting DoS attack data, its 
classification accuracy reaches more than 98%. At the same time, in terms of verifying the 
convergence speed and training time, our proposal has better feasibility in WSNs intrusion 
detection due to its faster speed.

4.2 � Algorithm Comparison for Selecting the Classifier Parameters

In this part, we further detail the methodology we have previously described. In this meth-
odology, we have compared some schemes mentioned in related work with our scheme in 
the stage of selecting the classifier parameters. For example, reference [2, 4, 5, 13] and [11] 
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respectively used Salp Swarm Optimization (SSO), Artificial Bee Colony (ABC), Particle 
Swarm Optimization (PSO), and Genetic Algorithm (GA) to optimize classifier parameters 
and create a new intrusion detection model. More precisely, we have compared the follow-
ing indicators for the above algorithms:

1.	 The relation between solution time and dataset size: of course, the solution time of an 
algorithm increases as the dataset size increases. As regards the algorithms taken into 
consideration, the relationship defined above can be Linear or Exponential.

2.	 Algorithm convergence: any algorithm can only iterate a finite number of times. Algo-
rithm convergence means that a stable solution can be obtained after a limited number 
of iterations. This index reflects the performance of the algorithm to a certain extent. 
This indicator can take Good and Poor values.

3.	 Search space range: In some cases, the optimization algorithm still has poor results. 
Whether the optimization problem can get good results, the range of search space is 
also an important indicator. The larger the search space, the higher the probability of 
obtaining a high-quality solution. For the algorithms described above, this indicator can 
take the Small, Medium, and Wide magnitudes.

4.	 The capacity of algorithm memory: In the algorithms taken into consideration, particles 
have a "memory capacity", so that the next generation solution can inherit more informa-
tion from the previous generation and thus find the optimal solution in a shorter time. 
This indicator can take the Ordinary, Strong, and None values.

5.	 High-dimensional data processing capacity: Due to the large amount of high-dimen-
sional data in WSNs, we compare the algorithm’s ability to process high-dimensional 
data. For the algorithms described above, this indicator can take the Strong, Weak, and 
General magnitudes.

We use the above five indicators to summarize the performance of each algorithm. The 
GA does not follow the optimal solution in the update position operation of the optimi-
zation process. The previous knowledge will be destroyed during the population iteration 
process, the reason why the GA has no memory and poor convergence. Therefore, we use 
the GA as the benchmark for this comparison. The performance of the above algorithms is 
shown in Table 1.

Clearly, in the case of a large number of datasets, the GA algorithm requires more time, 
and the accuracy is the worst. Although the ABC algorithm has a good algorithm conver-
gence, the optimization effect on high-dimensional problems is still not noticeable. The 
most promising algorithms mentioned above are SSO and PSO.

Table 1   Algorithm performance comparison

Schemes Relationship 
between solution 
time and dataset size

Algorithm 
conver-
gence

Search space Memory capacity Capacity of process-
ing high-dimensional 
data

[2] SSO Linear Good Small Strong General
[4] ABC Linear Good Medium Ordinary Weak
[5, 13] PSO Linear Good Wide Strong Strong
[11] GA Exponential Poor Small None Weak
TVP-IPSO Linear Good Wide Strong Strong
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However, the range of SSO particle search space is not extensive, and the particle needs 
to optimize the objective function of multiple local extreme values in the optimization pro-
cess. Thus, there is a possibility of evolutionary stagnation. As a result, the SSO algorithm 
brings higher energy consumption than PSO under the exact condition of WSNs.

Importantly, it should be noted that our energy assumptions and comparisons are indi-
rectly measured via time: Energy = Power * time, where Energy is the energy spent by the 
algorithm, Power is the total system (processor, memory and other components) power, 
and time is the time to execute the particular algorithm. The higher complexity the algo-
rithm presents, the higher time it requires to complete. However, we have not included a 
power meter to measure the power used by the algorithms in the experimentation since it 
does change the natural environment where intrusion detection is aimed at.

Table 2 shows the computational complexity of the SSO and PSO, where t represents 
the number of iterations, d is the number of variables (dimensions), n represents the num-
ber of solutions, and Cof is the cost of the objective function.

As shown in Table 2, the computational complexity of SSO is slightly higher than that 
of PSO. Finally, by analyzing the information given above, we choose to optimize the basic 
PSO algorithm to process the classifier’s parameters. This action is desirable. In the last 
section of this paper, we have proved theoretically that the computational complexity of 
our proposed TVP-IPSO performs better than the traditional PSO algorithm.

4.3 � Experimental Description

To assess the performance of the proposed model, we selected the KDD Cup99 dataset 
from the MIT Lincoln laboratory for simulation. In detail, such a dataset is mainly com-
posed of both abnormal and normal data. Again, the abnormal data can be further divided 
into the following four categories: unauthorized access from a remote machine (Remote 
to Local, R2L), denial of service (DoS), Probe, and unauthorized access to local supervi-
sor privileges (User to Root, U2R) [11]. However, due to the small size of U2R, for the 
experimental phase in this paper, we only focus on data concerning DoS, Probe, and R2L 
categories.

Considering that SVM is a valid statistical method for small samples, we use a 50% 
sample as a training dataset and the rest as a testing dataset. Before performing the experi-
ments, we changed the symbol field of the data points to numeric values and converted 
them into the normalized format. Table 3 shows the dataset category distribution.

Table 2   The computational 
complexity

Algorithm The computational complexity

SSO O(t(d *n + Cof * n))
PSO O(tdn)

Table 3   Dataset category 
distribution and description

Type Normal Abnormal (8000)

DoS Probe R2L

Number 4000 4000 2000 2000
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The server used for the experimentations is configured with one Intel(R) Core i5-6500 
@ 3.20 GHz CPU and 8G memory, running Microsoft Windows10 operating system and 
MATLAB R2018a environment. We use the detection rate and false alarm rate [25] to 
measure the most effective intrusion detection model.

There are some constraints in these experiments. In the TVP-IPSO algorithm, the popu-
lation size is 30, the evolution times are 50, and the acceleration constants c1 and c2 are 
equal to 1.5 and 1.6. We used the Libsvm in MATLAB as a supplementary tool. The time 
of cross-validation is set to be v = 4. The penalty factor range is between 

[
2−5, 25

]
 , and RBF 

is used as the kernel function.

4.4 � Experimental Results and Discussion

To evaluate the effectiveness of the TVP-IPSO + SVM in terms of intrusion detection 
performance, we compared it with SVM that does not use any Intelligent Evolutionary 
Algorithms, GA + SVM [11], and IPSO + SVM [13]. First of all, from Table 4, it can be 
observed that for different optimization algorithms, we obtain different best penalty factor 
C and kernel parameter �.

In detail, from Table 4, we can observe that the proposed TVP-IPSO + SVM algorithm 
performs better than other detection algorithms in terms of detection rate, accuracy, and 
false alarm rate. More precisely, when TVP-IPSO is used for classification training of 
SVM, the maximum classification accuracy is 97.3%. Again, the detection rate of the four 
algorithms is relatively high because the SVM algorithm has good generalization ability 
while avoiding the minimum local convergence. However, the detection rate of our pro-
posal is better than the other three methods, reaching 98.2%. Furthermore, to reduce the 
false alarm rate.

According to the experimental results shown in Table 4, different types of attacks are 
not considered separately. Besides, for further analyzing the detection performance of 
TVP-IPSO + SVM against unknown attacks, we carried out the following experiments:

Detection rate: DR =
TP

TP + FN
.

False alarm rate: FAR =
FP

TN + FP
.

Table 4   Comparison of different algorithms

Method Parameters Train accuracy (%) Test accuracy (%) DR (%) FAR (%)

C �

SVM 2 32 97.8667
(5872/6000)

96.9333
(5816/6000)

97.1 5.4

[11] GA + SVM 74.71 86.28 97.9167
(5875/6000)

96.9667
(5818/6000)

97.9 5.3

[13] IPSO + SVM 1.255 50 97.8667
(5872/6000)

96.95
(5817/6000)

98.08 4.3

TVP-IPSO + SVM 1.511 49.11 98.35
(5901/6000)

97.3
(5838/6000)

98.2 4.3



2037An Evolutionary‑Based Approach for Low‑Complexity Intrusion…

1 3

1.	 Mix different types of attacks and regenerate a new test dataset.
2.	 Compare the detection rate and false alarm rate of various attacks with different meth-

ods.

The experimental results of the simulation experiments are given in Table 5.
As shown in Table 5, the TVP-IPSO + SVM is better than IPSO + SVM, GA + SVM, 

and SVM in terms of accuracy, DR, and FAR, for different types of attacks. In this 
research, the algorithm is adapted to integrate the local search ability and global search 
ability of the TVP-IPSO algorithm and the SVM detection ability, so that the proposed 
method can identify intruders faster and improve the detection rate. Moreover, in terms of 
FAR, taking Probe as an example, the FAR of the TVP-IPSO + SVM algorithm is 0.2% 
and 0.35% lower than the IPSO + SVM algorithm [13] and traditional SVM, respectively. 
Again, since a Time-Varying Parameter method is adopted in the weight updating of the 
PSO algorithm, the global search efficiency and local search accuracy are improved, and 
the FAR is reduced.

Under the same training samples and iteration conditions, we can evaluate the algo-
rithm’s computational complexity by comparing the training time of the proposed algo-
rithm, GA + SVM, and IPSO + SVM [13]. The average training time of those three algo-
rithms, obtained from the simulation, is shown in Table 6.

In Table 6, we see that the training time of the TVP-IPSO + SVM algorithm is 53.206 s 
shorter than GA + SVM, and 30.597 s less than IPSO + SVM. Therefore, in terms of train-
ing time, our proposal results to be better than the other two. We remark that this is of tre-
mendous importance in the context of WSNs, where node energy consumption is a critical 
factor to consider.

In terms of algorithm performance improvement, we compared the convergence and fit-
ness changes of TVP-IPSO + SVM, IPSO + SVM, and GA + SVM during the iterative pro-
cess. The optimization curve is shown in Fig. 4.

Figure 4 further shows the advantages of the TVP-IPSO + SVM algorithm over other 
algorithms. For example, we can observe that TVP + IPSO has a convergent step of 6 for 
SVM parameter optimization, while IPSO and GA have concurrent levels of 12 and 17, 
respectively. Furthermore, among them, the fitness value obtained by TVP-IPSO + SVM 

Table 5   Comparison of the 
detection rates of various 
categories

Category method DR (%) FAR (%)

Probe DoS R2L Probe DoS R2L

SVM 96 97 96.9 2.1 1.15 1.05
[11] GA + SVM 96 97.25 96.8 1.95 1.10 1.05
[13] IPSO + SVM 96 97.25 97.2 1.95 1.10 1.05
TVP-IPSO + SVM 96 98.05 97.5 1.75 1.05 1.0

Table 6   The average training 
time of three different algorithms

Algorithm Training time (s)

[11] GA + SVM 864.343
[13] IPSO + SVM 841.734
TVP-IPSO + SVM 811.137



2038	 T. Zhang et al.

1 3

optimization reaches 97.05%, while that of IPSO and GA is 97% and 96.93%, respectively. 
Therefore, the TVP-IPSO model proposed is superior to IPSO and GA models in both con-
vergence speed and detection accuracy.

5 �  Conclusion and Future Work

Since PSO tends to fall into the local extremum, in this paper, we propose a method to opti-
mize PSO by using Time-Varying inertia weight and acceleration factor, thereby improving 
the global and local searchability of the algorithm. In the TVP-IPSO algorithm, particles 
learn from global and local optimal particles and the optimal particles in the population. 
Therefore, particles have a robust global optimization ability, enabling them to optimize 
SVM classifier parameters better.

This research combines the TVP-IPSO algorithm and SVM to carry out the intru-
sion detection model for WSNs. Such a model improves the detection accuracy of known 
attacks and increases the detection rate of unknown attacks. PCA is used for data dimen-
sion reduction processing, while RBF is adopted as an SVM kernel function. Furthermore, 
appropriate parameters are selected for SVM to avoid SVM classifiers with excessive or 
low fitting due to the improper determination of parameters and to reduce training time and 
improve the classification performance of SVM.

Experimental results show that compared with the IPSO-SVM in [13] and traditional 
GA-SVM, the proposed TVP-IPSO-SVM improves the detection rate, accelerates the con-
vergence rate while reducing the false alarm rate and detection time.

As future work, we intend to focus on the nodes of WSNs, to quickly find and process 
an attacked node when an attack is detected, improving the ability of sensor nodes to deal 
with problems independently. When there are errors or attacks, ensure the strength of the 
essential services and the sustainable application of the network.
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