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Abstract
Blind equalization can effectively reduce the intersymbol interference introduced by the 
frequency selective channel in the absence of the training sequence. The Shalvi-Weinstein 
Algorithm (SWA) performs better under most channels, especially for highly distorted ones 
compared with constant modulus algorithm (CMA) or its modified versions. The disad-
vantage of the SWA is the high complexity resulting from the computation of the inverse 
matrix. A low complexity SWA based on dichotomous coordinate descent algorithm is pro-
posed in the paper, whose computation complexity is on the same order of magnitude as 
the CMA. Besides the low complexity, the proposed algorithm also avoids the possible 
numerical error resulting from the computation of the matrix inversion. Moreover, a low 
complexity of decision directed algorithm based on RLS is presented for a dual mode blind 
equalization. Simulations verify the effectiveness of the algorithm.
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1  Introduction

With the increasing data rate of wireless communication, the intersymbol interference (ISI) 
caused by multipath propagation becomes more serious. Adaptive equalizers are widely 
used to remove the ISI. When there is no training sequence the blind equalization algo-
rithms are generally chosen [1, 2]. The typical blind equalization algorithms include con-
stant modulus algorithm (CMA) [3], Shalvi-Weinstein algorithm (SWA) [4, 5] and the cor-
responding modified versions [6, 7]. In [4], an improved SWA, which avoids divergence, 
is given. CMA has slow convergence rate but low computation complexity. On the con-
trary, SWA converges faster at the expense of higher computation complexity because of 
the computation of the matrix inversion involved. Generally, the computation of the inverse 
matrix may also lead to numerical calculation error.

In practical application, the computational complexity is one of the most important 
indexes to evaluate an algorithm. It is worth studying an algorithm with low complexity 
and a guaranteed performance. For solving the problem of the norm equation, the dichoto-
mous coordinate descent (DCD) algorithm [8, 9] does not need the computation of the 
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inverse matrix. Compared with LS algorithm for solving the same problem, the complexity 
of the DCD algorithm is changed from O(N2) to O(N) . By quantization of some param-
eters, the DCD algorithm has only addition and bit shift operation for hardware implemen-
tation [10, 11].

Although the SWA has relatively good equalization performance, it has high computa-
tional complexity because it involves matrix inversion. Based on the DCD and the algo-
rithm presented in [4], a low complexity SWA is presented. The total computation com-
plexity of the proposed algorithm is comparable to that of the CMA.

For blind equalization, when output symbols have relatively low error probability, 
switching to a decision-directed (DD) mode can further improve the equalization perfor-
mance [12, 13]. Therefore, a low complexity dual-mode algorithm with RLS used at the 
second stage is also presented.

The paper is organized as follows. In Sect.  2 the system model and the classic algo-
rithms are introduced. The proposed algorithm is presented in Sect. 3. In Sect. 4 simula-
tions are given to verify the effectiveness of the proposed algorithm. Conclusion is given 
in Sect. 5.

2 � Algorithm Description

The received signal x(n) in multipath channel is given by

where s(n) is transmitted symbols through the channel h , and ⊗ represents the convolution 
operation.v(n) is the white Gaussian noise. At time n the input vector of the equalizer is 
�(n) = [x(n) , x(n − 1), … , x(n − N + 1)]H , where N is the length of the equalizer weights, 
the superscript H denotes the complex conjugate transpose. The output of the equalizer is

where �(n) is the weight vector of the equalizer.

2.1 � Introduction of SWA [4]

The cost function of the SWA is

where � = E
[
|s(n)|4

]
∕E

[
|s(n)|2

]
 is a statistical constant. 0 ≤ 𝜆 < 1 is the forgetting factor, 

yn,l = �(n)H�(l).
According to [4], the procedure of SWA is as follows.
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where eSWA(n) and � denote the error and step size of the equalizer respectively, and * stands 
for complex conjugate. � is a constant,�(n) is the autocorrelation matrix. Cs

1,1
= E{|s(n)|2}.

2.2 � DCD Algorithm [8–10]

For solving the normal equation �� = � , it is equivalent to minimize the following quadratic 
equation.

where the superscript T denotes the transpose operation.
Standard linear iterative search uses the formula

where � is the searching step size, which is equal to dT�∕dT�d , r is the residual vector,d is 
the search direction vector, which is non-orthogonal to r, i.e.dT� ≠ 0.

If the search direction is a Euclidean space coordinate, the formula (9) is the coordinate 
descent algorithm, and �d = �(p) , where �(p) denotes the pth column of the matrix Q, thereby 
removing the multiplication of the matrix and the vector.

where ep is the searching direction in Euclidean space and the step size is � = �p∕�p,p.
According to the principle of the descent method, for the kth iteration the incremental of 

the quadratic formula should meet the following condition.

where �k represents the corresponding kth iteration value of � . Based on (11), the following 
iteration formula is obtained.

where �k denotes the step size of the kth iteration, and the symbol · denotes the dot product.
The iteration formula of the step size is as follows.
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where 0 < c < 1 is a constant.
For DCD algorithm, the iterative direction is still the Euclidean coordinate direction, but 

the selections of the step size � and the constant c are different with the exact line search 
method. Suppose that each element of the vector � is limited, i.e.|�n| ≤ A , and A is known. A 
can be expressed as A = 2Nb+p , where p is an arbitrary integer, and Nb is a positive integer. In 
order to reduce the complexity of hardware implementation, the corresponding parameters in 
(13) are set to c = 1∕2 and �0 = A∕2 respectively. In such a way, the multiplication is substi-
tuted by shift operation for hardware implementation.

3 � Low Complexity SWA Based on DCD

The main idea of the low complexity SWA based on DCD (SWA-DCD) algorithm is as fol-
lows. The solution of the cost function (3) is equivalent to the solution of the normal equa-
tion. Moreover, the weight increment can be derived from the weight incremental canoni-
cal equation, which will be transformed to the normal equation form and solved by DCD 
algorithm. In the following, we will explain this idea in details.

3.1 � The SWA‑DCD Algorithm

Let the derivative of the cost function (3) to �(n) equal to zero, we get the following canon-
ical equation.

where �(n) = 1

�

∑n

l=1
�n−l��yn,l��

2
y∗
n,l
�(l).

The �(n) can be obtained by the iteration form.

It is noted that unlike [4] we leave the parameter � on the right side of (14). In the fol-
lowing, we derive the weight incremental canonical equation of the equalizer coefficients.

We denote Δ�(n),Δ�(n) and Δ�(n) as follows.

According to Ref. [4], we have

Substitute (19) into (20), we get
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where cSWA = � ⋅ Cs
1,1
∕(� − � ⋅ Cs

1,1
).

�(n) is updated in the following rule [4].

Substituting (21) into (22), we get the iteration formula of �(n).

where z(n) =
(
|y(n)|2y(n) + cSWA ⋅ eSWA

(n)
)
∕�.

Define the residual vector �(n)

Substitute (17) into (14), we obtain

Combining (16), (18) and (24), we get

Let �0(n) represent the right side of (26) and we get the weight incremental canonical 
equation.

where �0(n) = ��(n − 1) + �e∗
SWA

(n)�(n) (The derivation process is shown in the appen-
dix),� = (1 + cSWA)∕�.

The solution of (14) is transformed into solving (27), and (27) has similar form as the 
normal equation. It is clear that the solution of (27) can be achieved by the DCD algorithm. 
After we get the Δ�(n) , the weight vector can be calculated by �(n) = �(n − 1) + Δ�(n).

We solve (14) iteratively way rather than directly, mainly based on the following two 
points. First, the calculation of �0(n) involves less computation compared with that of �(n) , 
and the calculation of �(n) will further enlarge the nonlinear effect involved in the algo-
rithm. Second, with the same accuracy of calculating the weight vector, the iterative way 
will require a smaller number of iterations [8].

For the original SWA, the instability mainly comes from the nonlinear feedback of the 
filter output and finite arithmetic problems [4]. For the latter problem, it comes from the 
update of matrix inversion. For SWA-DCD algorithm, however, there is no need to calcu-
late the inverse matrix, so this problem will not happen. In [4], a region of interest, which 
is determined by  | y(n)|2 ≤ � ⋅ Cs

1,1
 , is provided to avoid the divergence caused by nonlin-

ear feedback. In this paper, we take the same way to deal with the instability problem.
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3.2 � A Low Complexity Dual‑mode Algorithm

When the output symbols have relatively low errors, using decision directed mode can fur-
ther improve the performance of equalizer [13]. Here a dual-mode algorithm is presented. 
At the first stage the SWA-DCD algorithm is used, and low complexity RLS based on DCD 
(RLS-DCD) is taken at the second state. This dual-mode algorithm is named as SWA-RLS-
DCD. The total complexity of the SWA-RLS-DCD algorithm is O(N) order of magnitude.

The main difference between SWA-DCD and RLS-DCD is the calculation �0(n) in (27), 
which is shown as follows.

where eRLS(n) = û(n) − y(n) and û(n) is the estimated symbol.
For dual-mode the switching point is a key factor, here we use a threshold to switch the 

different algorithms, which is determined by the following function.

where 2d stands for the minimum distance between any two symbols in a standard 
constellation.

The closer the output signal is to the constellation point of the transmitted signal, the 
smaller the value g(y) is, and when it coincides with the signal constellation, the value is 
0. Therefore the algorithm will switches to the DD mode when the following condition is 
reached.

where Th is the threshold, and yRe, yIm are real and imaginary parts of y(n) respectively.
The computation complexity of different algorithms is given in Table  1, where 

Pa ≤ (2N + 1)Nu + Nb . From Table 1, it can be seen that the computation complexity of 
both SWA-DCD and RLS-DCD is comparable to that of CMA and LMS.

4 � Simulation and Performance Anslysis

For all simulations the transmitted signal is 64QAM.Two typical channels are used.

Channel 1 [14]: 
[−0.005 − 0.004j 0.009 + 0.03j − 0.024 − 0.104j

0.854 + 0.52j − 0.218 + 0.273j 0.049 − 0.074j

−0.016 + 0.02j];

(28)�0(n) = ��0(n − 1) + e∗
RLS

(n)�(n)

(29)g(y) = cos2(y�∕2d)

(30)g
(
yRe(n)

)
< Thandg

(
yIm(n)

)
< Th

Table 1   Computation Complexity of different algorithms

Algorithm

Operator SWA RLS SWA-DCD RLS-DCD

Real addition 2 1 Pa + 1 Pa

Complex addition N2 + 3N−1 N2 + 3N−1 4N − 1 4N

Real multiplication 4N + 4 6N 3N + 2 3N

Complex multiplication N2 + 3N + 1 N2 + 3N 3N + 2 3N
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Channel 2 [15]: hn =

{
1

2

[
1 + cos

(
2�

C
(n − 2)

)]
n = 1, 2, 3

0 others

Two evaluation indicators, MSE and residual ISI, are used for performance comparison.
Case 1 Comparison of SWA and SWA-DCD.
Here channel 1 is used. The length of the equalizer is 11. The SNR is set to 30 dB. 

The parameters �,Nb and Ns are set to be 0.999, 16 and 12 respectively, � is 2.
The result is shown in Fig. 1.We can see that SWA-DCD converges relatively slower 

than SWA and they reach the same results when the algorithms converge. However, the 
computation complexity of SWA-DCD is much smaller than that of SWA, which is very 
obvious when we compare the complex addition and multiplication. The results verify 
that the proposed algorithm can greatly reduce the implementation complexity while 
ensuring the equalization performance.

Case 2 Comparison of dual-mode algorithm.
First the channel 1 is chosen. The parameters � for SWA-RLS-DCD, SWA-DCD 

and SWA-DCD-LMS (at the second stage the LMS is used) are 0.995, 0.999 and 0.99 
respectively. For DD mode the step size of LMS is 6 × 10–4,Nb and Ns are equal to 16 
and 12 respectively, the switching threshold Th is 0.9, The SNR is 30 dB.

The results are shown in Fig. 2. It is clear that dual-mode algorithm has faster con-
vergence speed and lower MSE and residual ISI compared with the single mode. Com-
paring the two dual-mode algorithms, SWA-RLS-DCD has relatively lower steady state 
error and residual ISI but with almost the same convergence speed. However, the com-
putation complexity of the two algorithms are almost on the same order, and SWA-RLS-
DCD performs better than SWA-DCD-LMS with regard to both MSE and residual ISI.

Then we take channel 2 for simulation. The channel parameter C is set to 3.3, which 
corresponds a channel with eigenvalue spread more than 21. The length of the channel  
is 11. The parameter � for SWA-RLS-DCD, SWA-DCD and SWA-DCD-LMS are 0.994, 

Fig. 1   Performance of SWA and SWA-DCD
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0.9995 and 0.996 respectively. The step size of LMS is 3 × 10–4, Nb and Ns are equal to 8 
and 2 respectively. The SNR is 30 dB.

Fig. 2   Performance of dual-mode algorithm with channel 1

Fig. 3   Performance of dual-mode algorithm with channel 2
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The results are shown in Fig. 3. From the results we see that SWA-RLS-DCD also 
has relatively faster convergence speed compared with that of SWA-DCD-LMS.

Both the results in Figs. 2 and 3 show that the dual-mode algorithm can achieve better 
performance compared with the single mode algorithm. Since the compuation complexity 
does not increase much, SWA-RLS-DCD is much more prefered.

The proposed algorithm solves the weight incremental norm equation rather than SWA 
problem directly, which avoids the computation of the matrix inversion and reduces the 
computation complexity with a great amount. Moreover, in the case of a small increase in 
computation complexity, the convergence speed of the dual-mode algorithm is obviously 
accelerated compared with the single mode algorithm, and the steady-state error and the 
residual ISI are smaller.

5 � Conclusions

In this paper the DCD algorithm is introduced to lower the complexity of the SWA. At 
the same time a low complexity dual-mode algorithm is also presented. Simulations verify 
effectiveness of the proposed algorithm, especially for dual mode algorithm the proposed 
algorithm has not only low computation complexity but also better performance with 
regard to the MSE and residual ISI.

Appendix

Substituting the above equation into the following equation.

Declarations 

Δ�(n) ∗ �(n − 1) =[�(n) − �(n − 1)] ∗ �(n − 1)

=
[
� ∗ �(n − 1) + �(n) ∗ �H(n) − �(n − 1)

]
∗ �(n − 1)

=(� − 1) ∗ �(n − 1) ∗ �(n − 1) + �(n) ∗ �H(n) ∗ �(n − 1)

=(� − 1) ∗
[
�(n − 1) − �(n − 1)

]
+ y(n)∗ ∗ �(n)

𝐪0(n) =𝐫(n − 1) + Δ𝐪(n) − Δ𝐑(n) ∗ 𝐰̂(n − 1)

=𝐫(n − 1) + Δ𝐪(n) − (� − 1) ∗
[
𝐪(n − 1) − 𝐫(n − 1)

]
− y(n)∗ ∗ 𝐱(n)

=� ∗ 𝐫(n − 1) +
[
Δ𝐪(n) + 𝐪(n − 1)

]
− � ∗ 𝐪(n − 1) − y(n)∗ ∗ 𝐱(n)

=� ∗ 𝐫(n − 1) + 𝐪(n) − � ∗ 𝐪(n − 1) − y(n)∗ ∗ 𝐱(n)

=� ∗ 𝐫(n − 1) + |y(n)|2 ∗ y∗(n) ∗ 𝐱(n)∕� + 𝛒(n)∕� − y(n)∗ ∗ 𝐱(n)

=� ∗ 𝐫(n − 1) +
[(
|y(n)|2 − �

)
∗ y∗(n) ∗ 𝐱(n) + 𝛒(n)

]
∕�

=� ∗ 𝐫(n − 1) +
[
e∗
SWA

(n) ∗ 𝐱(n) + 𝛒(n)
]
∕�

=� ∗ 𝐫(n − 1) +
[
e∗
SWA

(n) ∗ 𝐱(n) + cSWA ∗ e∗
SWA

(n) ∗ 𝐱(n)
]
∕�

=� ∗ 𝐫(n − 1) +
(
1 + cSWA

)
∗ e∗

SWA
(n) ∗ 𝐱(n)∕�
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