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Abstract
With expanding realms of Internet of Things (IoT), researchers have started venturing into 
designing such algorithms for Wireless Sensor Networks (WSN) that support IoT network 
requirements. However, collaborating a sensor network into Internet of Things applicability 
faces surging data flow amidst which the senor network is expected to provide reliable data 
over extended span. Amidst variant techniques like routing, data aggregation, packet sched-
uling etc. which can be improvised upon, clustering has been a widespread energy efficient 
technique that primarily shortens distances in large-scale networks while also bring down 
commuting packets over improved connectivity. Therefore, utilizing clustering to incorpo-
rate WSN enabled IoT (WSN-IoT) standards becomes the primary focus of this paper. Heu-
ristic based clustering algorithm termed as Prolong—Lines of Uniformity based Energy 
Threshold protocol (P-LUET) has been proposed that focusses on expanding the stable 
operating period of WSN-IoT. This algorithm is based on certain measures of WSN-IoT’s 
per unit, that is, residual energy, cartesian coordinate based location, shadow distance from 
the Sink Node, and density within the field. The parameters are employed such that they 
help combat hotspot issue, cluster overlapping, and network connectivity. A cluster-based 
conditional gridding Voronoi structure has also been consolidated that enables multi-hop 
communication. P-LUET algorithm is thoroughly analysed through comparisons with the 
existing approaches. Furthermore, analysis on P-LUET has also been carried on scenarios 
that are based on heterogeneity synthesis and b, c parameters.
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1  Introduction

Wireless Sensor Network—enabled Internet of Things (WSN-IoT) (Fig. 1) is an innova-
tion in the midst of numerous advances in micro sensors, VLSI and wireless communi-
cation based technologies [1]. Apart from applications relating to environment, home, 
healthcare, security, infiltration detection across LoC, military, industrial process control, 

Fig. 1   Wireless Sensor Network (WSN-IoT) scenario enabled with Internet of Things (IoT)
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civil, kindergartens etc. [2]–[5], WSN also adds benefit in IoT infrastructure by allowing 
researchers to realise a dynamic and robust paradigm [6, 7]. WSN’s autonomous energy-
efficient resilient traits, dynamic network size, energy-heterogeneity, functionality of 
quality of service (QoS) allows it to dominate data collection task for any IoT framework 
[8–10]. Several real-time WSN-IoT applications are WaIoT—no flooding system based on 
IoT [11], Smart IoT-Connected Railways by SADEL, AAEON and Intel [12], Bosch Early 
Warning System [13], Intelligent Manufacturing by NEXCOM and Intel IoT Gateway [14] 
etc.

As WSN ventures into IoT, it efficiently uses machine-to-machine connectivity to 
gather field data and make it accessible anywhere [15, 16]. WSN-IoT has innovated its 
services to serve many applications like smart home, smart city, smart industries, smart 
health care, smart environment, smart transportation and many more. And therefore, with 
such advances, the need for efficiency infiltrated. It demanded an improvement in efficient 
acquiring of data monitored by IoT end devices scattered within the field area. These end 
devices, which hold limited energy resources and loose major battery power during a com-
munication, have to comply with the constraints even while fulfilling the efficiency attain-
ment demand. The WSN-IoT architectural framework follows a two-layered hierarchy of 
sensing layer and IoT layer as can be seen from Fig. 2. With the WSN mainly required for 
acquiring field data or any other environment data, it is contained in the sensing layer of 
the architectural framework that consist of numerous randomly deployed ID-enabled (not 
necessarily connected to internet and are alternatively known as sensor nodes) or IP-ena-
bled end devices. These end-devices are equipped with one or more micro-sensors depend-
ent of the kind of IoT application like smart homes can use IR, proximity, motion, and 
video sensors to detect any intrusion, smart city can use acoustic, temperature and seismic 
sensors to detect any natural calamity, smart industries can use gas, pollutant, and humid-
ity sensors to prevent any industrial damage etc. [17–20]. The end-devices are connected 
to one or more static/mobile IoT hub in the IoT layer that performs the essential function 
of a Sink Node SN (or a Base Station BS) and allows to access the retrieved data from the 

Fig. 2   WSN-IoT architectural framework
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field from anywhere across the globe. The IoT hub can either lie in the field surrounding 
the phenomenon or may lie outside it. A flat routing arrangement between the end-devices 
and the IoT hub resonates a computational complexity of O

(
n2
ini

)
 where nini is the initial 

arrangement count of a WSN which clearly describes an unstable operation as the popula-
tion rises as can also be graphically seen from Fig. 3 [21]. Therefore, in order to enhance 
the scope of research in this domain, a need to prompt efficient connectivity among these 
IoT end-devices and with the IoT hub arises. Among the various ways of achieving an 
improved connectivity through minimal communication, the prominently used methods are 
as follows.

•	 Efficient grouping of the IoT end-devices.
•	 Strategically defining the commuting hop between these end-devices and their corre-

sponding IoT-hub(s) such that efficiency improves over nominal computational com-
plexity [22].

Grouping of the end-devices within a WSN either follows a Voronoi structure or a 
non-Voronoi structure. The most common domain of grouping has been embarked upon 
by employing Voronoi structure which either adopts a distributed clustering strategy or 
randomness-based strategy or an adaptive clustering strategy and have a basic purpose of 
averting transmittal of spatially correlated sensed data [23]. Clustering of IoT end devices 
successfully carries out the task of acquiring data from the field over reduced communi-
cation and the corresponding overhead. Clustering involves choosing one or more heads 
amongst the network population to other end-devices that primarily have the job of commu-
nicating with the IoT hub. These heads are popularly termed as cluster heads (CHs) which 
become the intermediator for the sensing layer. However, for efficient operation, there is a 
constant need to keep researching and innovating various CH-selection techniques that are 
based on certain characteristic measures of the network or of its end-devices. However, this 
operation is quite a challenging task as choosing an optimal set of CHs in every round of 
network life is an NP-hard problem where round is one cycle of sensing, data acquisition 
and communication to IoT hub.

Fig. 3   Computational Complexity of flat-routed WSN-IoT
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An ordinary WSN-IoT consists of hundreds or probably thousands of end-devices 
with fewer enacting the role of a CH. With limited energy resources and communication 
range, there is a possibility that a fewer section of network population (known as isolated 
devices) faces no connectivity with any CH of the running round causing them to com-
mute directly with the IoT hub. As long-distance communication leads to greater energy 
drainage, greater isolated nodes leads to reduced network efficiency. This issue is mostly 
observed in environments requiring large networks. WSN-IoT may also sometimes tend to 
face overlapping clusters in densely populated areas that further raise the chances of facing 
device isolation in the other parts of the network. This may add as a disadvantage to the 
device isolation. Another arrogant design concern of large-scale clustered WSN-IoT is hot-
spot issue that hinders lifespan of the devices closer to the IoT hub that may hold a higher 
probability of being chosen as a CH owing to their vicinity with the IoT hub. This concern 
can be projected through right measures for CH selection and/or communication pattern 
for all the devices. An appropriate algorithm that optimally defines such set of nodes as CH 
that help overcome or partially overcome these issues becomes the need of the hour solu-
tion for WSN-IoT.

1.1 � Major Contributions

The prominent focus of the proposed Prolong-LUET algorithm is on prolonging the sta-
bility period of the LUET (Lines of Uniformity based Enhanced Threshold) protocol 
[24] (which is our previous work) in a WSN-IoT environment. The main contributions 
addressed in this work are stated below.

a.	 Apart from incorporating vicinity to the Lines of Uniformity LoU in a field, algorithm 
also requires the end-devices to calculate their shadow distance from their IoT hub based 
on this vicinity parameter to alternate the perception of obtaining the annulus ring.

b.	 With the IoT hub considered within the field limits, concentric rings around it define a 
weight for every end-device in such a way that it helps overcome the hotspot issue.

c.	 CH selection is based on a rank value that additionally depends on the device density 
and its residual energy apart from its shadow distance and weight value.

d.	 Conditional gridding for a partial lifetime is adopted within algorithm to help overcome 
overlapping clusters to a certain limit.

e.	 Conditional multi-hop communication has been adopted.
f.	 Simulation results assess the dominance of P-LUET over the existing state-of-the-art 

clustering algorithms while also accessing the P-LUET performance on scenarios based 
on heterogeneous sensitivity and b, c parameters.

1.2 � Methodology Workflow

The rest of the manuscript is coordinated as follows. Section 2 elaborates the shift in the con-
cerned research domain of design of CH list from homogeneity to heterogeneity to improvi-
sation in probability definitions within threshold function values to indulgence of heuristic 
metrics to meta-heuristic based schemes to being efficiently available for IoT incorporation 
and the motivation for the proposed work. Section 3 presents the preliminary notations for the 
opted WSN-IoT scenario. Section 4 describes the proposed methodology, and the simulation 
results and their analysis is given in Sect. 5. Finally, Sect. 6 concludes the paper.
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2 � Related Work

The main goal of the proposed algorithm is to prolong stability period over improved energy 
efficiency during the design of a CH-selection based clusters in sensing layer of WSN-IoT 
architectural framework. In practise there is a need to integrate IoT end devices with the IoT 
cloud for any real application. This can be achieved either via adding a few IP-enabled end-
devices among the other ID-enabled end-devices or via connecting an IP-enabled IoT hub 
with the locally connected ID-enabled end-devices. As pointed out earlier, due to the con-
strained resources of an end-device (ID-/IP-enabled), there is a need to perform grouping 
which could either be grid-based or clustering-based. Therefore, popular network topologies 
have been based on a grid structure or on a clustered strategy. The approach of clustering was 
first used in Low Energy Adaptive Clustering Hierarchy protocol (LEACH) [25] for a homo-
geneous environment that divided every round of lifetime into setup phase and steady state 
phase. Setup phase involved CH election based on a probabilistic fitness function Popt and 
setup of a cluster layout while a steady state phase observed uploading of data from non-CH 
nodes to their corresponding CH where after removal of data redundancy, aggregated data is 
forwarded to network’s SN by these CHs. However, despite shortened commuting distances, 
slower power depletion, longer life, the randomness-based protocol faces reduced connectivity 
coverage due to non-uniform CH distribution which brings down the overall efficiency of a 
CH selection procedure. Thereafter, many heuristic/meta-heuristic approaches were proposed 
to optimize the CH-selection. Energy-homogeneity could not be relied upon for real-time 
applications as it contrasts with the environment dynamicity and observed unreliable stability-
lifetime relationship. Later, to allow deployment of WSN in a real-time environment, energy 
heterogeneity was introduced through SEP protocol [26] that replaced Popt with weighted 
election probabilities for a two-level ( ∶ 2 ) heterogeneity while an enhancement to a three-level 
( ∶ 3 ) heterogeneity was introduced in EEHC protocol [27]. Both the protocols considered sub-
epochs for the heterogeneous end-devices of the WSN. However, the issue of non-uniform 
CH distribution was still not addressed. Apart from transforming sub-epochs, the dynamic-
ity in the environment also required nodes to adapt their epoch duration according to their 
energy usage pattern. This led to the discovery of DEEC protocol [28] that adhered to the 
shortcomings and included an energy parameter (ratio of residual and average energy) in the 
weighted probability function of SEP, Pwgt =

{
Pnrm∶2,Padv∶2

}
 . The same concept was applied 

on three-level heterogeneity in EDEEC protocol [29] on weighted probability functions for 
normal, advanced and super-advanced devices ( Pnrm∶3 , Padv∶3 and Psadv∶3 ) as can be seen from 
Eqs. (1–3), respectively.

Improved epoch sure enough introduced dynamicity, however, it also observed a higher 
sub-epoch for the super-advanced (or advanced) end-devices leading to their early decay. 

(1)Pnrm∶3 =
PoptEi(r)(

1 +
(
� + mo�

)
m
)
E(r)

(2)Padv∶3 =
Popt(1 + �)Ei(r)(

1 +
(
� + mo�

)
m
)
E(r)

(3)Psadv∶3 =
Popt(1 + �)Ei(r)(

1 +
(
� + mo�

)
m
)
E(r)
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Therefore, DDEEC protocol [30] made use of a threshold residual energy Thres parameter, 
Ei(0.7) that lets both the end-devices to switch to a common probability function in a two-
level heterogeneous network as shown in Eq. (4).

A similar Thres parameter was used for three-level heterogeneity network in EDDEEC 
protocol [31]. In order to extend dynamicity, an n-level heterogeneity based hetDEEC pro-
tocol [32] was proposed that could be applied on 1/2/3-level heterogeneous network model 
just by varying a Θ parameter. Along the research journey, many heuristic based CH-selec-
tion approaches have been proposed that aimed at improving certain sensor network char-
acteristics which could be implied via network’s certain performance metrics. ATEER [33] 
adopted three-level heterogeneous network that utilized Pnrm∶3 , Padv∶3 and Psadv∶3 for CH 
election. Along with TEEN for intra-cluster communication and CDMA for inter-cluster 
communication, ATEER successfully improved network’s lifetime as compared to EEHC, 
DEEC, EDDEEC. However, ATEER mainly hybridised the existing protocols, yet despite 
unbalanced energy consumption due to TEEN implementation, it employed average energy 
estimate value for CH selection in every round leading to inappropriate results. Incompe-
tence towards solving the isolated node value, ATEER may face an early death and hence, 
early energy hole issue causing the network to lose probable important data. Apart from 
improvising CH selection technique, protocol may also focus on working on data fusion at 
the CH. One such algorithm [34] outperformed SEP and was proposed for a two-level het-
erogeneous network with a threshold function. It comparatively enhanced results by addi-
tionally betting the cluster design upon residual energy of an end-device i, Ei , its initial 
energy, Einitial , its distance from the SN, di and distance of SN from network’s farthest alive 
device, dmax . However, this operation requires the network to keep a track of the farthest 
alive node which adds to network’s additional overhead hindering its efficiency. Therefore, 
distance computation dependency upon a dynamic network characteristic limits algo-
rithm’s application in a real-time scenario. PSEP protocol [35] infused the research domain 
with a new CH selecting policy to prolong the stability period of uniformly-distributed fog-
supported WSNs. It incorporated two-tier heterogeneous settings and neighbour density-
based data fusion that enabled prolonged stable time interval as compared to SEP. How-
ever, it either requires spending additional power in accumulating past energy usage of all 
network devices or requires keeping memory to save energy levels to avoid overhead. In 
both scenarios, end-devices face energy or memory constraints in real environments bring 
the network a disadvantage. This protocol tends to keep a higher probability rate for normal 
nodes due to their greater population compared to the other category nodes, however, this 
tends to unbalance energy consumption leading to an early death in normal nodes despite 
prolonging stability period compared to SEP. This unbalanced energy consumption may 
directly impact calculation of average energy that otherwise is responsible for Padv∶2 com-
putation. Another disadvantage that affects its average energy computation is its applicabil-
ity domain i.e., precisely critical IoT scenarios. EDCF technique [36] for two-level hetero-
geneous system aims at improving its energy structure while also enhancing its lifespan. 
Based on the total initial energy of the network and residual energy of individual network 
devices, this technique incorporates a new threshold function formula. However, depend-
ing solely on energy parameter for CH selection, overlooks the need of some important 

(4)Pwgt =

⎧
⎪⎨⎪⎩

Pnrm∶2, Ei > Thres && end − device ∈ nrm

Padv∶2, Ei > Thres && end − device ∈ adv

c
popt(1+𝛼)Ei (r)

(1+𝛼m)E(r)
, ∀c = [0, 1], Ei ≤ Thres
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network characteristics that require a researcher’s eye. Some of them are a device’s loca-
tion, its device-vicinity degree, its SN vicinity etc. that greatly impact network’s situation 
in terms of hotspot issue, overlapping clusters etc. Gradually, a shift in research domain of 
WSN was observed such that clustering algorithms supporting the IoT environment were 
birthed and a new term WSN-enabled IoT (WSN-IoT) was born. IoT was observed to base 
on continuous or query systems that intended on satisfying the requests from local/distant 
end-users. These requests mostly required WSN to sense and transmit proclaimed data 
from their deployed environment. Having to serve frequent requests meant constant data 
transfer over the channel, thereby, largely affecting network’s efficiency. Therefore, 
researchers focussed on grouping algorithms that could improve efficiency. Both grid-
based and cluster-based algorithms were proposed. A grid-based algorithm, namely energy 
efficient hierarchical clustering index tree (ECH-tree) technique [37] was developed to 
answer continuous queries from the end-users. This time-correlated region query technique 
segregated the IoT end-devices into even grids before assigning a clustering index tree to 
organize these grids cells. The assigned index allows clustering of sub grid regions ensur-
ing reduced redundant data with upper-level sub-regions holding lesser dead space. How-
ever, apart from serving a network’s efficacy, the researchers noticed that pertaining to 
real-time scenario, it was important for algorithms to serve for longer stability periods as 
loss of any single device may make the data comparatively less reliable. Dynamic parti-
tioning into grid cells was proposed in virtual uneven grid-based routing protocol, VUGR 
[38] that directed towards honouring improved stable lifespan. The uneven gridding was 
based on the energy resources of end-devices which helped overcome hotspot issue of 
WSN-IoT. The protocol assigned three roles among the end-devices, namely, regular nodes, 
main cell-headers, assistant cell-headers apart from utilizing a mobile SN. The grids fulfill-
ing the hard energy criteria is known to elect a main cell header while the grid that fails is 
broken down into smaller grids beheaded by assistance cell-headers. With a mobile sink, a 
hotspot issue is curbed, however, it adds to the delay while a query has to be reported back. 
Also, this strategy has been applied using homogeneous environment that makes it less 
feasible within the real-world dynamics. Utilizing the standard IoT standards, a pragmatic 
architectural framework was introduced in [22] where in two approaches, clustering based 
and gridding based were introduced. They primarily focussed on improving the network 
lifespan using either of the two approaches where heuristic based clustering approach uti-
lizes neighbour count and residual energy of IP and ID enabled end-devices, while the 
grid-based approach utilizes location information of ID-enabled end-devices only. 
Although improved communication is achieved yet an algorithm is required that utilizes all 
the parameters together and yet showcase an improved stable period. A homogeneous sce-
nario incorporates a clustering algorithm that savours initial and residual energy of an end 
device to reach optimal CHs [39]. However, a random CH election in the first round before 
the energy-based selection in the consecutive rounds, may cause a derange partition, 
thereby snubbing the movement and degree of wireless mobile nodes, WMNs. An evolu-
tionary algorithm namely, memetic algorithm (memA) has been introduced into WSN 
(also inhabited with WMNs) clustering [21] to lower down the probability of early conver-
gence. In order to achieve dynamic load balancing, memA supports in reaching an optimal 
CH set (if and when required) as early as possible. However, there are more network char-
acteristics that need to be addressed to. A proficient bee-colony clustering protocol (PBC-
CP)—based on artificial bee colony (ABC) algorithm [40], utilizes energy, degree, and dis-
tance from SN of WMNs for selection of head nodes. Despite appropriate parameter 
utilization, the non-involvement of mobility metric for CH selection, may lead nodes with 
varied mobility as compared to that of its neighbours to be chosen as CHs. No concurrence 



2943P‑LUET: A Prolong Lines of Uniformity Based Enhanced Threshold…

1 3

in mobility with its neighbours may lead to frequent re-clustering as the untimely topology 
change in chosen CHs’ vicinity causes unstable clustering.

2.1 � Motivation

Over a long reign, clustering algorithms have been prioritized to enhance network’s effi-
cacy and stable lifespan, while also indulging individually into other design constraints 
due to clustering i.e., hotspot issue or cluster connectivity or energy hole or cluster over-
lapping, etc. However, a need for a technique that addresses multiple issues arises as sen-
sors networks are being conglomerated with the Internet. IoT designs cater to real-world 
dynamics that rarely observe homogeneous environment, hence, WSNs deployed with 
energy heterogeneity are considered more feasible. Therefore, venturing completely into 
heterogeneous environment is a gradual yet essential requirement for any WSN-IoT. As 
energy heterogeneity is catered to in sensor networks, primarily energy-based CH selection 
strategies are focussed upon. However, for an overall optimized CH list, it is necessary to 
also cater to other characteristics of the end-devices actively such as, information about its 
vicinity, its location within the field etc. Literature also observed various grid-based and 
clustering based Voronoi schemes, however, either have their own disadvantages. Where 
clustering schemes may introduce cluster overlapping in case of unmanned CH selections 
when the node population is denser, static grid schemes may hamper network’s efficiency 
as the node count decreases. Hence, a need also arises to design an algorithm that success-
fully captures the individual benefits of either of the schemes and strategically convenes a 
technique. Therefore, from the survey, it can be observed that there is a shift in research 
domain within design of clustering algorithms. In order to ply with one design constraint 
i.e., network connectivity apart from network’s efficiency and lifetime, LUET [24] has 
been proposed in our previous work. In LUET, a novel concept of Lines of Uniformity LoU 
has been introduced that manages to lower down the average isolated node ratio within the 
network thereby improving its connectivity. However, it lacks in overpowering the other 
primary constraints of a WSN-IoT i.e., hotspot issue or cluster overlapping or energy hole 
due to early first device death—FDD. Therefore, this work further enhances the LUET pro-
tocol in terms of its stable region.

3 � Preliminary Notations

3.1 � Assumptions

The proposed network model for P-LUET algorithm follows a few basic assumptions as 
follows:

•	 After deployment, all end devices are static in position within the field and are ID-
enabled.

•	 Every end device has alike processing—communication functionalities, however, they 
are energy-heterogeneous.

•	 The field is governed by a single static IoT hub in the centre of the field that acts as a 
sink end-device for the IoT end devices and does not face any memory, energy, or com-
putation constraint.

•	 Energy depletion is the only potential cause considered for an end-device’s failure.
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•	 No obstacles from external environment hamper the operation of the network laid in 
the field.

•	 Every end-device holds an aggregation capability which allows it to compress redun-
dant information into one useful packet while performing the CH duty.

•	 Received Signal Strength Indicator (RSSI) at an end-device allows it to estimate its rel-
ative distance from any other entity matching its radio standards.

•	 Every end-device is aware of its own location and the field dimensions through a posi-
tioning system or an energy-efficient positioning algorithm.

3.2 � Network Topology

This section describes the three-grade energy-heterogeneous network model assumed 
for a WSN-IoT. The reason behind using a heterogeneous model is that deployment for 
real-time scenarios suffer dynamicity requiring a network to be capable enough to handle 
energy-heterogeneity. The proposed network is patterned as a square field (M ×M) of 
�ini,

(
�ini ∈ ℕ

)
 end-devices dispersed haphazardly yet uniformly with fixed locations after 

deployment. The end-devices (alternatively termed as sensors in this work) are presump-
tuously based on three-level energy heterogeneity and can be classified as normal nrm, 
advanced adv, and super-advanced sadv. Note that if Eo is considered the initial energy of 
a single normal device then the initial energy of advanced and super-advanced device is 
Eo(1 + a) and Eo(1 + s) , respectively. The advanced and super-advanced end-devices are 
equipped with a and s times more energy than that of normal end-devices, respectively. 
Advanced end-devices are considered ma fraction of the total end-devices and super-
advanced end-devices are considered ms fraction of advanced end-devices. The total initial 
energy of the network can be calculated as shown in Eq. (5).

The clustering hierarchy has been applied on this network model that leads the WSN-
IoT to be segregated into several clusters, assuming that the IoT Hub is situated in the 
centre of the network. There are two tiers of communication in the clustered WSN-IoT, 
namely, sensors to their individual CHs, CHs to network’s IoT Hub. The CHs execute 
aggregation to remove any existing correlated redundant data before forwarding any data 
to the IoT Hub. Removing redundancy reduces communication overhead and supports 
improving efficiency.

3.3 � Optimal Clustering

The location of the IoT Hub (SN) is known to every sensor of the network. Therefore, aver-
age distance between any sensor i enacting the CH duty and the IoT Hub can be estimated 
using Eq. (6).

In order to prevent non-essential formation of clusters within the network which may 
lead to network instability in terms of exponential increase in network energy consump-
tion, clusters need to be created in optimal count. Communication channel incorporates a 
channel model dependent upon the commuting distance between any two entities. As a 

(5)ET =
(
1 + ma

(
a + sms

))
×�ini × Eo

(6)d
�

i∶hub
=

0.765 ×M

2
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common reference, a threshold distance d0 is assumed. If the distance between the two enti-
ties is less than d0 , it assumes a free-space channel model, fs , while otherwise multi-path 
channel, mp , model is assumed for communication. Therefore, computation of d0 

( d0 =
√

Efs

Emp

 , that amounts to 87.7 meters in this case) is based on the transmit free-space 

amplifier energy Efs = 10pJ∕bit∕m2 and Emp = 0.0013pJ∕bit∕m2 for both the channel 
models. Optimum number of CH count kopt and the optimum probability value Popt can, 
therefore, be calculated utilizing Eqs. (7) and (8) dependent upon the distance of significant 
number of end-devices from their IoT Hub d�

i∶hub
 with respect to d0 [26].

4 � Methodology of P‑LUET algorithm

P-LUET algorithm has been proposed to address the needs of the current research scenario 
mentioned in the Motivation Sect. 2.1. It is named as P-LUET in order to justify the pro-
longed stability period. The basic procedure of the CH-selection in P-LUET is similar to 
the selection procedure in SEP which asks of every end-device to compute its threshold 
value, ThCH , based on some pre-defined parameters so as to compare it with its generated 
random number. A higher ThCH makes a significant criterion for the CH selection eligibil-
ity process.

4.1 � End‑Device Initialization

Before the onset of network’s round-time operation, every end-device uses a buffer time 
to compute its necessary parameters which is termed as initialisation phase. To compute 
its eligibility for the CH role, every end-device initializes pre-computation with using its 
location on a visualized 2-dimensional (2-D) field platform to calculate its proximity to 
network’s ‘lines of uniformity’ (LoU), its tier distance away from SN and the correspond-
ing weight value, its initial vicinity density, and its region concurrence.

4.1.1 � Proximity to LoU, d⊥(i).

Any geometric polygon has a circumradius and an inradius where circumradius is the smallest 
radius of the sphere into which the geometric polygon can fit in while inradius is the largest 
radius of the sphere which can completely fit inside the geometric polygon. Compared to the 
incircle with a radius r , polygon’s circumcircle with a radius R contains every point of the pol-
ygon within the circle as can be seen from Fig. 4. The term ‘lines of uniformity’ is given to the 
two-line segments individually connecting the opposite edges of the field (any polygon, in this 
case square) which are popularly also known as field diagonals. These line segments intersect 

(7)kopt =

⎧⎪⎨⎪⎩

�
�ini

2𝜋
×

M

d
�

i∶hub

d
�

i∶hub
< d0(small − scale)�

�ini

2𝜋
×

M×d0�
d
�

i∶hub

�2 d
�

i∶hub
≥ d0(large − scale)

(8)Popt =
kopt

�ini
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at the centre of the field and individually have a length of d ( d = 2R;d = 2
√
2r ). Considering 

the SN at the centre of the field with omni-directional connectivity, its spherical connectivity 
coverage should have a radiation reach of d∕2 = R

�
=
√
2r
�
 to cover the entire network popu-

lation. Therefore, the lines of uniformity sweeping through the entire polygon network are 
considered since they have a greater coverage spread around the SN.

The lines of uniformity for the field of dimensions, 300 m in length and 300 m in width, 
are x − y = 0 and x + y − 300 = 0 . These lines intersect at the polygon field centre where 
the SN is placed. This polygon field has �ini haphazardly scattered end-devices with coordi-
nates as 

(
xi, yi

)
=
[(
x1, y1

)
,
(
x2, y2

)
,
(
x3, y3

)
,…

(
x
�ini

, y
�ini

)]
 . Each end-device calculates its 

proximity to both the lines of uniformity D1(i),D2(i) using Eqs. (9) and (10) where the pri-
mary proximity is known to be from the closer LoU. The primary proximity d⊥(i) is therefore 
obtained from d⊥(i) = min

{
D1(i),D2(i)

}
 while the secondary proximity is discarded by the 

end-device as stated in [24].

(9)One proximity of
�
xi, yi

�
∶ D1(i) =

��xi − yi
��√

2

(10)Second proximity of
�
xi, yi

�
∶ D2(i) =

��xi + yi − 300��√
2

Fig. 4   Polygon with its circumcircle and incircle



2947P‑LUET: A Prolong Lines of Uniformity Based Enhanced Threshold…

1 3

4.1.2 � Concentric Tiers, Rb encircling IoT Hub.

P-LUET algorithm considers two concentric circles, n = {1, 2},∀n ∈ nmax within the poly-
gon field with IoT Hub as their common centre and different radii, tn . To compute both 
the tier radii in the field of dimensions, 300 by 300 m (pertaining to a large-scale sensing 
layer), R ( = d∕2 ) defining the distance of the IoT Hub from the farthest point in the field is 
utilized as can be seen from Fig. 5. The equation of the concentric tiers for P-LUET, can be 
exhibited as (x − 150)2 + (y − 150)2 = tn . The radius of the outer tier t2 and the inner tier t1 
can be calculated from t2 = R − (R∕3) and t1 = t2 − d0 , respectively. Utilizing the tier radii 
distance tn,∀n = {1, 2} , every end-device i computes its annulus ring Rt(i),∀t = {1, 2, 3} 
based on its shadow distance from the IoT Hub dtier(i) with respect to its primary proximity 
value d⊥(i) as can be understood from Fig. 5. Based on Rt(i),∀t = {1, 2, 3} value, consider-
ing the global solution, a weight value t

i
W,∀t = {1, 2, 3} is self-assigned by the end-device 

or sensor i . The corresponding computations have been explained below.

Computation of sensor’s (i) Annulus Ring Rt(i), ∀t = {1, 2, 3}

Sensor i computes di∶hub(i) =
√(

xi − xhub
)2

+
(
yi − yhub

)2 , ∃
(
xi, yi

)
,
(
xhub, yhub

)
 cartesian coordinates of 

i , IoT Hub, respectively

Sensor i computes dtier(i) =
√

di∶hub(i)
2 − d⊥(i)

2 , where di∶hub(i) is the direct distance of i from the IoT 
Hub

dtier(i) is computed ∵ the annulus ring Rt(i), ∀t = {1, 2, 3} determination is based on the common param-
eter, R with respect to IoT Hub

for
(
Rt(i),∀t = 1, 3

)
, sensor i assumes dtier(i) = di∶hub(i)

∵ sensor i in R1 will have a near approximate dtier(i) ≅ di∶hub(i) value and Area
(
R3

)
< �

(
R2 − (t2)

2
)
 

which causes i in R3 to have disproportionate chances of CH selection contingency
if (Rt(i) == R1)then

1

i
W = 2

if (Rt(i) == R2)then
2

i
W = 3

if (Rt(i) == R3)then
3

i
W = 1

2

i
W >1

i
W to overcome hotspot problem and 2

i
W >>3

i
W to overcome high energy consumption due to 

direct inter-cluster communication which could result from high CH selection probability of sensors in R3

Fig. 5   Concentric tiers within the field
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4.1.3 � Initial Vicinity Density, @i.

The initial vicinity density allows to determine an end-device i ’s degree of accessibility 
within the network during its tenure of performing CH duty. This degree is estimated based 
on the effective distance of i with its neighbours within its threshold range (which could 
possibly be knei in count), di∶j,∀j =

{
1, 2, 3,… , knei

}
 . As can be referred from [41], the 

vicinity density �i for a sensor i in a network of population ℵ can be inferred from the fol-
lowing Eqs. (11–12). While based on d0 value, average �′ value can be estimated as given 
in Eq. (13).

4.1.4 � Region Concurrence for Large‑Scale WSN, ℊ

The P-LUET algorithm grids the large-scale deployment field into uniform regions of 
equal size. The number of virtual grids ℊ is conditionally determined by the initial count 
of the end-device population �ini and the current alive end-devices Aℵ =

[
0,�ini

]
 as 

can be adhered from the Eq.  (14) below. The network field is presumed to be virtually 
divided into kopt grids as can be seen in Fig. 6 if 

(
0.75�ini × Popt < Aℵ × Popt ≤ �ini × Popt

)
 

condition is fulfilled and is considered as one whole field without any grid for 
(Aℵ × Popt ≤ 0.75�ini × Popt) condition. The CH selection does not adhere to the selection 
of an end-device i near the centre of these regions since the random end-device deployment 
may cause a shift in the centroid due to varied density composite within every region. The 
proposed gridding analogy for a partial lifetime allows P-LUET algorithm to overcome 
overlapping to a certain extent until the network has comparatively dense deployment.

After virtual grid partition, every end-device i assigns itself a grid region 
Gk, ∀k = {1,… ,ℊ} based on its cartesian coordinate based location information 

(
xi, yi

)
.

4.2 � Likelihood of CH Choice

The assumed topology adopted for configuring P-LUET algorithm follows three-level 
energy heterogeneity. The resultant total energy of the network amounts to 
ET =

(
1 + ma

(
a + sms

))
�iniEo showcasing ma

(
a + sms

)
 gain value in the total energy of 

similar network using homogeneous energy setting. Therefore, due to the additional gained 

(11)
di∶j =

√(
xi − xj

)2
+
(
yi − yj

)2
, ∃

(
xi, yi

)
,
(
xj, yj

)
cartesian coordinates of i, j respectively

(12)�i = 1 −

⎛⎜⎜⎝

1

knei

∑knei
j=1

di∶j

�ini

⎞⎟⎟⎠

(13)�� = 1 −
(
d0∕�ini

)

(14)ℊ =

{
1 (Aℵ × Popt ≤ 0.75𝓃ini × Popt)

kopt
(
0.75𝓃ini × Popt < Aℵ × Popt ≤ 𝓃ini × Popt

)
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network energy, the resultant heterogeneous epoch of the network correspondingly changes 
to 

(
1 + ma

(
a + sms

))
×
(
1
/
Popt

)
 . However, due to resource-variability amongst the end-

device population in a heterogeneous sensor network, every end-device type 
( nrm∕adv∕sadv ) has its individual sub-epoch within the heterogeneous epoch to achieve an 
unbiased threshold assignment. Therefore, if nrm can perform the CH duty once in the het-
erogeneous epoch, adv can perform the CH duty (1 + a) times in the same epoch owing to 
the additional a times energy while sadv can perform the CH duty (1 + s) times in the same 
epoch owing to the additional s times energy. This leads the algorithm to assign an energy-
based weight to their individual election probabilities (likelihood of choice in lieu of every 
single elected CH), giving birth to the term weighted probability Pwgt . In this work, the 
Pwgt term assignment for nrm is assumed as Pn , for adv is assumed as Pa , and for sadv is 
assumed as Ps . Hence, an average count of nrm enacting as CHs per round per heterogene-
ous epoch is Pn�ini

(
1 − ma

)
 , Pa�inima

(
1 − ms

)
 is the an average count of adv enacting as 

CHs per round per heterogeneous epoch, and an average number of sadv enacting as CHs 
per round per heterogeneous epoch is Ps�inimams while the total average number of CHs 
per round per epoch stays Popt�ini . Thus, the total average CH count per round per epoch 
can be stated as below in Eq. (15) [42].

However, apart from the initial energy resources, Pwgt in [42] is oblivious to end-
devices’ other fixed/adaptive parametric measures which affect any end-device’s individ-
ual capacity to be assigned the role of a CH. These measures are subjective to overcom-
ing specified challenges in achieving the desired Quality-of-Service QoS in clustering. 
In this work, P-LUET assigns a rank value rank(i) defined in Eq.  (16) to the individual 
probabilities of the end-device population Pwgt as shown in Eq.  (17). This rank value is 
based on a few static end-device’s parametric measures like i ’s primary proximity to LoU 
d⊥(i) , its annulus ring association to the IoT Hub and the corresponding weight value 
Rt(i),

t
i
W,∀t = {1, 2, 3} , its shadow distance from the IoT Hub dtier(i) , and the degree of its 

(15)Popt�ini = Pn�ini

(
1 − ma

)
+ Pa�inima

(
1 − ms

)
+ Ps�inimams

Fig. 6   Virtual grids in the 
large-scale network. {subjective 
to the scenario when sizeWSN is 
(300, 300) , kopt = 8 , Aℵ = 85 , 
�ini = 100}
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vicinity density during WSN-IoT’s stable life span �i . Under dynamic environment require-
ments, an end-device i may have disproportionate energy consumption making it a nec-
essary inclusion in the Pwgt computation. Therefore, an additional parameter defining the 
proportionate change in end-device’s energy resources is adopted in computing the Pwgt of 
the end-device.

Iterative CH-reaffiliation rate snubs end-devices of their battery power. With a higher 
rate in adv∕sadv of being chosen for duty as compared to nrm , P-LUET utilizes the con-
cept of threshold energy, Eth = bEini∀b = [0, 1] , as proposed in DDEEC [30], that lets the 
end-devices to switch to a common probability function P(i) as can be understood from 
Eq. (17).

4.3 � Ranked Threshold computation for CH selection

The threshold value has been denoted as ThCH in the current work that corresponds to 
ThCH(i ∈ nrm) for nrm end-devices, ThCH(i ∈ adv) for adv end-devices, ThCH(i ∈ sadv) for 
sadv end-devices, and ThCH(i) for any device type (if Eres ≤ Eo ) to be shortlisted for the 
tentative CH list. Upon utilizing calculated Pwgt values from Eq. (17), the respective thresh-
old value functions can be demonstrated as given in Eqs. (18–21).

The ThCH(i ∈ nrm) is applied to �ini

(
1 − ma

)
 normal end-devices for the current l th 

round. However, end-devices in nrm category have to belong to a set G′

l
 which have not 

played the CH role in the last 1
/
Pn(i)

 rounds of the heterogeneous epoch. Therefore, for 
P-LUET algorithm, the average count of i ∈ nrm playing the CH role in a round per epoch 
stays ≅ Pn�ini

(
1 − ma

)
 , and 

(
1 + ma

(
a + sms

))
×
(
1
/
Popt

)
 becomes the rate of being 

selected for the CH role per epoch and per 
[
rank(i)Eini

]
∕Eres.

The ThCH(i ∈ adv) is applied to �inima

(
1 − ms

)
 advanced end-devices for the current l 

th round. However, end-devices in adv category have to belong to a set G′′

l
 which have 

(16)rank(i) = �

(
d0
/
dtier(i)

)
+ �

(
t
i
W
/
nmax + 1

)
+ �

(
�i
/
��
)
,∀(� + � + �) = 1

(17)

Pwgt ≡

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Pn(i) =
Popt

(1+ma(a+sms))

�
Eres

�
Eini

�
× rank(i) i ∈ nrm,Eres > Eo

Pa(i) =
Popt(1+a)

(1+ma(a+sms))

�
Eres

�
Eini

�
× rank(i) i ∈ adv,Eres > Eo

Ps(i) =
Popt(1+s)

(1+ma(a+sms))

�
Eres

�
Eini

�
× rank(i) i ∈ sadv,Eres > Eo

P(i) = c
Popt(1+s)

(1+ma(a+sms))

�
Eini

�
Eavg

�
any i,Eres ≤ Eth, ∀c = [0, 1]

(18)ThCH(i ∈ nrm) =

{
Pn(i)

1−(Pn(i)×(l×mod(1∕Pn(i))))
i ∈ G

�

l

0 otherwise

(19)ThCH(i ∈ adv) =

{
Pa(i)

1−(Pa(i)×(l×mod(1∕Pa(i))))
i ∈ G

��

l

0 otherwise
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not played the CH role in the last 1
/
Pa(i)

 rounds of the heterogeneous epoch. Therefore, 
for P-LUET algorithm, the average count of i ∈ adv playing the CH role in a round per 
epoch stays ≅ Pa�inima

(
1 − ms

)
 , and 

(
1 + ma

(
a + sms

))
×
(
1
/
(1 + a)Popt

)
 becomes the 

rate of being selected for the CH role per epoch and per 
[
rank(i)Eini

]
∕Eres.

The ThCH(i ∈ sadv) is applied to �inimams super-advanced end-devices for the current 
l th round. However, end-devices in sadv category have to belong to a set G′′′

l
 which have 

not played the CH role in the last 1
/
Ps(i)

 rounds of the heterogeneous epoch. Therefore, 
for P-LUET algorithm, the average count of i ∈ sadv playing the CH role in a round per 
epoch stays ≅ Ps�inimams , and 

(
1 + ma

(
a + sms

))
×
(
1
/
(1 + s)Popt

)
 becomes the rate of 

being selected for the CH role per epoch and per 
[
rank(i)Eini

]
∕Eres.

The ThCH(i) is applied to nrm∕adv∕sadv for the current l th round if they satisfy 
Eres ≤ Eth condition. However, end-devices have to belong to a set Gl which have not 
played the CH role in the last 1∕P(i) rounds of the heterogeneous epoch. Therefore, for 
P-LUET algorithm, 

(
1 + ma

(
a + sms

))
×
(
1
/
(1 + s)Popt

)
 becomes the common rate for 

all end devices to be selected for the CH role per epoch and per Eavg∕Eini.
Henceforth, upon computed ThCH evaluation with respect to a randomly generated 

number rand() by the eligible end-device population in WSN-IoT, Popt�ini (as derived 
from Eq. (15)) end-devices are chosen randomly from the tentative list listtCH

l
 as the final 

CHs listCH
l

 of the network for the l th round. However, the choice of final CHs is based 
upon the validation of the condition for the region concurrence. If the network fulfils 
the condition 0.75�ini × Popt < Aℵ × Popt ≤ �ini × Popt , the end-devices assume ℊ = kopt 
virtual grids in the network. Based on the location information, end-devices from listtCH

l
 

move to listCH
l

 only if its corresponding region Gk, ∀k = {1,… ,ℊ} has yet to choose a 
CH. Every grid region will primarily be headed by one CH. After CHs have been cho-
sen per grid, the rest of the end-devices i ∉ listCH

l
 associate themselves with the CH of 

their corresponding region Gk . This greatly reduces the overhead exchange during the 
association confirmation process in case of multiple advertisement messages received 
by the non-CH end-devices. Since, the regions are clearly demarcated, the cluster over-
lapping is also reduced, thereby improving the cluster coverage, and further enhancing 
the network efficiency by ≈ 6.7% as can be seen from Fig. 7. The energy efficiency of 
P-LUET, �p−luet is proportional to the amount of network data Tnet propagated by con-
suming a certain energy Eused to withstand surging data flow from the IoT Hub as given 
in (22) and as stated in [43].

As soon as the new condition Aℵ × Popt ≤ 0.75�ini × Popt turns true, the virtual grid-
ding concept is discarded by the end-device population and thereafter, random kopt 

(20)ThCH(i ∈ sadv) =

{
Ps(i)

1−(Ps(i)×(l× mod (1∕Ps(i))))
i ∈ G

���

l

0 otherwise

(21)ThCH(i) =

{
P(i)

1−(P(i)×(l× mod (1∕P(i))))
i ∈ Gl

0 otherwise

(22)�p−luet =
Tnet/

Eused
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end-devices are chosen as CHs from listtCH
l

 . Thereby, end-devices i ∉ listCH
l

 either asso-
ciate to their closest CH and be known as member iCM to that CH or be known as iso-
lated end-devices iIN that communicate directly with the IoT Hub.

4.4 � ℊ‑based Conditional Multi‑Hop Inter‑Cluster Communication

In this subsection, the inter-cluster communication model has been discussed. The inter-
cluster communication model is based on the condition validation for ℊ . If the condition (
0.75�ini × Popt < Aℵ × Popt ≤ �ini × Popt

)
 holds true for the network, the end-devices 

iCH ,∀i ∈ listCH
l

 compare their distance from their IoT Hub with their distance from CH 
jCH ,∀j ∈ listCH

l
,Gk(i) ≠ Gk(j), i ≠ j in its adjoining grid region as shown in the following 

Eqs. (23–24).

The proposed model focusses on minimizing the communication cost during the 
data uploading from the CHs overlooking farther grid regions since energy usage 
ER(size)∕ET (size, d) varies either proportionally to the length of the information to be 
imparted size or also the commuting distance d as can be understood from Eqs. (25–26). 
In an attempt to save energy consumption, network savours prolonged aliveness NLp−luet 
with end-devices showcasing longer lingering vitality. As can be observed from Fig. 8, a 
P-LUET incorporated WSN-IoT spans longest period if conditional gridding is employed 
with multi-hop communication while showcases the lowest span count on employing grids 
without multi-hop communication. In the abstinence of conditional grid structure, CH list 
is not chosen to bound to the grid coordinates, thereby, bearing higher probability of being 

(23)
di∶j =

√(
xi − xj

)2
+
(
yi − yj

)2
, ∃

(
xi, yi

)
,
(
xj, yj

)
cartesian coordinates of iCH , jCH resp.

(24)dinter = min
{
di∶j, di∶hub(i)

}
,∀iCH , jCH ∈ listCH

l

Fig. 7   �p−luet implying the effect of ℊ
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chosen in context to the IoT Hub location. Therefore, after selection of a desired CH count 
that successfully qualify the algorithm specifications, as the data gets uploaded to these 
CHs from their respective members, the minimum distance path to the IoT Hub is com-
puted that defines whether a multi-hop model or a single-hop model has to be presumed. 
However, as the previously mentioned condition turns false over the net-life’s course, with 
a new condition turning true i.e., Aℵ × Popt ≤ 0.75�ini × Popt , the end-devices that are 
supposedly chosen for performing CH duty henceforth are selected randomly through-
out the network. The CH count is based on the optimal count of clusters kopt required for 
an efficient network operation. Under this condition, every end-device enacting as a CH, 
iCH ,∀i ∈ listCH

l
 , transmits its aggregated data directly to the IoT Hub. The energy expended 

in the electronic circuitry of an end-device that supports transmission or reception of infor-
mation can be known as Eelec.

4.5 � Some Explicit Remarks About P‑LUET Algorithm

The quoted algorithm points at the significant steps of P-LUET. Specifically, the proposed 
algorithm focusses on defining the set listCH

l
 for every l-th round. Lines2 − 3 attempt to 

establish end-device deployment and thereafter, network configuration. Line4 starts a loop 
for initialization on every end-device which means every end-device i individually com-
putes d⊥(i) , Rt(i),

t
i
W,∀t = {1, 2, 3} , dtier(i) , and �i . Note that distance computations are 

based on the Euclidean distance computed between any two desired entities of the network. 

(25)ET (size, d) =

{
size ∗ Eelec + size ∗ Efs ∗ d2, if d < do
size ∗ Eelec + size ∗ Emp ∗ d4, if d ≥ d0

(26)ER(size) = Eelec ∗ size

Fig. 8   NLp−luet implying the effect of ℊ and multi-hop communication model
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Using these static location-based parameters and an adaptive resource-based parameter 
Eres , every end-device i calculates Pwgt-based ThCH value via line8 for every l-th round. 
Lines10 − 19 and lines22 − 32 show routing plan from the end-devices i ∉ listCH

l
 to the 

root centre of WSN-IoT (i.e., IoT Hub) for the g-based conditions mentioned in Eq. (14). 
Line35 defines the end condition for the algorithm operational process.

4.6 � MAC Scheme Adopted Within a P‑LUET Cluster

P-LUET opts for Time Division Multiple Access (TDMA)/ Code Division Multiple Access 
(CDMA) within a cluster/ network to abridge congestion within the network during intra-
cluster/ inter-cluster data transfer. For the sake, the network operation is divided into two 
time-stages, Setup Stage and Steady State Stage. Where Setup Stage broadly involves CH 
selection process within the network, Steady State Stage involves transmitting data from 
the source end-devices to the IoT Hub of the network either directly or via the chosen CHs.

As the network initialises, it enters the setup stage where upon obtaining ThCH > rand() , 
and being chosen as a CH iCH , the end-device i broadcasts its address via an advertise-
ment packet ADV  in its vicinity range. Every j ∉ listCH

l
 may receive one or more broad-

casted ADV  from its neighbourhood. It associates itself to the nearest iCH (that source 
of ADV  which is the highest on the RSSI comparison list in j ) or the only iCH through 
an acknowledgment packet ACK containing its own address. After all the iCH setup their 
clusters, the steady state stage initiates in which end-devices j ∉ listCH

l
 sense and upload 

data to their respective iCH ∈ listCH
l

 by opting TDMA which after aggregating the received 
data, opt for CDMA to transmit this aggregated data to the IoT Hub. During the setup 
phase, the network may contain a few j ∉ listCH

l
 that do not receive ADV  from any chosen 

iCH ∈ listCH
l

 and end up getting known as isolated or disconnected end-devices. These end-
devices transmit their data directly to the IoT Hub during the following steady state stage. 
After a time that is planned prior to the network setup, the network enters another round 
of CH selection i.e., the Setup Stage and its corresponding steady state stage. This repeats 
until the last alive end-device is drained completely of its energy resources. The opting of 
TDMA/CDMA allows congestion-free hierarchy via clustering on several levels within the 
network, leading to improved energy structure for a heterogeneous environment.
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4.7 � Time Complexity Analysis of P‑LUET

Time complexity (or computation complexity) can be described as the amount of work 
microcontroller �c has to perform as the input data increases (approaching to ∞ ) and is 
computed based on the Big O notation that describes the worst-case diversified computa-
tional scenario of an algorithm.

In P-LUET, it can be observed that the convergence rate to reach an optimum solu-
tion is a constant value for every end-device for every iteration (in this case it is known 
as a round of the lifetime). Since P-LUET follows a distributed clustering strategy, every 
end-device in the network is known to execute the algorithm independently to determine 
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its decision towards CH selection. These decisions are independent of status of the end-
device’s neighbours or the end-device population within the network and only depend 
on an end-device’s current energy status apart from its static computed metrics. There-
fore, the implementation complexity for CH selection can be given as 0(1) (Fig. 9).

However, for the initial phase of the operation when the condition 
0.75�ini × Popt < Aℵ × Popt ≤ �ini × Popt holds true, the network opts for static graph 
theoretical communication model between CHs and the IoT Hub while throughout the 
operation source devices follow multi-hop communication model. The diversity g(V) 
for computational analysis of the conditionally adopted grid network has been taken as 
log (2�ini ) = �ini wherein network either follows single-hop communication between IoT 
Hub and CHs of its vicinity grids or a two-tier multi-hop communication from far away 
CHs and IoT Hub. Therefore, this selective multi-hop communication among CHs intro-
duces a stronger efficient connectivity at the cost of additional O(g(V)) = O

(
�ini

)
 factor 

in the algorithm’s implementation complexity (Fig. 10) and fulfils the property of each 
CH communicating successfully at least once i.e., Ψmin.

5 � Simulation of Results and Analysis

For the purpose of P-LUET algorithm analysis, NS2.35 has been used as the simula-
tor that runs on a system with Windows 10 operating system. The system is i7-8750H 
CPU with 16 GB RAM and the processor operates at 2.20 GHz. The basic simulation 
environment consists of a network of haphazardly deployed 100 end-devices in a field 
of dimensions 300 × 300m2 . Each end-device has an optimal probability Popt of 0.08 
as computed from Eq.  (7) and a maximum capacity of carrying 4000bits of data. The 
energy heterogeneity metrics of the basic simulation environment have been listed in 
Table 1.

Fig. 9   Computational Complex-
ity of intra-cluster communica-
tion in WSN-IoT
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5.1 � Performance Metrics

5.1.1 � Stability Period, �fdd.

It can be defined as the vitality period until the death of first end-device. It can alter-
natively be termed as reliable period despite high correlation, since field contains no 
energy hole which means every end-device actively participates in reading the environ-
ment. There are many critical smart applications like IoT-based health monitoring of a 
critical patient, or battlefield surveillance etc. that require to keep a regular check on 
every characteristic of the environment. Such applications may deploy end-devices with 
a sole purpose of updating about their respective functionality. Hence, death of any sin-
gle end-device in these applications can turn detrimental owing to loss of a functional-
ity. For example, in battlefield surveillance, loss of any end-device may result in loss 
of coverage of a crucial surveillance area, which may lead to minacious consequences. 
Hence, this metric plays a dominant role in guaranteeing acceptable performance of any 
protocol.

Fig. 10   Computational Complex-
ity of inter-cluster communica-
tion in WSN-IoT

Table 1   Energy heterogeneity 
metrics

Heterogeneity metrics Values

Proportion of sadv end-devices,ms 0.44
Energy factor for sadv end-devices,s 3
Proportion of adv end-devices,ma 0.41
Energy factor for adv end-devices,a 2
Initial energy of nrm end-devices ( joules),Eo 0.5
Total energy,ET 100
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5.1.2 � Unreliable Period, �W∕I.

Network lifetime NLW∕I can be defined as the period until the network’s last alive device 
survives. Although, the last node is alive and transmitting data, the received data cannot 
be considered reliable as it fails to represent enough for the network. Hence, as soon as the 
first device dies, the network loses information about the area which was initially sensed by 
the dead device. Therefore, after first device death (FDD), the rest of the population may 
keep transmitting data, however, the data will be termed as unreliable. Hence, the corre-
sponding unreliable period can be calculated as: �W∕I = NLW∕I − �fdd.

5.1.3 � Energy Efficiency, "W∕I.

As stated, before in Sect.  4.3, energy efficiency, �W∕I is proportional to the network 
throughput Tnet while inversely proportional to the energy consumption Eused and can be 
computed as �W∕I = Tnet∕Eused [43]. A higher �W∕I defines algorithm’s improved capabil-
ity of withstanding surging data flow from the IoT Hub while balancing devices’ energy-
constrained resources.

5.1.4 � Network Throughput, Tnet.

Despite varyingly known in the literature, its inherent definition stays the same i.e., the 
total number of packets that can be transmitted successfully to the IoT Hub. Therefore, 
however differently this term may be defined in various literatures, yet the above stated 
remains the widely accepted definition amongst all the researchers.

5.1.5 � Probability of Device Isolation, ℙ(iso).

Imbalanced CH-selection could isolate certain end-devices from the chosen head list listCH
l

 
in the l-th round and resultantly the count of isolated nodes per round is taken as �iso . As a 
result, these devices resort to direct-transmission with the IoT Hub irrespective of its loca-
tion. However, a direct communication with the IoT Hub leads to a computational com-
plexity of O

(
�

2
ini

)
 that leads to exuberant energy-usage as depleted-energy increases pro-

portionally-bifold with distance from the IoT Hub. Therefore, probability of end-device 
isolation ℙ(iso) in every l-th round also comes across as a performance metric that can be 
computed as ℙ(iso)l =

#𝛼iso

#Aℵ

 [44].

5.2 � Numerical Results

In the following, the performance of the P-LUET algorithm has been compared with 
the aforementioned state-of-the-art algorithms while is also tested under varied network 
settings.

5.2.1 � Comparative Analysis with Respect to State‑of‑that‑Art Clustering Algorithms

The proposed algorithm is run through basic simulation environment as mentioned earlier 
with the aforementioned algorithms ([24, 33–36]) and is evaluated based on longevity met-
rics ( NLW∕I ;�fdd;�W∕I ), �W∕I , Tnet , and %ℙ(iso) w.r.t. these algorithms. Figure 11 exhibits 
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the overall life pace of the algorithms involved from where it can be observed that EDCF 
[36] showcases a higher exponential fall rate in Aℵ as compared to the other algorithms, 
P-SEP [35] follows a gradual exponential fall rate during its major portion of the �W∕I . 
Although, [35] may showcase an improved pace over certain period, it fails to maintain this 
pace until the end delivering a shorter NLW∕I . Other algorithms ATEER [33], Improved 
clustering algorithm [34] and LUET [24] deliver similar life pace characteristics as that of 
P-LUET algorithm with a constant pace throughout the journey delivering no sudden fall 
rate 

(
1 − 0.01Aℵ

)
 . However, in an IoT environment, where queries suggest data proclaimed 

by every end-device of the network for reliable despite redundant data. In such cases it is 
important to determine the stability period of the network incorporated with the designed 
algorithm. Under such scenario, through Fig. 12 it can be observed that P-LUET demon-
strates longer �fdd while P-SEP delivers shortest �fdd . Therefore, despite improved life pace 
over �W∕I , P-SEP delivers the shortest �fdd compared to the aforementioned algorithms. 
With a strong direction towards enhancing �fdd of LUET, it can be clearly observed from 

Table 2   NLp−luet and � fdd 𝛼̃-values of P-LUET algorithm w.r.t. state-of-the-art clustering algorithms

P-LUET ATEER [33] Improved clustering 
algorithm [34]

P-SEP [35] EDCF [36] LUET [24]

𝛼̃(NLp−luet) 0.011↓ 0.001↑ 0.075↑ 0.139↑ 0.115↑
𝛼̃(� fdd) 0.142↑ 0.129↑ 0.192↑ 0.011↑ 0.187↑

Table 3   Longevity-efficiency trade-off analysis and observations thereafter

Algorithms %�fdd %�W∕I Average �W∕I over 
NLW∕I

(
1
�

) Average �W∕I over 
� fdd

(
2�

) Average �W∕I 
over �W∕I

(
3�

)

ATEER[33] 19.21 80.79 11.81 12.34 11.68
Improved Clustering 

Algorithm [34]
19.72 80.28 11.89 12.5 11.74

P-SEP [35] 19.73 80.27 11.84 11.61 11.89
EDCF [36] 26.00 74.00 9.35 9.26 9.38
LUET [24] 20.78 79.22 11.13 11.81 10.95
P-LUET 22.63 77.37 12.07 12.75 11.87
Observations
1. [33, 36] exhibit highest and lowest %�fdd , resp. among simulated algorithms essaying [36] as most and 

[33] as least suitable for WSN-IoT (on longevity grounds only)
2. The second most suitable for WSN-IoT is P-LUET on longevity grounds only
3. With higher %�W∕I of ∈ (79, 81) , [24, 33–35] can be considered not suitable for being deployed in 

WSN-IoT as IoT framework requires network to serve high reliability more and overcome less reliable 
spans

4. P-LUET in a WSN-IoT environment, shows an improvement of 2.2%, 1.5%, 1.9%, 22.5%, 7.8% in 1ε ; 
3.2%, 2%, 8.9%, 27.4%, 7.4% in 2ε , 1.6%, 1.1%, ≈ 0%, 20.9%, 7.8% in 3ε w.r.t. [24, 33–36]

5. The characteristic of a typical WSN-IoT is to provide higher εW∕I in τfdd than in σW∕I oblivious of the 
%�fdd within a field. Therefore, despite [35, 36] attach 2.4% and 1.3% more average �W∕I to �W∕I than 
�fdd , with P-LUET attaching 33.13% less average �W∕I to �W∕I than �fdd it is considered more efficiently 
suitable for WSN-IoT
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Table  4 that P-LUET shows an improvement factor 𝛼̃ of 0.187. This can be understood 
as a resultant of upholding CH election operation that not only works on one design con-
straint, however, additionally supports overcoming hotspot issue and cluster overlapping 
apart from poor network connectivity.

It can also be observed from Table 2 that P-LUET successfully upgrades �fdd-based 𝛼̃ 
value by ∈ [0.011, 0.192] defining longer �fdd making it more suitable within a query-based 
or continuous-monitoring-based IoT environment than the other established algorithms. 
The main disadvantages towards lower �fdd observed in established algorithms apart from 
[24] can be briefed as non-consideration of device location w.r.t. the IoT Hub of the net-
work in [33, 36], large overhead due to dependency on a dynamic location entitiy in [34], 
higher probability rate of normal devices due to comparatively large population in [35], no 
direction towards towing the CH selection to devices that help improve the network con-
nectivity without enhancing its overhead in [33–36]. It can also be observed that P-LUET 
incorporated WSN-IoT delivers greater NLW∕I by 𝛼̃ factor ranging from [0.001 − 0.139] 
which has been clearly depicted graphically in Fig. 13. Although [33] may deliver longer 
NLW∕I by 𝛼̃ factor of 0.011, yet due to smaller �fdd , it faces longer �W∕I compared to the pro-
posed algorithm as can be evaluated from Table 3. 

Observations defined in Table  3, clearly mark P-LUET as the most efficiently suit-
able algorithm to be considered for deployment in a WSN-IoT framework. Observations 
in Table 5 calibrated as per longevity parameters and throughput along with energy helps 
realise the energy utilization in either of the algorithms. Drawing the inferences from 
Table 4, the synthesized data has been utilized to reach a consensus stating that P-LUET 
can effectively serve an IoT-framework.

Thereafter, Tables 6 and 7 have been described that individually showcase P-LUET’s 
energy credibility and channel utilization capability over randomly chosen round counts 
w.r.t. aforementioned state-of-the-art clustering algorithms. From Table  6, it can be 
observed that [24, 35, 36] loose energy earliest than [33, 34] and P-LUET. It can also be 
observed that despite holding more residual energy at the defined round (1100, 1800) than 
P-LUET, [35] showcases a poor channel utilization capacity during those round counts as 
can be confirmed from Table  7. P-LUET displays a better or similar channel utilization 
capacity compared to [24, 33–36] for round counts 500, 1100, 1800 and a better chan-
nel capacity compared to [24, 33, 34, 36] for round counts 2600, 3400, 4000, 4600, 5100. 
[35]’s channel capacity improves over latter round counts compared to P-LUET, how-
ever, over unreliable session of WSN-IoT lifetime which holds minimal importance in IoT 
architecture.

As an extension of LUET, P-LUET also helps in improving the network connectivity 
by working on keeping the ℙ(iso) lower as was obtained in LUET. To further enhance this 
characteristic of the network, P-LUET introduces conditional gridding that allows devices 
to be connected to one device acting as a CH within its local grid until the condition (
0.75�ini × Popt < Aℵ × Popt ≤ �ini × Popt

)
 is fulfilled. As can be seen from Fig. 14, unlike 

[35, 36] that has a few cases of higher %ℙ(iso) until round count 1700, P-LUET’s %ℙ(iso) 
spread is on a lower front. Moving ahead in lifetime, P-LUET’s %ℙ(iso) spread can be seen 
rising than its spread in the previous round range yet it falls on the lower front compared to 
the spread for [33, 35, 36] despite a fall in Aℵ.
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5.2.2 � Assessment based on varied assumptions on P‑LUET

In this section the performance of P-LUET is tested under varying assumptions to further 
understand the liability of employing P-LUET. As understood from the literature, a hetero-
geneous network is supposedly assumed to lay devices with an additional Δ times energy 
to enhance network’s capability. However, varying the individual device capabilities with-
out affecting the overall network resources can also be known as heterogeneity sensitivity. 

Fig. 11   Comparative life pace; (Aℵ ∈ [0, 100]vsl,M2 = (300)2)

Fig. 12   �fdd - analysis; (Aℵ ∈ [95, 100]vsl,M2 = (300)2)
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Therefore, in the first assumption, while keeping the total energy of the network same 
ET = 100J , varying scenarios have been considered on how this energy can be individu-
ally varied among devices. Under such presumption, 4 cases can be obtained. The first case 
is keeping the initial device count of the network nini = 100 and increasing the energy of 
every device Eini from 0.5 → 1.0J ; the second case is keeping Eini = 0.5J as is the energy 
of normal nodes in the basic pre-analysed environment and adding more devices of same 
Eo to the network; the third case is the two-level energy heterogeneity with two kinds of 
devices: normal and advanced devices where advanced devices hold a�

= 2 times more Eo 
and are m�

a
= 0.5 fraction of total nodes; the fourth case is the basic three-level heterogene-

ous scenario analysed in the previous section.
The observations from the Table 8 direct the analysis towards accepting Case 4 for the 

needful environment. Additionally, Fig.  15 graphically demonstrates the improved effi-
ciency compared to the other cases while also showcases the FDD round graph for all the 
cases. Pertaining to the high Eini value in Case 1, it demonstrates a much longer �fdd . How-
ever, considering it unfair for initial performance evaluation and bypassing it for valuation, 
Case 4 wins the race among the rest of the cases as clearly, it has the longest �fdd.

Fig. 13   NLW∕I - analysis; (Aℵ ∈ [0, 5]vsl,M2 = (300)2)

Table 4   %Improvement in Tnet of P-LUET w.r.t. state-of-the-art clustering algorithms

l
′ Round life completed
HDD Half Device Dead

[33] [34] [35] [36] [24]

l
′ %Tnet

l
′ %Tnet

l
′ %Tnet

l
′ %Tnet

l
′ %Tnet

FDD 1069 14.21↑ 1085 12.92↑ 1005 19.34↑ 1232 1.12↑ 1013 18.7↑
HDD 1988 0.33↑ 1978 1.25↑ 3343 44.37↓ 2058 2.17↓ 1800 8.92↑
LDD 5565 0.79↑ 5503 0.81↑ 5093 11.42↓ 4739 16.4↑ 4875 9.32↑
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Table 5   Energy usage of P-LUET and the other established algorithms and Observations thereafter utilizing 
inferred results from Table 4

[33] [34] [35] [36] [24] P-LUET

l
′

Eres l
′

Eres l
′

Eres l
′

Eres l
′

Eres l
′

Eres

Initial 1 99.967 1 99.969 1 99.966 1 99.953 1 99.969 1 99.970
FDD 1069 65.328 1085 65.250 1005 67.557 1232 46.824 1013 65.689 1246 60.951
HDD 1988 41.072 1978 42.177 3343 12.493 2058 21.369 1800 43.430 1952 42.829
LDD 5565 0 5503 0 5093 0 4739 0 4875 0 5506 0
Observations
1. To carry out fair performance evaluations, the initial energy environment is kept same for all the 

algorithms
2. While [24, 33–35] suffer a balanced fall rate ranging closely between (32,35); P-LUET suffers a higher 

fall rate of 39.05% and [36] suffers highest fall rate of 53.18%. A higher fall rate can be owed to higher 
FDD and large throughput it supports in [36] and P-LUET as can be confirmed from Table 4

3. It can also be observed through simulations that until FDD, P-LUET showcases best energy utilization 
while [36] shows worst energy utilization. The estimate Eused per l  in [24, 33–36] and P-LUET have 
found to be 0.0324, 0.032, 0.0323, 0.0432, 0.034, 0.031, respectively. Therefore, despite higher fall rate 
in P-LUET, it showcases a better energy utilization until FDD

4. After reaching the state Aℵ = 0.5�ini , [24, 33, 34] save about Eres ∈ (41, 43.5) (in Joules) which is 
similar to the total Eres of P-LUET incorporated WSN-IoT. However, these algorithms savour high 
residual at the cost of lower network throughput as opposed to P-LUET algorithm that supports an 
approx. improvement of {0.33, 1.25, 8.92} throughput compared to [24, 33, 34]

5. [35, 36] suffer the most drop in Eini at HDD, since they manage to support a large data transport of 
about 259,542 and 183,681 packets as compared to 179,774 packets supported by P-LUET until HDD

6. Apart from transferring a higher count of packets, P-SEP is observed to showcase best energy utiliza-
tion until LDD with obtaining estimate Eused per l  as 0.024 and 0.007 (in Joules) from FDD-HDD, and 
HDD-LDD, respectively. However, since the period from FDD-LDD supports transfer of unreliable data 
as per IoT framework, this advantage is of less importance

7. [36] suffers from worst energy utilization from FDD until HDD with obtaining a value of estimate Eused 
per l  as 0.031 (Joules)

8. P-LUET faces near-average energy utilization in both FDD-HDD and HDD-LDD periods owing to 
value of 0.026 and 0.012 (Joules) within the range [0.024,0.031] and [0.007,0.014], respectively

Table 6   Comparison of P-LUET in terms of energy credibility over some pre-defined rounds

Protocols Round count

500 1100 1800 2600 3400 4000 4600 5100

ATEER [33] 83.788 64.338 44.672 30.579 17.169 08.917 03.883 01.259
Improved clustering 

algorithm [34]
84.006 64.779 45.603 31.450 17.943 09.417 04.215 01.108

P-SEP [35] 85.010 67.010 48.344 32.277 17.663 08.116 01.530 00.000
EDCF [36] 78.413 52.520 26.901 13.084 05.674 02.539 00.382 00.000
LUET [24] 83.074 62.755 43.430 28.387 13.689 05.748 00.997 00.000
P-LUET 84.275 65.509 45.805 31.630 18.104 09.294 04.048 01.099
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Eth plays an important role in defining Pwgt of an end-device for being chosen as the 
CH. The Eth value is greatly influenced by b parameter as Eth = bEini while upon suc-
cessful fulfilment of this condition, Pwgt value is greatly influenced by c parameters. 
Hence, it is important to understand the effect of these parameters on the performance 
evaluation. Therefore, in the second assumption, both the discrete parameters have been 
varied individually from [0.1, 1.0] while the algorithm’s FDD has been noted. Focussing 
on the b parameter, it can be observed from Fig. 16a that at b = {0.1, 0.4, 0.5, 0.7, 0.8 }, 
a higher FDD has been observed depicting them as the probable optimal values of b . 
Upon Fig.  16b analysis for values b = {0.1, 0.4, 0.5, 0.7, 0.8 }, it can be observed that 
b = {0.7, 0.8 } derive the network for a longer duration picking themselves as the most 
near optimal points if only longevity is considered. However, the proposed algorithm 
also focusses on improved network connectivity and thereby reduced device isolation 

Table 7   Comparison of P-LUET in terms of Tnet capacity over some pre-defined rounds

Protocols Round count

500 1100 1800 2600 3400 4000 4600 5100

ATEER [33] 50,000 109,969 169,365 206,620 239,522 259,977 270,600 276,115
Improved cluster-

ing algorithm 
[34]

50,000 109,985 168,216 205,349 238,076 258,870 269,899 276,066

P-SEP [35] 50,000 109,893 170,630 219,652 262,335 290,244 308,498 311,752
EDCF [36] 50,000 110,000 169,746 204,399 222,690 229,414 233,755 234,037
LUET [24] 50,000 109,904 163,747 197,957 230,273 245,925 252,767 253,735
P-LUET 50,000 110,000 171,689 207,829 240,373 261,358 272,199 278,317

Fig. 14   %ℙ(iso) - analysis; 
(
%ℙ(iso) ∈ [0, 100]vsl,M2 = (300)2

)
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within the network. However, among the chosen probable b values, b = 0.7 provides 
the minimum isolation among the devices (as can be verified from Fig.  16c) making 
it the most apt value. Thereafter, stabilizing b value in the Eth = bEini metric, c value 
is analysed for Pwgt computation. For the very purpose, c is varied from [0.01, 1.0] to 
understand its presence. It can be observed from Fig. 16d that at smaller values of c , 
the network celebrates a longer �fdd while the network behaves vice-versa as c value 
increases. As clearly briefed in [30], c is that reel positive number that influences the 
CH count through the Pwgt computation. It is because a higher c results in comparatively 
a higher Pwgt outputting a smaller epoch for all the devices barring them to adapt as per 

(a) (b)

Fig. 15   Analysis based on heterogeneity sensitivity

(a) (b)

(c) (d)

Fig. 16   Analysis based on b and c parameters
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each residual constraints. This may result in higher CH count with most nodes commu-
nicating directly with their IoT Hub which becomes the cause of early FDD. A value of 
0 is avoided for parameter c as it would result in Pwgt = 0 which again leads to a direct 
communication of all end-devices with the IoT Hub of the network. Therefore, from 
Fig. 16d, it can be inferred that c = {0.1, 0.2 } are considered the best possible options 
for consideration.

6 � Conclusion

Exhaustive research critically analyses P-LUET algorithm w.r.t. the state-of-the-art clus-
tering algorithms for their suitability in an IoT framework. The need of modification 
arises from the need to overcome hotspot issue and cluster overlapping. This algorithm 
has introduced the concept of annulus ring-based weight value ( Rb-based 3

i
W ) and condi-

tional region concurrence ( ℊ ) to help overcome these issues. This algorithm successfully 
improves the stability period ( �fdd ) of LUET by 18.7%. As it is an extension of the previ-
ous work, P-LUET is expected to better the network connectivity by utilizing the lines of 
uniformity concept. Apart from showcasing improved efficiency of 12.8% over �fdd and a 
stronger connectivity, it also delivers a longer life of about 5506 rounds and a higher net-
work throughput of 279,798 data packets. P-LUET has also been evaluated on scenarios 
of heterogeneous sensitivity and b, c parameters. Our work considers Constant Bit Rate 
(CBR) for the network. However, with the upcoming increase in the multimedia applica-
tions of IoT scenario, it is important that the network is equipped with Variable Bit Rate 
(VBR) that allows the sender to transmit data at a varying speed. Hence, this algorithm 
can be improved by considering VBR instead of CBR. The ID-enabled end devices can 
be replaced with IP-enabled devices to uplift the algorithm’s suitability within a scenario. 
The impact of the algorithm can be studied on other WSN-IoT metrics like latency, packet 
delivery ratio and QoS in future. This algorithm can also be tested and made suitable for 
varying scalable network scenarios.
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