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Abstract
Nowadays, Microstrip patch antennas (MPA) are commonly deployed in various applica-
tions as it has number of benefits like compatibility, lower volume, low weight, low cost 
and easiness to install on rigid surfaces. However, MPA is restricted with narrow band-
width and therefore, the enhancement of bandwidth is essential for the broad banded appli-
ances. This work intends to develop a new approach, which derives a non-linear objective 
model to assist in designing the solution spaces of antenna constraints. For this, a new 
improved optimization concept termed as Elephant Herding Optimization with New Scal-
ing Factor (EHO-NSF) is proposed that tunes the MPA parameters. The significance of 
the proposed work is to increase the antenna gain by optimally selecting the width, patch 
length, dielectric value of substrate, and substrate thickness of MPA. Eventually, analysis 
is carried out that validates the adopted model regarding gain, cost and efficiency analysis.
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MPA  Microstrip Patch Antenna
MTM  Metamaterials
MP-LAD  MP-LA-based AD
NPS  Non-Point-Symmetric
PS  Point-Symmetric
PSAD  Particle Swarm -Based AD
PGWAD  Proposed GWAD
RMPA  Rectangular Microstrip Patch Antenna
WOAD  Antenna Design Without Optimization

1 Introduction

The integrating ability of the MPA makes it more famous and constructive for appliances 
such as mobile, satellite or aerospace systems [1, 2]. Along with the striking characteris-
tics like low-profile, light-weight, low-cost, and low-power, the realistic usage of MPA is 
restricted due to its narrow-band features, particularly in broad banded appliances [3, 4]. 
Improvement of MPA bandwidth is a key area of analysis for the past few decades. Vari-
ous analyses are reported by means of diverse antenna geometry. Bandwidth improvements 
of patch antennas can be attained by a thicker substrate with lower permittivity; however 
radiation efficiency gets degraded because of the surface waves [5, 6, 7, 8].

Accordingly, MPAs are fed by the several techniques. These techniques are categorized 
into 2 types; “(a) contacting and (b) non-contacting”. As per the contact technique, the RF 
power is provided to radiation patch directly via a micro strip line [9, 10]. As per the non-
contacting technique, EMF coupling is carried out for transferring the power among the 
radiating patch and micro strip line [11, 12]. The four well known feeding models are “the 
microstrip line, coaxial probe (both contacting schemes), aperture coupling and proximity 
coupling (both non-contacting schemes)”; however their patterns get vary with respect to 
frequency due to the false radiations. Moreover, they exhibit poor cross-polarization and 
back-radiation features [13, 14, 15].

Generally, the most renowned schemes for analysing MPA are the full wave model, 
transmit line and cavity models [16]. The full-wave scheme is very versatile, accurate and 
it treats the infinite and finite arrays, single elements, arbitrary elements, coupling, and 
stacked elements [17, 18]. The transmission line scheme is simpler and it offers better 
physical insights; however it is less precise. The cavity scheme offers good physical insight 
and is highly accurate; nevertheless it is complicated in nature.

The contributions of the work is given below.

1. Proposed a new algorithm termed as Elephant Herding Optimization with New Scal-
ing Factor for fine-tuning the MPA parameters such as width, patch length, value of 
dielectric substrate, and substrate thickness for antenna gain enhancement.

The paper is arranged as: Section II portrays the review. Section III describe the model-
ling of MPA and section IV portrays the optimization of constraints of MPA design via 
Elephant Herding Optimization with New Scaling Factor. Section V and VI illustrates the 
outcomes and conclusion.
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2  Literature Review

2.1  Related Works

In 2020, Dutta et  al. [19] developed a RMPA with miniaturized and simple design with 
enhanced cross-polarization (XP) purity. The modelled scheme was highly flexible for tun-
ing the antenna frequency for optimal performance. In addition, a comprehensive design 
was offered for estimating the resonance frequency of antenna and also for evaluating the 
respective resonant modes. Finally, the results obtained from the simulation have demon-
strated the effectiveness of adopted concept.

In 2018, Qian et  al. [20] have presented a new MPA design with narrow half-power 
beam-width and higher radiation gain loaded with MIS-MTM. Accordingly, a mathemati-
cal model was formulated for computing MPA in step by step procedure that aided in opti-
mizing the constraints for optimal performance. This technique has also offered significant 
control for modelling the efficient transmitting antenna system in microwave appliances.

In 2020, Chandrashekar et al. [21] have presented a compact design of MPA for real-
izing the wideband features. Here, the annular metal-ring was deployed as superstrate 
and it was provided as inductive load to rectangular patch. In addition, the robust system-
atic method was exploited for choosing the size of ring and patch, in which they resonate 
closer to one another. This tactical model has ensured a wider harmonizing bandwidth with 
broader radiation. At last, the simulated results have revealed the enhancement of presented 
approach in terms of bandwidth.

In 2020, Rashmitha et al. [22] have designed and simulated a MPA that was well-suited 
for 5G communications. Here, the antenna worked at EHF ranges at 43.7 GHz. Accord-
ingly, FR4 epoxy substrate was deployed in this work, and the antenna was examined for its 
radiation pattern, VSWR, return loss, distribution of current and gain. At last, the attained 
outcomes were confirmed and were examined for different appliances.

In 2019, Hocini et al. [23] have analyzed and designed the 5 terahertz MPA depending 
on “modified photonic band gap substrate” with a frequency of 0.5 to 0.8 THz. Conse-
quently, the intention was to accomplish the optimal antenna features nearer to 0.65 THz 
that included appliances in communication and sensing fields. Moreover, the simulation 
was carried out on the basis of diverse substrates, together with aperiodic and periodic 
homogeneous photonic crystal substrates.

In 2021, Susamay et  al. [24] have developed a novel quantitative constraint that has 
identified the most important factor for suitable geometry election of MPA, which could be 
applied in lower XP appliances. The importance of NPS and PS geometries was examined 
based on FAR, a novel constraint that quantified the level of electric field irregularities in 
MPA. From the experimentation, it was found that the adopted model could ensure low XP 
radiation.

In 2019, Shalini et al. [25] have proposed a “microstrip fed graphene based dual-polar-
ized patch antenna that included single graphene patch fed by dual ports oriented orthog-
onally”. This port has provided the horizontal and vertical radiations in its relevant port 
directions. Moreover, the patch has a frequency of 3.98 THz and it was mounted on silicon 
substrate. Finally, the simulations were carried out, and the supremacy of the presented 
scheme was validated in terms of peak gain, return loss and efficiency.

In 2019, Hossein et  al. [26] established MPA model for terahertz appliances. The 
adopted antenna has obtained minimal cost as the substrate was FR-4 and it has included 
higher radiation efficiency. On deploying the fractal structure, the radiation length of 
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present paths was raised and the antenna size was minimized. Finally, the results obtained 
from the simulation have revealed the efficacy of the modelled approach in terms of gain, 
efficiency and cost.

2.2  Review

Table 1 symbolizes the reviews on existing MPA design models. Cross-polarization [19] 
reveals improved gain and reduced polarization levels. However, there was degraded 
impedance matching. In addition, FEM exploited in [20] have offered high efficiency and 
increased gain efficiency, but it should consider more on radiation gain. Microstrip feeding 
technique [21] has effective control of Cross-polarization and attains efficient gain. How-
ever it needs consideration on radiation and band width properties. Trial and error method 
was deployed in [22] offered reduced impedance and high gain, but, there was implementa-
tion on real platforms. Finite integration technique [23] offers high radiation efficiency and 
reduced return loss. But, shock waves may degrade the performance of antenna. FAR [24] 
reduces cross-polarization and provides higher radiation efficiency. Yet, it requires consid-
eration on varied types of feeding mechanisms. Dual-polarization based model [25] guar-
antees higher peak gain with minimal return loss. Nevertheless, it should consider more 
on polarization issues. FEM developed in [26] offers higher gain and minimized cost, but 
return loss should be focused more.

3  Modelling of Microstrip Patch Antenna

Figure  1 reveals the mechanism of radiation in MPA. Patch antennas usually include a 
ground plane and controlling patch. A dielectric media known as substrate is present at 
the centre of the design, which shows the exact value termed as dielectric constant. In gen-
eral, patch sizes are said to be smaller than the ground and substrate, the. While design-
ing a MPA, a resonance frequency and dielectric medium are chosen based on the size of 
MPA. In addition, the dielectric substrates with minimal dielectric constant are required for 
enhancing the antenna performances, wherein the efficiency is improved with higher radia-
tion and bandwidths.

The noteworthy constraints while designing the MPA is depicted below.
Width computation Eq. (1) shows the width evaluation of MPA, wherein, rf  points out 

the resonant frequency, �r points out the value of dielectric substrate and L points out light 
speed. Equation  (2) portrays the formulation for rf  , wherein �re points out the effective 
refractive index and P points out patch length [27].

Height assessment The height (H) of MPA is computed as given in Eq. (3), wherein T  
points out thickness of substrate [27].

(1)W =
L

2rf

√

2

�r + 1

(2)rf =
L

2P
√

�re
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ERI assessment The constraint,�re is evaluated as per the Eq. (4), wherein H points out the 
substrate’s height.

 Normalized length assessment The MPA’s normalized length (ΔP) is evaluated as per 
Eq. (5).

Length assessment The length of MPA indicated by (P) is evaluated as per Eq. (6).

CI calculation Eq. (7) demonstrates the CI of transition element, wherein,Yi points out the 
patch impedance and is evaluated as per Eq. (8) [27].

(3)H =
T

1000 × 2.54

(4)𝜀
re =

𝜀r + 1

2
+

𝜀r + 1

2

[

1 + 12
H

W

]

−1∕2
,
W

H
> 1

(5)
ΔP

H
= 0.412

(�re + 0.3)
(

W

H
+ 0.264

)

(�re − 0.258)
(

W

H
+ 0.8

)

(6)P =
L

2rf
√

�re
− 2ΔP

(7)YI =
√

50 + Zi

Fig. 1  Radiation pattern for MPA design
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Gain computation The proportion of antenna intensity to the input power constitutes the 
MPA gain. Equation (9) defines the MPA gain, where I indicates the input antenna power 
and RI points out radiation intensity [27].

4  Optimized MPA Design via Improved Elephant Herding Optimization

4.1  Objective Model and Solution Encoding

The adopted scheme intends to increase the antenna gain as defined in Eq. (10). Accord-
ingly, the design parameters like P,W , T  and �r of MPA are optimally tuned by the EHO-
NSF. The input solution to adopted algorithm is revealed in Fig. 2.

4.2  Proposed EHO‑NSF Algorithm

The existing EHO model [28] shows better convergence and resolves varied optimization 
issues, nevertheless, to improve the searching quality, certain modifications are needed and 
this work introduces a modified version with new scaling factor. In general, self-improve-
ment is proven to be promising in traditional optimization algorithms [29, 30, 31, 32, 33, 
34, 35, 36]. The procedure of proposed EHO-NSF model is as follows: Elephants are 
societal creatures that survive in social groups including calves and females. The group 
involves various clans, and each clan is headed by a matriarch. Usually, female elephants 
live with the clans, whereas the male elephants leave the clans when they grow up. The fol-
lowing assumptions are considered in EHO-NSF.

1. The population includes several clans and every clan comprises of female and male 
elephants.

2. Some of the male elephants leaves the clan and live alone
3. Each clan is headed by a matriarch.

(8)Yi = 90
�
2
r

�r − 1

(

P

W

)2

(9)MA = 4�

(

RI

I

)

(10)M∗
A
= argmax
(P,W,T ,�r)

(

MA

)

Fig. 2  Solution encoding
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Clan-updating Operator As per the nature of the elephants, the elephants in a clan are 
lead by matriarch. Thus, the matriarch c has a major impact on the novel positions of all 
elephants. The elephant j in clan c is updated by Eq. (11), here Zc,j and Zn,c,j points out the 
old position and new position of elephant j in clan c , correspondingly. Zbest,c is matriarch c 
that indicates the best elephant in clan c . Conventionally, the scale factor � lies between 0 
and 1. As per the presented model, � is computed as shown in Eq. (12), where K denotes 
the elitism parameter (that indicates how many best elephants to move from one generation 
to next generation) and Zbest refers to best fitness at each iteration.

However, the best elephant in each clan could not be updated as per Eq. (11). As per the 
developed model, it can be updated as per Eq. (13), where CL points out the chromosome 
length and ran points out the random integer.

4.3  Separating Operator

The separating procedure, in which the male elephants depart their family group is mod-
elled into separating operator. The separating operator is computed based on the worst fit-
ness as shown in Eq.  (14), where Zmin and Zmax are the minimum and maximum bounds 
of positions correspondingly. Zworst,c indicate the worst elephant individual of clan c and r 
represents the random integer between 0 and 1. Algorithm 1 reveals the pseudo code of the 
presented EHO-NSF model.

(11)Zn,c,j = Zc,j + �.r.
(

Zbest,c − Zc,j
)

(12)� = (j∕K) ∗ Zbest

(13)Zn,c,j = round(1 + (CL − 1)) × ran

(14)Zworst,c = Zmin + r.
(

Zmax − Zmin + 1
)
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Algorithm 1: 

5  Results and Discussions

5.1  Simulation Set Up

The adopted MPA design was simulated in MATLAB and the results were achieved. 
Here, the population size was assigned as 10 and the iteration count was assigned as 
100. In addition, the superiority of the presented antenna model was validated by com-
paring it with other existing schemes like AAD [37], WOAD [38], FAD [39], LAD [40], 
GAD [41], GWAD [42], PGWAD [43], PSAD [44], EHAD [28] and MP-LAD [27]. 
In addition, the analysis was carried out with respect to gain, directivity, cost, CI and 
efficiency.
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5.2  Performance Analysis

The performance of the adopted EHO-NSFAD model over existing models like AAD, 
WOAD, FAD, GAD, GWAD, PSAD, LAD, PGWAD, EHAD and MP-LAD is given in 
Fig. 3 for varied frequency levels that ranges from 77, 74, 72, 70, 68 and 65 GHz. Accord-
ingly, the gain, directivity, CI, and efficiency are observed from Fig. 3(a) to (d) respectively. 
From the analysis, the presented model has attained better values for gain, directivity, CI, 
and efficiency when compared over the other existing models. Particularly, from Fig. 3(a), 
a higher gain of 17.2 dB has been attained by the EHO-NSFAD scheme, which is 8.14%, 
5.23%, 23.26%, 23.26%, 5.23%, 12.79%, 8.14%, 23.26%, 5.23% and 1.16% superior to tra-
ditional AAD, WOAD, FAD, GAD, GWAD, PSAD, LAD, PGWAD, EHAD and MP-LAD 
models at 77 GHz. Also, the directivity analysis and CI analysis for the proposed EHO-
NSF model over conventional schemes is given in Fig. 3(b) and (c) for varied frequency 
levels. Moreover, from Fig. 3(c), the CI attained by the adopted scheme is 10%, 14.67%, 
22%, 14.67%, 10%, 6.67%, 10%, 3.33%, 10% and 3.33% superior to traditional AAD, 
WOAD, FAD, GAD, GWAD, PSAD, LAD, PGWAD, EHAD and MP-LAD models at a 
frequency of 70 GHz respectively. From the analysis, the adopted model is accomplished 
with higher directivity values, thus ensuring the superior performance of the work. Specifi-
cally, the directivity attained by the adopted scheme is 35.14%, 27.03%, 40.54%, 40.54%, 
48.65%, 37.84%, 32.43%, 27.03%, 45.95% and 27.03% superior to traditional AAD, 

Fig. 3  Performance analysis of the developed scheme over traditional schemes in terms of (a) Gain (b) 
Directivity (c) CI (d) Efficiency
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WOAD, FAD, GAD, GWAD, PSAD, LAD, PGWAD, EHAD and MP-LAD schemes at a 
frequency of 75 GHz respectively. Consequently, the overall examination of the developed 
model over existing models for varied design constraints is shown in Table 2. Thus, from 
the evaluation, it is clear that the presented EHO-NSFAD model has obtained improved 
performance when compared to the state-of-art techniques.

5.3  Analysis on Radiation Pattern

The radiation patterns of the MPA design attained by the proposed EHO-NSFAD model 
over existing schemes are illustrated in Fig.  4. Consequently, the radiation patterns 
are observed for diverse frequencies. In fact, a higher radiation pattern ensures the bet-
ter performance of the system. On observing the graphs, the presented scheme has 
accomplished bigger side lobes as well as main lobe than the existing schemes. Particu-
larly from Fig.  4(a), the side lobes as well as main lobe of adopted scheme at 65  GHz 
has revealed a higher radiation pattern when computed over existing schemes. Similarly, 
from Fig. 3(b)–(f), the developed EHO-NSFAD model has obtained amplified side lobes 
as well as main lobe whose sizes are higher over other conventional schemes for varied 
frequencies.

5.4  E‑Plane Analysis

Usually, E-plane includes the capability to discover the orientation of the antenna radio 
waves. Accordingly, E-plane analysis is done by altering the frequencies at 77, 74, 72, 
70, 68 and 65 GHz, where the DOA is assigned as 900. A proficient antenna design can 
be accomplished only if the side lobes and main lobe attain maximal dimensions. From 
Fig. 5(a), the dimensions of side lobes and the main lobe offered by the developed EHO-
NSFAD scheme at the frequency of 65  GHz is higher than the existing AAD, WOAD, 
FAD, GAD, GWAD, PSAD, LAD, PGWAD, EHAD and MP-LAD schemes. Moreover, at 
the frequency of 68 and 70 GHz, the sizes of side lobes as well as main lobe of presented 
EHO-NSFAD model are much bigger over the compared schemes. In the same way, the 
size of side lobes as well as main lobe of developed EHO-NSFAD model at diverse fre-
quencies such as, 77, 74 and 72 GHz are found to expose higher radiation patterns than the 
conventional schemes.

Table 2  Overall analysis of 
developed model over traditional 
models

Methods Directivity Gain CI Efficiency

WOAD [38] 21.629 12.603 134.59 8142.8
AAD [37] 22.33 15.687 135.78 8889
GAD [41] 23.207 13.827 135.39 8208.5
FAD [39] 20.974 13.629 127.99 9505.7
PSAD [44] 23.605 15.411 140.35 9100.3
GWAD [42] 23.113 15.431 140.51 9129.4
PGWAD [43] 23.38 16.013 143.64 8135.7
LAD [40] 21.625 15.361 142.19 8871.9
MP-LAD [27] 26.477 16.428 141.99 9937.8
EHAD [28] 33.071 13.532 133.1 8381.6
EHO-NSFAD 22.096 16.53 145.9 9987.1
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Fig. 4  Radiation pattern of the developed scheme over traditional schemes for varied frequencies like a 
65 GHz, b 68 GHz, c 70 GHz, d 72 GHz, e 74 GHz and f 77 GHz
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5.5  H‑Plane Analysis

The analysis on H-plane attained by the developed EHO-NSFAD model over existing models 
at varied frequencies such as, 77, 74, 72, 70, 68 and 65 GHz is shown in Fig. 6. For all the fre-
quencies, the sizes of main lobe and the side lobes of presented antenna model are amplified 
than the existing models. Thereby, the improvement of the developed EHO-NSFAD scheme 
in terms of H-plane is proved from the outcomes.

Fig. 5  E-plane analysis of developed scheme over traditional schemes for varied frequencies namely a 
65 GHz, b 68 GHz, c 70 GHz, d 72 GHz, e 74 GHz and f 77 GHz
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5.6  Convergence Analysis

The convergence analysis (cost) of adopted scheme (EHO-NSFAD) over the exist-
ing schemes is shown in Fig. 7 for varied frequencies such as, 77, 74, 72, 70, 68 and 
65  GHz. Here, cost is evaluated as: (cost = 1/gain). Accordingly, the analysis is per-
formed by varying the iterations from 0 to 100. On examining the outcomes, the cost 
values attained by the developed EHO-NSFAD model are found to be lower than the 
compared schemes for all frequencies. For instance, at 65 GHz, the proposed model at 
iteration 50 has attained a minimal cost value of 0.06, which is much lower when com-
pared to other methods. That is, the adopted scheme is 6.67%, 11.67%,6.67%, 6.67%, 
11.67%, 6.67%, 11.67%, 5.83%, 30% and 5% superior to traditional AAD, WOAD, 

Fig. 6  H-plane analysis of developed scheme over traditional schemes for varied frequencies namely “a 
65 GHz, b 68 GHz, c 70 GHz, d 72 GHz, e 74 GHz and f 77 GHz a 65 GHz, b 68 GHz, c 70 GHz, d 
72 GHz, e 74 GHz and f 77 GHz”
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FAD, GAD, GWAD, PSAD, LAD, PGWAD, EHAD and MP-LAD schemes. Thereby, 
the superiority of presented EHO-NSFAD method was validated.

The results are encouraging and they show better performance on the microstrip 
patch antenna. Further, based on the availability of the resources like hardware require-
ments this work will be further extended to experiment real-time.

Fig. 7  Cost of for developed scheme over traditional schemes for varied frequencies namely a 65 GHz, b 
68 GHz, c 70 GHz, d 72 GHz, e 74 GHz and f 77 GHz
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6  Conclusion

This paper introduced a novel antenna design by integrating the EHO-NSFAD based 
optimization concept. Accordingly, the MPA parameters such as width, patch length, 
substrate thickness and dielectric substrate value were optimized by the presented EHO-
NSFAD for attaining increased gain. Furthermore, analysis was carried out that proved 
the efficiency of the presented work. From the analysis, the adopted model was found 
to accomplish higher directivity values, thus ensuring the superior performance of the 
work. Specifically, the directivity attained by the adopted scheme was 35.14%, 27.03%, 
40.54%, 40.54%, 48.65%, 37.84%, 32.43%, 27.03%, 45.95% and 27.03% superior to tra-
ditional AAD, WOAD, FAD, GAD, GWAD, PSAD, LAD, PGWAD, EHAD and MP-
LAD schemes at a frequency of 75 GHz respectively. Thus, the effectiveness of the pre-
sented EHO-NSFAD method was proved via valuable analysis.
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