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Abstract
This paper introduces a nonlinear integer programming model for the clustering problem 
in wireless sensor networks, with a threefold contribution. First, all factors that may influ-
ence the energy consumption of clustering protocols, such as cluster-heads selection and 
distribution, are considered implicitly in the model. Second, an innovative fitness function 
that directly maximizes the WSN lifetime is proposed. Finally, a global optimum of the 
whole network lifespan clustering schemes is targeted. The proposed model is then solved 
by a particle swarm optimization meta-heuristic based algorithm. This algorithm follows a 
centralized one-step off-line approach, in which the clustering schemes of the whole net-
work lifetime and their associated durations are computed at the initialization of the net-
work operations. The one-step approach is enabled by an energy prediction mechanism that 
allows to reduce the costs of the periodic network re-clustering. Simulation results show 
clear enhancement in network lifespan and number of received data packets as compared to 
some state-of-the-art clustering approaches.
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1 Introduction

In the last few years, tremendous research works have been carried out towards smartening 
the environments by monitoring/controlling selected areas in real time [29, 36]. The out-
come of these works can fuel several domains including military applications, healthcare, 
target tracking, etc., [26]. While these are diverse in domains and purposes, all of them 
rely on the collection of meaningful information, generally from a remote areas of interest. 
This is ensured by a collaborative infrastructure named Wireless Sensor Network (WSN), 
which is composed with a set of compact low power sensor nodes and one (or more) super 
node(s) called base station [2, 3], as illustrated in Fig.  1. The restriction in resources, 
predominantly energy, is the inherent characteristic of WSNs. The lifetime of the WSN 
strongly depends on the residual energy of the SNs, and it represents the principal perfor-
mance criterion in most applications. Achieving a long lifespan in WSN is challenging, 
especially for densely and large-scale SNs deployment. It has been proved that the major 
part of node’ energy is dissipated in communication [34], and that the transmission power 
is proportional to the transmission range [22]. This motivates for the use of topology con-
trol techniques that limit the number of data packets circulating in the network and lessen 
the distances over which packets are transmitted. Clustering is one of such techniques that 
is widely used. It partitions the SNs into clusters with a particular node as cluster-head 
(CH) in each cluster. The other SNs of the cluster become members and send the sensed 
data to their CHs, which in turns forwards to the BS.

Numerous WSN clustering solutions have been proposed [1, 9, 28]. Each one deals 
with some clustering challenges to intuitively prolong the network lifetime. However, all 
the existing clustering solutions suffer from one or more of the following drawbacks. (i) 
In the set-up phase of every round, a high amount of information overhead (required for 
re-clustering) is exchanged between nodes or from nodes to the BS in centralized clus-
tering, which causes waste of energy. (ii) Re-clustering schemes are calculated gradu-
ally and greedily. In fact, the scheme for round r + 1 is computed at the end of round r, 
with no consideration of the upcoming rounds’ schemes ( i > r + 1 ); which may lead to 
the local optimum problem. (iii) A constant round-time is used, or if modelled to change 
dynamically, the nodes are supposed to act as CH at one round and as non-CH in the 
other (N∕K − 1) rounds (where N is the network size and K is the number of CHs in the 

Fig. 1  Wireless sensor network
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network). This is not effective for topologies where some nodes are located in positions 
that are unsuitable for acting as CHs. (iv) The number of CHs is set to a predetermined 
parameter in every round. This could be inappropriate given the temporal variation in 
the energy state of the SNs. (v) In clustering protocols based on meta-heuristics, the 
proposed Fitness Functions attempt to prolong the network lifetime by optimizing either 
some factors related to energy (e.g., the node residual energy, the expected energy to be 
consumed if the SN is elected as CH, etc.), or some geospatial factors (e.g., the distance 
among SNs and from SNs to the BS). To our best knowledge, no existing solution con-
siders direct maximization of the network lifetime in the clustering FF.

To address the aforementioned drawbacks, a new non-linear integer programming 
(NIP) formulation of the clustering problem is introduced in this paper. All the exist-
ing clustering solutions that focus on network lifetime try to prolong it, indirectly, by 
optimizing some factors such as the cluster heads selection and distribution, the clus-
ters’ size, etc., which allows only achieving sub optimal solutions. However, we do not, 
explicitly, focus on any of these issues given that the ultimate objective is the network 
lifetime extension. The innovative idea in this paper is the formulation of a fitness func-
tion that intends to maximize the network lifetime directly. This way, all the overlapped 
energy-efficiency factors will be considered implicitly, as extending the network life-
time requires selecting the appropriate set of CHs, tuning the optimal rounds’ times, etc. 
Motivated by this, we propose a new original clustering approach in which the cluster-
ing schemes are modelled as square binary matrices and the rounds’ durations are rep-
resented by a vector. Based on this model, an appropriate clustering algorithm is used 
to find the optimal schemes and their durations that maximize a fitness function defined 
as the sum of all rounds’ durations, which represents the network lifetime. Moreover, 
the introduced NIP formulation enabes all the clustering schemes (of all rounds) and 
their respective durations to be calculated together by the BS. This provides the BS 
with a horizontal vision and enables it to target a global optimization and choosing 
schemes that increase the network lifespan, as a whole. Given the NP-hardness and the 
high complexity of the NIP problems [7], it is extremely difficult to find exact solutions. 
We therefore develop a centralized one-step off-line clustering algorithm based on the 
particle swarm optimization and an energy prediction mechanism to solve the proposed 
NIP. Energy prediction is also used to prevent the periodic re-clustering process while 
distributing the load evenly amongst the SNs. The main contributions of the proposed 
solution are summarized below:

• An innovative fitness function that, directly, maximizes the WSN lifespan is intro-
duced.

• Values of all the factors influencing the energy efficiency of a clustering protocol are 
optimized dynamically in each round.

• Global optimum of the whole network lifetime clustering schemes and their durations 
is targeted.

• Re-clustering cost is mitigated while balancing the load between the SNs.

The rest of the paper is organized as follows. Sect.  2 presents some existing clustering 
protocols in WSNs. Section 3 describes the PSO meta-heuristic, as well as the network and 
energy models. Section 4 introduces the NIP formulation followed by the general function-
ing of the proposed clustering protocol and the proposed PSO-based algorithm. Section 5 
discusses simulation results, and finally Sect. 6 draws conclusions and gives some perspec-
tives. All the acronyms used throughout the paper are given in Table 1.
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2  Related Work

LEACH-C [13] is one of the earlier and canonical clustering approaches. In this protocol, 
the BS applies simulated annealing algorithm in order to select the CHs that allow reduc-
ing the energy dissipated by non-CH-nodes, while the FF enables minimizing the total sum 
of squared distances between all the non-CH-nodes and their closest CHs.

In TPSO-CR [7], the clustering and routing problems were modelled as linear programs 
and two algorithms based on PSO were introduced to resolve the proposed programs. The 

Table 1  Acronyms

Term Description

BS Base station
BMBWFL-HEED Boosted mutation based black widow optimization with fuzzy logic algorithm in 

HEED protocol
CECP Centralized evolutionary clustering protocol
CH Cluster-head
CGC Centralized genetic-based clustering protocol
D-LEACH-F Dynamic round-time based on LEACH-F
EAUCA Energy-aware unequal clustering algorithm
EBUC Energy-balanced unequal clustering
ETPSO-CR Enhanced two-tier particle swarm optimization protocol for clustering and routing
FF Fitness functions
FL Fuzzy logic
FND First node dies
fs Free space
GA Genetic algorithm
HDDS Hierarchical data dissemination strategy
HMM-PSO Hidden Markov model and particle swarm optimization protocol
HND Half of the nodes die
LEACH-C Centralized low energy adaptive clustering hierarchy
LEACH-CE Efficient clustering through estimate in centralized LEACH
LND Last node dies
LPOBC energy aware clustering method via lion pride optimizer and fuzzy logic
MATLAB MATrix LABoratory
mp Multi-path fading
NARTC Network adaptive round-time clustering
NS3 Network simulator version 3
NIP Nonlinear integer programming
OSC One-step clustering protocol
PSO Particle swam optimization algorithm
PS-SFLA Parameter selection in the shuffled frog leaping algorithm
SCIP Solving constraint integer programs
SN Sensor node
TPSO-CR Two-tier particle swarm optimization protocol for clustering and routing
WSN Wireless sensor network
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used FF targets the optimization of the energy consumption, the cluster quality, and the 
network coverage. ETPSO-CR [20] is an enhanced version of TPSO-CR that adopts an 
energy prediction mechanism, for the purpose of reducing the periodic network re-cluster-
ing costs. It also modifies the FF to permit the election of well distributed CHs and adapts 
the rounds’ durations to the CHs residual energy.

CGC [12] is a protocol that uses GA with a FF aiming to select as CHs the non-outlier 
SNs with residual energy higher than the network average energy and that optimize the 
total energy consumed in the network. CECP [11] also uses a GA with an objective func-
tion aiming to select as CHs the SNs that optimize the energy consumed in the network.

OSC [21] uses a one-step off-line cluster computation algorithm, where all the cluster-
ing schemes and their respective durations are calculated by the BS once at the network 
initialization by a greedy approach. OSC introduced a new weight function for selecting 
the set of CHs that minimizes energy consumption of CHs, and non-CH nodes as well. 
OSC also eliminated costs proportional to periodic online re-clustering by using an energy 
prediction model.

EBUC [14] was proposed to address the hot-spot problem associated to multi-hop WSN, 
as well as equitably distribute the energy consumption over the network. In EBUC, the 
network is subdivided into unequal sized clusters with small-size clusters near the BS. In 
such way, their CHs may save sufficient energy to guarantee the routing operation. For the 
creation of optimized unequal clusters, EBUC uses an algorithm based on PSO and intro-
duces an energy-aware multi-hop routing algorithm between the CHs and the BS. This pro-
tocol uses an energy prediction method to estimate the SNs energy level at the starting of 
each round. EAUCA [6] also considers the energy hole problem and targets extending the 
network lifetime by creating unequal sized clusters. The unequal clustering is achieved by 
calculating the competition radius of the candidate CHs based on the SN remaining energy 
and its distance to the BS. The final CHs are then selected by considering both residual 
energy and degree of the SNs. To further energy preservation, EAUCA proposes a multi-
hop routing algorithm between the CHs and the BS. Relay nodes are chosen in accordance 
with the SN remaining energy, degree, and distance to BS.

LEACH-CE [16] and HMM-PSO [10] proposed energy prediction techniques to reduce 
the periodic network re-clustering costs while distributing the load evenly amongst the 
SNs.

In order to prolong the FND and to optimize the use of the SNs’ energy, NARTC [24] 
and D-LEACH-F [4] proposed methods to model the rounds’ durations. In these methods, 
each SN takes on the role of CH at least once and acts as a member-node in the other 
(N∕K − 1) rounds, where N is the size of the WSN and K is the desired number of CHs.

FL has been used in some recent solutions such as LPOBC [35], BMBWFL-HEED 
[31] and PS-SFLA [8]. LPOBC uses the lion pride optimizer algorithm and FL in the CHs 
selection phase. It also proposes the construction of a direct virtual backbone of CHs to 
facilitate data routing. BMBWFL-HEED makes use of the combination of the boosted 
mutation based black widow optimization along with the FL system to select the optimal 
set of CHs in the network. In PS-SFLA, authors focused on the optimal selection of the 
fuzzy input parameters and rule tuning for multi-hop clustering protocols in WSNs.

Along with energy optimization, some state-of-the-art clustering protocols consider 
other WSN aspects. For instance, the effect of the harsh external environment was consid-
ered in HDDS [19], which is an energy-efficient hierarchical protocol aiming at enhancing 
the network coverage and supporting the dynamic changes in the WSN topology.

All the reviewed clustering protocols suffer from at least one of the drawbacks previously 
presented in Sect.  1. LEACH-C, TPSO-CR, CGC, CECP, LPOBC, BMBWFL-HEED and 
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HDDS have the advantage of using robust algorithms such as PSO or FL with energy-effi-
ciency criteria to select the optimal set of CHs. Nevertheless, they suffer from re-clustering 
cost, fixed rounds’ times and non-optimal tuning of the CHs number in every round. ETPSO, 
OSC, LEACH-CE and HMM-PSO deal with the re-clustering cost and effectively minimize 
the energy consumption in the network through energy prediction mechanisms. However, they 
do not optimally set the number of CHs to be elected in every round. Moreover, LEACH-CE 
and HMM-PSO suffer from the fixed rounds’ durations. NARTC and D-LEACH-F have the 
advantage of modeling the round times (durations) but they elect the CHs randomly and create 
clusters with random sizes. The strong point of EBUC and EAUCA is the unequal clustering 
which balances the energy dissipation between the SNs. Nevertheless, the predefined num-
ber of CHs, the fixed rounds’ durations, and the re-clustering cost in EAUCA have negative 
impact on energy. Furthermore, in all the reviewed clustering protocols, re-clustering schemes 
are calculated gradually and protocols intend to maximize the network lifetime “indirectly” by 
considering some energy related criteria. This paper proposes a new energy-efficient cluster-
ing solution aiming at sorting out all the above-mentioned problems.

3  Background, Assumptions and Models

3.1  PSO

PSO is an artificial intelligence technique that can be used to find approximate solutions to 
extremely difficult maximization and minimization problems that cannot be solved numeri-
cally with accurate algorithms [15, 23]. It is a population-based optimization method derived 
from the social behavior of birds. The success of an individual in such method is not only 
affected by its own effort but also by the information shared by its neighbors. PSO keeps con-
currently many candidate solutions (particles) and maximizes or minimizes an objective func-
tion through the estimation of all the particles’ fitness. Particles are featured by velocities and 
positions having at the start-up random values. The velocity, Ve, and position, X, are updated 
at each optimization iteration, t, for each particle, i. Equations 1 and 2 define the update for-
mulas associated to velocity and position, respectively [23].

For ensuring convergence towards the global best solution during the running of the algo-
rithm, each particle involves its best discoveries in the past, pbesti , as well as its best discover-
ies of the entire population, say gbest. w stands for a weight factor managing the velocity of 
the particle, c1 and c2 define the learning factors, while r1 , r2 are random numbers within the 
interval [0, 1].

The easiness of PSO implementation motivates its application in different fields of science 
to solve complex problems, including clustering in WSNs.

3.2  Network Model

In this paper we consider the same network model used in [21] where the network is repre-
sented by an undirected unit disk graph, G = (V ,E,B) . V is the set of nodes and E is the set 

(1)Ve(t + 1) = wVe(t) + c1r1(pbesti(t) − X(t)) + c2r2(gbest(t) − X(t))

(2)X(t + 1) = X(t) + Ve(t + 1)
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of edges. (u, v) ∈ E if u and v are within the communication range of each other. B is the 
BS, which is supposed to have no energy constraint. G models a network topology while 
considering a regular transmission range of nodes. Nonetheless, it is assumed that the SNs 
can communicate directly with the BS by boosting their power if required. Once deployed, 
the WSN is assumed stationary and the SNs are aware of their positions. Traffic is assumed 
periodic, i.e. all the SNs generate fixed-length data packets at a constant rate. Data aggre-
gation is considered by every CH before transmitting the collected data to the BS. A clus-
tering Scheme, S, is defined as a set of clusters, S = {(CHk,m1,m2,⋯m�)} , covering the 
WSN (the graph G). Each tuple (CHk,m1,m2,⋯m�) represents a cluster, k, with a CH, 
CHk , and � members ( m1,m2,⋯m� ). The set of all schemes for the whole WSN lifespan 
is then modelled by a vector, CR , of schemes, where R is the number of schemes (i.e. the 
number of rounds). In the rest of this paper, we will refer to the vector, CR , by a clustering 
configuration.

3.3  Energy Model

In this section, we present an energy consumption model allowing the BS to predict the 
remaining energy of all the nodes in the network to eliminate the periodic sending of such 
information from the SNs. During its life cycle, a SN spends its energy, principally, in [18]: 
(i) Sensing: energy is dissipated to activate the sensing circuit to retrieve the data from the 
environment, (ii) Processing: SNs are in charge of doing some simple treatments such as 
computation and data aggregation, which consume some of their energy to activate the 
processing units, and (iii) Radio communication: which is the most energy consuming. To 
permit the transmission and the reception of data packets, a considerable amount of energy 
is consumed.

In this paper, we consider the radio communication model illustrated in [13] and uti-
lized in many state-of-the-art protocols, e.g., [17, 30] and [21]. In this model, transmission 
energy, Etx , is proportional to the data packet size, l, and the packet transmission distance, 
d. Equations 3 and 4 gives the formulas for calculating Etx while considering both fs and 
mp carriers. This depends on the crossover distance, d0 , separating the transmitter from 
the receiver. d0 is calculated by Eq. 5. The energy spent to receive a packet, Erx , is given 
by Eq. 6. Erx is proportional to the data size only. Eel is the energy required for running the 
transmitter and receiver electronic circuitry. �fs and �mp are the amplification energy in the 
fs and mp models, respectively.

The approximate consumption of node, vi , in a round, r, depends on its status in that round, 
i.e., member versus CH. We consider the frame as the unit of time. In each frame, a mem-
ber-SN senses and communicates data to its CH. The CH aggregates the data collected 

(3)Etx(l, d) = lEel + l𝜖fsd
2, if (d <= d0),

(4)Etx(l, d) = lEel + l𝜖mpd
4, if (d > d0),

(5)d0 =

√

�fs

�mp
,

(6)Erx(l) = lEel,
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from its members and transmits it to the BS. The energy spent during a time frame by a 
member node, vm , and a CH, vh , are then calculated by Eqs. 7 and 8, respectively, where 
Esen and Eagr are the energy dissipated in sensing and data aggregation, respectively, and �h 
is the cluster’ size of the CH vh . dvm,vh represents the distance between the member vm and 
its CH vh , and dvh,B is the distance from the CH vh to the BS. Accordingly, the consumed 
energy, Ecvi

(r) , of any node, vi , in a round, r, can be calculated by Eq. 9, where tr is the 
round duration (in terms of frames).

4  Proposed Solution

4.1  Problem Formulation

Let N be the size of the network and R the upper bound of the possible number of rounds for 
the whole network lifetime. The variables of the optimization program are: i) t: a vector of size 
R, of integer variables representing the duration of rounds, i.e, tr represents the duration of 
round r, ii) CR, r = 1…R : a vector of square matrices (of size N × N each), where a matrix Cr 
represents the clustering scheme of the round r. Each matrix holds N2 binary (decision) vari-
ables, and Cr

j,j
 is set to 1 when the node j is designated as CH in the round r, and Cr

i,j
 ( i ≠ j ) is 

set to 1 if node, i, is assigned to CH, j, in round r. Let IEi denotes the initial energy of node i. 
The proposed NIP formulation is given as follows,

Subject to:

The objective function in Eq. 10 aims to maximize the network lifetime defined as the sum 
of all the rounds’ durations tr ( r = 1…R ). Constraint of Eq. 11 is proposed to permit the 

(7)Evm
= Esen + Etx(l, dvm ,vh ),

(8)Evh
= Esen + Erx(l)�h + Eagr + Etx(l, dvh ,B),

(9)Ecvi
(r) = Evi

tr,

(10)Max

R
∑

r=1

tr,

(11)
N
∑

j=1

Cr
i,j
= 1…∀i ∈ [1,N],∀r ∈ [1,R],

(12)Cr
i,j
≤ Cr

j,j
…∀i ∈ [1,N],∀j ∈ [1,N],∀r ∈ [1,R],

(13)

R
∑

r=1

tr

(

E1

sen
+

N
∑

j=1,j≠i

(E1

tx
(l, di,j)C

r
i,j
) + E1

rx

N
∑

j=1,j≠i

Cr
j,i

+(Eagr + E1

tx
(l, di,B))C

r
i,i

)

≤ IEi,∀i ∈ [1,N].
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creation of non-overlapped clusters and to force all the SNs to be part of these clusters. In 
fact, this constraint ensures that in each round, r, every SN, i, will be assigned to exactly 
one CH j. Constraint of Eq. 12 assures the assignment of SNs to only nodes designated 
as CHs in all the rounds r. In other words, if Cr

j,j
= 0 (i.e., j is not designated as CH in 

round r), then all SNs cannot be member of j, i.e., ∀i , Cr
i,j

 is inevitably set to 0. Constraint 
of Eq. 13 verifies that the total sum of the energy spent by each SN, i, throughout all the 
rounds does not exceed its initial energy IEi . E1

sen
 is the energy spent by a SN, i, for sensing 

in a time frame. 
∑N

j=1,j≠i
(E1

tx
(l, di,j)C

r
i,j
) represents the energy required by a SN i to trans-

mit its sensed data to its CH j. Obviously, if Cr
i,j
= 0 (i.e., SN i is not member of CH j in 

round r), then E1
tx
(l, di,j) is eliminated. (E1

tx
(l, di,B) + Eagr)C

r
i,i
+ E1

rx

∑N

j=1,j≠i
Cr
j,i

 is the energy 
required by a SN i, if it is designated as CH in round r. E1

rx

∑N

j=1,j≠i
Cr
j,i

 is the energy con-
sumed by this CH i to receive data from its members. (Eagr + E1

tx
(l, di,B))C

r
i,i

 is the energy 
of data aggregation and data transmission to the BS, B. This way, clustering schemes will 
be generated until the first node drains its energy which will intuitively optimize the FND 
metric (known as stable period). However, the proposed model permits to extend the WSN 
lifetime with respect to the three definitions FND, HND and LND, as it will be demon-
strated in the simulation Sect. 5.

4.2  General Functioning of the Proposed Clustering Protocol

The clustering protocol we propose herein (called OPOC for “OPtimized One-step Clus-
tering”) is dynamic, centralized and follows a one-step offline approach for the cluster-
ing schemes calculation. As for all dynamic clustering protocols, OPOC is carried out in 
rounds composed of two phases, (i) set-up phase, and (ii) steady state phase. The set-up 
phase of the proposed solution is different from all existing clustering protocols. In fact, in 
the set-up phase of the first round, clustering schemes for the whole network lifetime are 
generated together (along with theirs durations) in a one-step offline approach. To do this, 
the nodes communicate information about their location and residual energy to the BS. 
Then, BS calculates all clustering schemes and their durations by a PSO-based algorithm 
(details are given in the next subsection) and diffuses a message (SCHEME) containing 
the clustering scheme related to the first round, as well as its associated duration. Once 
this message received, every node will be informed whether it is elected as CH or to which 
cluster it is attributed. From the set-up phase of the second round, only the BS broadcats a 
(SCHEME) message carrying the clustering scheme for the incoming round that have been 
already computed. The steady state phase is similar to LEACH-C based protocols, in which 
every node gathers periodic data and sends it to its respective CH. The CHs accordingly 
aggregate the received data and forward it to the BS. The general functioning of OPOC is 
illustrated in Fig. 2.

4.3  PSO Based Clustering Algorithm

The proposed clustering algorithm of the OPOC protocol is based on the PSO meta-heuris-
tic and uses the energy prediction mechanism presented in Sect. 3.3. The aim of this algo-
rithm is to solve the NIP formulation presented in Sect. 4.1, following a one-step offline 
approach. The advantage of such approach is twofold. (i) Minimizing the cost of periodic 
network re-clustering. This is because nodes do not need to send energy information at 
the beginning of each round. (ii) Targeting a global optimization of the network lifetime 
by calculating all clustering schemes together. In fact, calculating clustering schemes 
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progressively, i.e., the scheme for round r + 1 is determined at the end of round r without 
considering schemes of further rounds ( i > r + 1 ), cannot ensure the global optimum of the 
network lifetime. This is similar to the shortest path problem, where choosing the next edge 
with the minimum weight cannot led necessary to the shortest path. The FF of the PSO-
based clustering algorithm is the objective function of the NIP model, given by Eq. 10, and 
the particle position is the vector of rounds’ durations.

In the following, a detailed description of the PSO-based clustering algorithm is 
given, which is also illustrated in Algorithm 1. This algorithm takes as inputs the graph 
G(V, E, B), the initial energy of nodes IEi ∈ ℝ

N , the number of rounds upper bound, R, the 
maximum number of configurations, � , the number of PSO iterations � , the size of PSO 
population � , and the upper bound of the round duration � . The optimal values of R, � , � , 
� and � are set empirically in the simulation phase. The first step of this algorithm consists 
in fixing PSO parameters (w, c1 , c2 ) according to [7]. The main loop (line 6 throughout 27), 
that will be repeated for a certain number of iterations � , searches the optimal clustering 
schemes along with theirs respective durations. In line 7, a clustering configuration CR is 

Begin

Nodes: Send energy and position information

BS: Generates clustering schemes and durations of the whole network lifetime

BS: Broadcasts the clustering scheme of the incoming round and its duration

Nodes: Receive clustering scheme

Nodes: Steady State phase

Round-
time

achieved?

Network
lifetime
reached?

End

Yes

Yes

No
No

Fig. 2  General functioning of OPOC
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generated randomly while respecting constraints of Eqs. 11 and 12 of the NIP model. In 
line 8, the energy required to satisfy the generated configuration for a single frame by every 
node is estimated using Eqs. 7 and 8 for member SNs and CHs, respectively. Thereafter, 
rounds’ durations corresponding to the generated clustering schemes are optimized using 
PSO as follows. A population, P, of, � , particles and their velocities are first initialized 
randomly (line 9). A particle, p, is defined by its position and velocity. The position of p, 
say Tp , is a vector containing R values, where Tp[r] is the duration of the rth round given 
by particle p. In the following we will refer to the particle p by its position Tp . Note that a 
round with duration 0 means that the corresponding clustering scheme is not suitable (i.e, 
the clustering scheme will be eliminated). Therefore, the number of rounds will be varia-
ble. The velocity is used to change iteratively the particle position. For � iterations (loop in 
lines 10 throughout 25), and for each particle, the energy, Eci

 , that would be consumed by 
every node, i, to execute the configuration, C, throughout the generated rounds’ durations, 
Tp , is calculated using Eq. 9. The calculated Eci

 of all the nodes are used then to verify 
whether the solution (the particle) is valid or not. A valid solution is the one that satisfies 
constraint of Eq. 13 of the NIP model. If the solution is valid, the fitness of the particle Tp 
is calculated (line 15) using the FF of the proposed NIP (Eq. 10), and the best local fitness 
value, Pbestp , is updated accordingly. In line 19, the Global best fitness Gbest of the popu-
lation is set to the maximum value of all the Pbest of the particles. After that, the velocity 
and the position of each valid particle are updated using Eqs. 2 and 1. Finally, the Gbest of 
the current configuration is compared with the Gbest_conf  of the previous iteration and the 
one with the highest value is saved as Gbest_conf  along with its corresponding configura-
tion, CR , and rounds’ durations, Tp , for the next iteration (line 25 throughout 28). The out-
put of this algorithm are the optimal clustering schemes and their rounds’ durations.

This algorithm allows the generation of clustering schemes until the FND. According to 
the algorithm logic, it is possible that more than one node exhaust their energies simultane-
ously, while other nodes in the network will still have some remaining energy. For this, the 
algorithm described above (Algorithm 1) is executed in many iterations. At each iteration, 
nodes involved are those having minimum energy required for transmission. At the end of 
each iteration, the consumed energy required by each involved node to satisfy all the gener-
ated clustering schemes are calculated, and its remaining energy is estimated accordingly. 
Finally, those remaining energies are used as input in the next iteration of the algorithm 
execution, instead of the nodes initial energies IEi . All these iterations will take place at 
the network initialization in a one step approach to obtain clustering schemes of the whole 
network lifetime and their durations.
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5  Simulation Study

The performance of the OPOC clustering protocol is evaluated by simulation and com-
pared to the LEACH-C [13], TPSO-CR [7], OSC [21] and ETPSO-CR [20]. Simulations 
have been carried out with MATLAB [25] and NS3 [27]. MATLAB has been used to 
simulate the task of the BS, i.e. centralized calculation of clustering schemes and their 
durations, while NS3 has been used to simulate a WSN with a periodic traffic. Three 
network densities, respectively 100, 200, and 300 SNs have been considered. For each 
network density, various realistic network topologies generated with the GenSeN tool 
[5] were considered. The values of the remaining simulation parameters, as well as the 
PSO related parameters are summarized in Table 2 and Table 3, respectively.

The next subsections present and discuss the obtained results. The first one shows 
the variation of the round times and the number of elected CHs in WSNs clustered by 
the OPOC protocol. The second one compares LEACH-C, TPSO-CR, OSC, ETPSO-CR 
and OPOC with respect to three definitions of the network lifetime, namely: FND, HND 
and LND. In the third and firth subsections, the above-mentioned protocols are com-
pared in terms of the number of alive nodes over time and the total number of packets 
received at the BS, respectively. Each point of the simulation results represented in the 
plots hereafter is the average of 25 simulation runs, with confidence interval error bars 
of 95%.
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5.1  Round Time and Number of CHs Variation

Like all clustering solutions, OPOC is inevitably impacted by the number of elected CHs 
in each round and the rounds’ durations. Figures 3a–c capture the number of CHs elected 
in some rounds operation of OPOC in WSNs of 100, 200 and 300 SNs, respectively. Like-
wise, an example of the round times variation in OPOC is also presented in Figs.  4a–c 
for networks of 100, 200 and 300 SNs, respectively. The figures demonstrate that values 
of the two parameters change independently from a round to another, which are in fact 
the values obtained by solving the proposed NIP program. Optimal setting of these values 
depends on several other parameters that fluctuate over time, such as the relative varia-
tion of the remaining energy (between nodes), the load of CHs in the generated cluster-
ing schemes, etc. Since the FF of the OPOC clustering protocol intends to maximize the 
network lifetime, optimal values to these factors are given in each round in such a way to 
prolong the network lifespan. The figures also show that the number of CHs selected in 
each round is proportional to the network size. The means of the CHs number for WSNs 
with 100, 200 and 300 SNs are 10.70, 21.92 and 34.73, respectively. For the rounds’ times, 
we notice that the networks of 100 and 200 SNs have high values with means of 100.62 
and 144.39 frames, respectively. In more dense networks (of 300 SNs) rounds’ times values 
are relatively small, with a mean of 47.26. Note that the number of the generated CHs in 
each round and the rounds’ durations are also variable in OSC, contrary to LEACH-C and 

Table 2  Simulation parameters Parameters Values

Node deployment area 100m X 100m

Number of nodes 100, 200, and 300 SNs
Base station position (50, 50)
Deployment strategy Random
Initial energy (IE) 0.25Joule
Transmission energy (Eelec) 50nJoule/bit
Propagation energy (freespace Efs) 10pJoule∕bit∕m2

Propagation energy (multipath Emp) 0.0013pJoule∕bit∕m4

Data aggregation energy ( Eagr) 5nJoule/bit/signal
Threshold distance ( d0) 87meters
Packet size 800bits

Table 3  PSO related parameters Parameters Values

Number of rounds upper bound, R 600
Upper bound of the round duration � 250
Maximum number of configuration, � 20
Number of PSO iterations � 1000
Size of PSO population, � 100
Weight factor w 1
Learning factor c1 2
Learning factor c2 2
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TPSO-CR that use a fixed number of CHs and a fixed round duration. In ETPSO-CR, the 
number of CHs is also fixed but the round times are variable.

5.2  Network Lifetime

Figures 5, 6 and 7 compare the network lifetime of LEACH-C, TPSO-CR, ETPSO-CR, 
OSC and OPOC for networks of 100 SNs, 200 SNs, and 300 SNs, respectively, using 
three metrics: FND, HND and LND. The results show that OPOC clearly improves the 
network lifespan with respect to all the defined metrics. For instance, OPOC enhances 
the FND by an average (the average of the three network densities) of 92, 80% , 84, 16% , 
72, 53% and 28, 26% over LEACH-C, TPSO-CR, ETPSO-CR and OSC, respectively. 
This improvement is due to the effectiveness of the proposed NIP and PSO-based algo-
rithm with their innovative FF that maximizes directly the WSN lifetime, instead of 
only focusing on selecting the optimal set of CHs, which is the approach used in the 
other compared protocols. OSC and ETPSO-CR propose techniques to avoid the cost 
of periodic network re-clustering and to model the round times. However, other impor-
tant parameters that greatly impact the energy efficiency of clustering protocols are not 
considered, such as the optimal number of CHs, the distribution of the CHs over the net-
work, the size of the clusters, etc. In OPOC all these factors, and more, are considered 
implicitly. In fact, by modeling the clustering schemes as binary matrices and running 
an appropriate clustering algorithm in such a way to find the optimal schemes that maxi-
mize the FF (representing the network lifetime), all the factors influencing the energy 

(a) Network of 100 SNs. (b) Network of 200 SNs.

(c) Network of 300 SNs.

Fig. 3  Dynamic number of CHs in OPOC for in WSNs of 100, 200 and 300 nodes
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effectiveness will have optimal values in each round. In another words, directly target-
ing the maximization of the network lifetime enables to avoid considering all the over-
lapped factors that influence the energy efficiency of clustering protocols. Moreover, the 

(a) Network of 100 SNs. (b) Network of 200 SNs.

(c) Network of 300 SNs.

Fig. 4  Dynamic rounds’ durations in OPOC in WSNs of 100, 200 and 300 nodes

Fig. 5  Network lifetime of 100 nodes WSNs



1516 N. Merabtine et al.

1 3

introduced NIP formulation allows all the clustering schemes (of all rounds) and their 
respective durations to be calculated together by the BS. This provides the BS with a 
horizontal vision and enables it to target a global optimization and choosing schemes 
that increase the network lifespan, as a whole. The clustering algorithm of OPOC also 
permits dynamic and optimized setting of the round durations by the PSO meta-heu-
ristic. The elimination of re-clustering and thus of long range transmissions in every 
round contributes to further energy conservation. On the other hand, it can be observed 
from Fig.  7 that the HND value of OSC in 300 SNs networks is slightly higher than 
that obtained by OPOC. This is because OPOC aims principally at balancing the energy 

Fig. 6  Network lifetime of 200 nodes WSNs

Fig. 7  Network lifetime of 300 nodes WSNs
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consumption in the network and hence extending the FND, known as stable period. This 
also explains why the improvement is more remarkable for the FND.

5.3  Number of Alive Nodes

In Figs. 8, 9 and 10, the number of surviving nodes is plotted versus time. The figures show 
that the decrease of this number is clearly prolonged by OPOC. The improvement with 

Fig. 8  Alive nodes versus time for 100 nodes WSNs

Fig. 9  Alive nodes versus time for 200 nodes WSNs
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respect to this metric is due to the energy-efficient operations of OPOC, as explained previ-
ously. Notice that for networks of 200 SNs and 300 SNs the number of alive nodes in OSC 
is higher than in OPOC after the time of HND and when approaching the LND. Again, this 
is because the OPOC targets principally the FND. The number of alive nodes is generally 
more significant in the period prior FND than after it (when nodes start deplete energy). 
The obtained results confirm that OPOC allows to keep nodes alive all together for as long 
as possible.

5.4  Total Number of Received Data at the BS

Figure  11 depicts the number of data packets received by the BS. Since OPOC widens 
the network lifetime by enabling nodes preserve their batteries for longer time compared 
to LEACH-C, TPSO-CR, ETPSO-CR and OSC, it was expected to reach higher number 
of data packets received at the BS. The results presented in this figure confirm this. It can 
be noted from the figure that OPOC improves the number of data packets received by the 
BS by an average of 93, 56% , 84, 92% , 77, 26% and 35, 06% over LEACH-C, TPSO-CR, 
ETPSO-CR, and OSC, respectively. In summary, the results demonstrate that the proposed 
solution globally optimizes the network lifetime, fairly distributes the energy consumption 
between nodes, and depletes evenly this consumption.

6  Conclusion and Perspectives

A new model for the clustering problem in WSNs has been proposed. It implicitly con-
siders the parameters that may influence the energy effectiveness of clustering solutions 
such as the number and distribution of CHs, the cluster size, the round duration, etc. 
It further targets the search of clustering schemes that provide global optimization of 

Fig. 10  Alive nodes versus time for 300 nodes WSNs
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the network lifespan. The model is a nonlinear integer program (NIP), which has been 
solved by a PSO meta-heuristic algorithm that we proposed. To the best of our knowl-
edge, this is the first model for clustering in WSN that is based on an one-step off-line 
approach and targets a global optimization. The clustering algorithm is also the first 
that uses a FF that explicitly maximizes the network lifespan. Simulation results clearly 
show the improvement of the network lifetime and the number of data packets received 
at the BS, as compared to some state-of-the-art approaches.

Despite the enhanced results obtained by the OPOC protocol, it has few limitations 
that open some perspectives for future research. Firstly, OPOC does not feature fault-
tolerance– similarly to all existing clustering protocols that are based on energy estima-
tion. In fact, all the clustering schemes are calculated at the network initialization in 
OPOC. A node that has been designated as CH for a certain round may fail. An intui-
tive direction is the replacement of the failed CH by the nearest SN with the largest 
amount of remaining energy. The failure of a member-SN may be detected and reported 
to the BS by its CH if it does not receive data from this member within a predefined 
timeout. The BS can therefore designate the new CH and send an update message to 
the concerned SNs. Secondly, OPOC employs the first order radio model similarely 
to most of existing clustering protocols. Some sources of energy consumption in the 
SN such as overhearing, collision, idle listening, etc., are not considered in this model. 
Using a more practical energy consumption model is an interesting perspective. Further, 
OPOC considers periodic traffic applications, while several WSN applications are based 
on query-driven or event-driven traffic. Adapting the proposed solutions to such traffic 
paterns is an other perspective of this work. Moreover, the distributed version of the 
SCIP solver (Para-SCIP [32, 33]) can be used to obtain the exact optimal solution of 
the proposed NIP model (up to a certain scale to be determined). This should also be 
investigated.

Declarations 

Fig. 11  Number of received data Packet throughout the network lifetime
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