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Abstract
The Space today has considerable surge in distributed network of small satellites to meet 
the imperative demand of both commercial and scientific applications (Selva and Krejci in 
Acta Astronaut 74:50–68, 2012). As the complexity of the design and launch of large satel-
lites is high, the need of distributed networking is gaining lot of interest in space domain 
as well. Thus single large satellite is replaced by many, small satellite that collaboratively 
work to perform the same functionality of single large satellite forming Space Based Wire-
less Sensor Network (SBWSN). The SBWSN are dynamically decoupled network as each 
satellite, orbits in its own path and the positioned with considerable distance between them. 
Stability of network with respect to formation flying to accomplish the task by collabora-
tion is quite essential. In this paper, we develop the stability criteria in small satellite net-
work using graph theory, covariant derivatives and linear algebra to ensure distributed pro-
cessing and communication, required to accomplish the mission task.

Keywords Small satellite network · Topology formation · Stability

1 Introduction

From last few years, small satellites are becoming predominant in space mission. 
These small satellites are built using well proven commercially off the shelf compo-
nents (COTS) to reduce the mission time and increase reliability of the mission [1]. 
A lot of research is currently focused on replacing single large satellite using distrib-
uted network of small satellites to meet the increasing demand of the current gen-
eration. The application of SBWSN would be for earth observation like surveillance, 
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weather forecasting, cartography, military and agriculture. These can also be used for 
communication(satellite phones, TV), navigation (GPS, IRNSS), interplanetary explora-
tion (Mars mission), deep space mission (path finder, magnetic field around earth, study 
of asteroids) etc.,. One more important aspect why space researchers are looking for-
ward for SBWSN as it is the economically feasibility, increased life time, reduced devel-
opment time & risk of mission failure. If one of the satellite fails the rest of the satellites 
in the network can adaptively reconfigure and continue the mission application.

Some of the challenges in SBWSN are (a) formation flying (b) collision between sat-
ellites or natural bodies in space, (c) Collaboration and coordination in the Network , 
(d) Node failure (e)Hardware/software resource constraints etc. In this paper, we focus 
on formation flying in small satellite network. The satellites in motion should follow 
predetermined trajectories for the defined topology to accomplish the mission task. This 
is what is known as formation flying in more general way. A basic requirement for any 
formation flying is to maintain the position of the satellite in the orbit. The bounded 
range of formation is, the line of sight of the satellites in formation. More precise defini-
tion of formation flying is given below.

Formation flying A group of satellites are said to be in formation flying if they main-
tain the relative distance between them with on-board control system. The satellites 
interact with each other, to maintain the formation of the satellites. There are several 
methods of implementation like (1) One leader and the rest are followers, where all the 
followers follow the leader as the reference, (2) The entire system of satellites in forma-
tion is controlled by a single satellite, (3) Each satellite takes their own measurements 
and later collaboratively realign to maintain the formation intact [2–4]

Formation flying depends on design parameters like launch orbit type, shape of the 
orbit, mass of satellites, number of satellites, swath, altitude control, orbital velocity, 
relative velocity, angular distance, orbital drift, drag, perturbation, solar radiation pres-
sure, avoidance mechanism of orbital debris [5, 6]. It also depends on the satellite capa-
bilities like frequency spectrum for communication and on-board data handling and 
control system, payload capabilities of temporal and spatial resolutions.

One of the major challenge in small satellite network is topology of the network and 
formation flying in space. Many researchers are now looking forward in control aspects 
of these formations in space. Further, formation flying is more complex in low earth 
orbit due to nodal regression because of flattened surface at the poles. With all these 
challenges, many small satellites forming a distributed network are still considered bet-
ter than a single large satellite for its low cost, reduced development time and higher 
reliability. From the above discussion we see that formation dynamics plays a key role 
in realization of SBWSN.

In this work we discuss on formation flying control mechanism and determine the 
stability criteria for topology in SBWSN using graph theory and linear algebra. It pro-
vides stable interconnections possible in the network for sensing, communication and 
dynamic clustering in SBWSN. This work focus on decentralized control method, 
where formation is not controlled by a single dedicated satellite, instead all the satellites 
involve in control operation. These satellites in the network are decoupled physically, 
but coupled functionally by their task with distributed processing. The communication 
required for formation flying between the satellites is performed using inter satellite 
communication link (ISL). ISL requires line of sight (LOS) for communication. There-
fore the satellites should be visible to each other for communication. This communica-
tion is essential for formation keeping of the satellites in space.
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2  Related Works

From the literature the most widely used network in the space domain is the leader fol-
lower structure in which, one of the satellite/node is used as the leader while all the other 
nodes in the network are the followers. In this type of network, the leader determines its 
trajectory and the followers nodes takes leader as the reference and then align with the 
leader. The advantage of this formation is, its a simpler mechanism where only leader has 
more computation while the followers have less computational overhead. Thus the system 
is economical and less complicated. The disadvantage in this control mechanism is that, 
the failure of the leader results in the entire network failure which is not advisable in the 
distributed satellite network. [2]. The optimization of these are described by the author [7]. 
The author [8] in this works describe the use of decentralized mechanism to control the 
network formation where the nodes align in the decentralised form. The disadvantage is 
that all the nodes in the network should be equipped with required hardware and software 
which is little expensive. But its becomes advantages when compared to the mission cost 
that includes the launch of these nodes in the network. This also increases the reliability of 
the network and increases the life time of the network. The author [9] in their work have 
discussed about the advantages of small satellite network with respect to reliability and 
reduction of space debris which is caused due to large satellite when there is a mission 
failure. The importance of distributed network in space is described. Many Government 
and private space agencies are planning the distributed network of small satellites in future. 
The technology development in avionic industry has brought revolution in unmanned air 
vehicles has demonstrated the formation flying using small devices [2, 10]. The study of 
autonomous systems with dynamic control systems have proven the feasibility of having 
small satellites networks in space. Some of the control mechanisms used for optimal solu-
tion for the underlying dynamic system include mathematical modelling using lagrange 
system with levi civita connections, behaviour approach [11–13].

The author [14] has described about the network formation with mobile vehicles in 
distributed environment that work cooperatively which can adapt and reconfigure to the 
underlying environment based on artificial field potential. This helps us understand the 
strategy of the mobile nodes and its control mechanisms to optimise using adaptive gradi-
ent climbing method.

The author [15] describes, four models for Formation flying namely Ordinary Differen-
tial Equations expressed in terms of Cartesian coordinates (CODE), solution-based State 
Transition Matrix (STM) and Algebraic equations expressed in terms of Orbit Element 
Differences (OEDA). The author [16] describes State Dependent Riccati Equation (SDRE) 
for controlling the formation in a non linear system. These models help in determining the 
topology of the network. They also predict the capability of increasing the network size 
based on the relative distances and the corresponding error index in the formation. Each 
of these models have different accuracy and different bit error rate for different relative 
distance between satellites in the network. If the mission requires less computation then 
OEDA is used as it takes less computation time to solve differential equations on board.

From literature survey, we see space researchers are focusing on small satellites net-
works in place of one huge satellite. Some of the challenges in Satellite Based Wireless 
Sensor Network (SBWSN) [9, 17] are (1) Network topology, (2) Formation flying, (3) 
Dynamic reconfiguration during node failure, (4) Network reliability, (5) Processing capa-
bilities and (6) Network Stability and Scalability. The proposed work focuses on formation 
flying and stability SBWSN.
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2.1  Our Contributions

The main objective of this work is to determine the stability of the network topology in 
SBWSN. The topology under consideration is a distributed network formed by trivalent, 
toroidal and spherical polyhedron graph forming a fullerene. This topology is called as 
polygon based network topology (PBNT). The relative distance traversed by satellite at 
perigee is more, compare to satellite at apogee due to orbital parameters. Therefore, we 
cannot assume that the satellite moves at a constant speed at all time in space environment. 
Therefore we split the entire nodal period (time (T)) in time slices such that its derivative 
remains constant for that time slice. In this work, we focus on network trajectories and its 
stability control using time slicing, covariant derivative and linear algebra. Graph theory is 
used for network representation. This work also addresses the stability criteria in SBWSN 
for dynamic cluster formation and reconfiguration during node failure.

3  Proposed Work

The satellites are nothing but moving vehicles in space with certain motion dynamics. 
These dynamics are represented using the arc/trajectory of the movement in controlled 
manner using the covariant derivatives. One has to understand that the trajectory varies 
based on the topology of the network and underlying mechanical systems.

The scheme of operation in proposed work is described in the following steps (1) 
Design the topology of the Network (PBNT) with geometric parameters. (2) Determination 
of Time scaled Trajectories in SBWSN. (3) Position Determination using Vector space. (4) 
Graph theory representation of Network topology. (5) Stability of PBNT using linear alge-
bra. (6) Validation using Nyquist plot.

3.1  Architecture of Network Topology in PBNT

We consider a distributed network formed by trivalent, toroidal and spherical polyhe-
dron graph forming a fullerene, which is called as polygon based network topology 
(PBNT). It comprises of both pentagonal (Fp) and hexagonal (Fh) faces with K regular 
graphs such that K ≥ 3 with genus equal to 1. It also satisfies Eulers formula with n ver-
tices. The fullerene comprises of simple rings and each of this ring forms the cluster as 
shown in the Fig. 1a. Each cluster is further represented as a triangular grid as shown 
in the Fig. 1b, that is linearly convex or non-linear, with K-connected graph along with 
Hamiltonian extendible cycle [18]. A graph with hexagons is called as polyhex. Just for 
the purpose of representation we assume hexagons of same size, but in actual scenario 
the size of each hexagon(H) may vary based on the application. The polyhex is formed 
by Hn where n = 1, 3, 4, 7,… congruent hexagons. The skeleton of these polyhexes in 
planar graph with three fold tiling at the center is represented by black opaque dot, 
while the terminus is represented using a hallow circle. The Figs. 2 and 3 shows Hn for 
n = 1, 3, 4, 7 . The center and the terminus helps in determining the formation of cluster 
required to cover a particular area of earth based on the application. These polyhexes 
form the logical cluster. The concept of tiling is used for dynamic clustering. The topol-
ogy designed is a scalable and re-usable network using existing space infrastructure. 
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Therefore maintaining formation flying of these satellites to its respective positions 
along the trajectories play a major role. Once the topology of the network is designed, 
the formation flying needs to determine the trajectories of these nodes [].

Fig. 1  a Geometrical framework of the PBTN and b triangular grid graph with adjacent nodes
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3.2  Determination of Time scaled Trajectories in SBWSN

The entire time is spilt into small slices taking the advantage that the orbital dynamics 
of the satellite remains constant for a short interval of time forming a time scaled control 
system (TSCS). In the TSCS, we determine the trajectory from the initial-conditions at 

Fig. 2  Skeleton of polyhexes with its different inclination for n = 1–4

Fig. 3  Skeleton of polyhexes with its different Inclination for n = 7
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time(t = ti ) (i.e, current position) to the final position(i.e, desired position) at t = tf  and 
is represented as K(u) for the interval t = (ti, tf ) , and u(t) is the control history of the time 
scaled control system. We minimize this function L(x̂, u) for the control history u. Fur-
ther by changing the coordinates of the integral and integrating over the time we get the 
expression 1

Replace v by k(u ∗) and using Jacobian transform, we see that u = u ∗ and v = k(u ∗) . 
Another important thing that we notice is k(u ∗) is a compatible function which converges 
to the end point. Thus we get the variation from one time slice to other that helps in deter-
mining the maximum and minimum variation. The actual position and deviation is deter-
mined using optimal trajectory between the nodes in the network from x to y using vector 
space for curved surfaces with covariant derivatives. This gives the optimal solution for 
SBWSN.

3.3  Position Determination Using Vector space

In the normal network representation, the graph of the network is assumed to be in the flat 
surface and a simple distance formula would be sufficient to determine the adjacent nodes 
and the stability. Let us consider the example of the earth surface which is a sphere and the 
vectors to move from one point to another point as shown in the Fig. 4, the vector A and B 
cannot be same. If the Vector is considered as person at the pole while the vector B is on 
the equator, both are not same. Since the satellites orbit around the earth which is an oblate 
spheroid, we cannot use the flat surface vector space analysis. Therefore we use curved space 

(1)∫ L(K(x̂, v)) 𝛼 dt

Fig. 4  Example of vector movement on the earth surface
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for determining path, adjacent nodes and formation stability. we use a method of transporting 
geometrical data, along smooth curves in a manifold. The two vectors on the sphere are identi-
cal or different are determined using the path of the nodes. The path of the node is determined 
using the rate of change(ROC) of the vector, but the rate of change of vector on the sphere 
when taken in small steps are normal to the surface of the curve and expressed by the follow-
ing Eq. 2.

n⃗ is normal vector to ROC. Thus variation from position along the path of the satellites is 
obtained using covariant derivatives ( ∇w⃗v⃗ ). Further subtract normal from the ROC vector-
field ( ⃗v ) in the direction of ( ⃗w ) as given in the Eq. 3.

It is always easier to understand and analyse 2D plane than 3D plane. Hence we transform 
3D plane to 2D plane where pu1, pu2 plane represent the 2D surface of a sphere and is 
shown in the Fig. 5.

Any vector on sphere in curved surface with (x, y, z) coordinates are represented by the fol-
lowing expressions 4, 5, 6 and 7.

(2)dv⃗

d𝜆
= n⃗

(3)∇
dv⃗

d𝜆
=

dv⃗

d𝜆
− n⃗

(4)R⃗ = (X(pu1, pu2), Y(pu1, pu2), Z(pu1, pu2))

(5)x = cos(pu1)sin(pu2)

Fig. 5  Example of vector movement on the earth surface
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where pu1 and pu2 are the longitudes and latitudes respectively and e⃗1, e⃗2 are the basis 
functions for the covariant derivatives along pu1 and pu2 . These are the tangents for 
curves respectively. The covariant derivatives of the tangent vector field in the direction of 
pui is represented as ∇ dv⃗

dpui
which are the normal derivatives but subtracted by the normal 

vector and shown by the Eq.  10. The Eq.  11 is written as a linear combination of the 
vectors.

We know that de⃗j
dui

 is the derivative of basis vector and can be written as the linear combina-
tion as shown in the Eq. 15.

Lij are the components of normal vector and substituting the 17 in Eq. 14, We get 18

(6)y = sin(pu1)sin(pu2)

(7)z = cos(pu2)

(8)e⃗1 =
dR⃗

dpu1

(9)e⃗2 =
dR⃗

dpu2

(10)∇
dv⃗

dpui
=

dv⃗

dpui
− n⃗

(11)=

(
d

dpui
[v1e⃗1 + v2e⃗2]

)
− n⃗

(12)=

(
d

dpui

∑
j

vje⃗j

)
− n⃗

(13)using product rule

(14)=

(
dv⃗j

dpui
e⃗j + v⃗j

de⃗j

dpui

)
− n⃗

(15)
de⃗j

dpui
= Γ1e⃗1 + Γ2e⃗2 + Lijn⃗

(16)taking summation

(17)=
∑
k

Γ1e⃗k + Lijn⃗
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Changing variable and taking the normal vector outside, we get the following Eq. 19. The 
tangent plane is formed using tangent basis shown in Eq. 20 and further normal component 
vanishes, as the normal is also normal to the tangent space formed by the basis and finally 
we obtain the covariant derivative as in Eq. 20

Taking the dot product with a tangent vector of the Eq.  21 we obtain the metric tensor 
component 22.

Where gkl are the metric tensor. We don’t want to have the metric tensor component hence 
we can use a inverse tensor metric to get the � which is defined as follows

3.3.1  Determine Tangent Basis Vector

The partial derivatives of the (x, y, z) in Eqs. 5, 6, 7 are used to determine the tangents in 
terms of pu1 and pu2. A multivariable chain rule is applied to obtain the following Eqs. 26 
to 29

(18)

(
dv⃗j

dui
e⃗j + v⃗j ( Γke⃗k + Lijn⃗)

)
− n⃗

(19)∇
dv⃗

dpui
=

(
dv⃗k

dpui
e⃗k + v⃗j ( Γke⃗k

)
+ Lijn⃗ − n⃗

(20)∇
dv⃗

dpui
=

(
dv⃗k

dpui
+ v⃗jΓk

)
e⃗k

(21)
e⃗j

dui

̇⃗el = Γke⃗k
̇⃗el

(22)= Γkgkl

(23)�m
k
=

{
1, if (m = k)

0 Otherwise

(24)
e⃗j

dui

̇⃗elglm = Γm𝛿m
k

(25)= Γm�m

(26)dR⃗

dpu1
=

dX⃗

dpu1

dR⃗

dpuX
+

dY⃗

dpu1

dR⃗

dpuY
+

dZ⃗

dpu1

dR⃗

dpuZ

(27)dR⃗

dpu1
=

dX⃗

dpu2

dR⃗

dpuX
+

dY⃗

dpu2

dR⃗

dpuY
+

dZ⃗

dpu2

dR⃗

dpuZ
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dR⃗

dpu1
⋅

dR⃗

dpu2
 We further get the tensor matrix using dot product as shown in the Eqs. 30 and 

31 and inverse is obtained using Eq. 32

Substituting dR⃗

dpu1
= e⃗i we get Eq.  33 and similarly we obtain for all the coordinates as 

shown in the Eqs. 34 to 38

From this we calculate the Γ2 using the dot product as given by the Eqs. 39 to 46

(28)dR⃗

dpu1
= cos(pu2)cos(pu1)

dR⃗

dX
+ sin(pu2)cos(pu1)

dR⃗

dY
− sin(pu1)

dR⃗

dZ

(29)dR⃗

dpu2
= −sin(pu2)cos(pu1)

dR⃗

dX
+ cos(pu2)sin(pu1)

dR⃗

dY

(30)gij =

⎡⎢⎢⎣

dR⃗

dpu1
⋅

dR⃗

dpu1

dR⃗

dpu1
⋅

dR⃗

dpu2

dR⃗

dpu2
⋅

dR⃗

dpu1

dR⃗

dpu2
⋅

dR⃗

dpu2

⎤⎥⎥⎦

(31)=

[
1 0

0 (sin(pu1))2

]

(32)Inv of gij =

[
1 0

0
1

(sin(pu1))2

]

(33)
d

dpu1

(
dR⃗

dpu1

)
= −cos(pu2)sin(pu1)

dR⃗

dX
− sin(pu2)sin(pu1)

dR⃗

dY
− cos(pu1)

dR⃗

dZ

(34)
d

dpu1

(
dR⃗

dpu1

)
= − cos(pu2)sin(pu1)e⃗X − sin(pu2)sin(pu1)e⃗Y − cos(pu1)e⃗Z

(35)
d

dpu2

(
dR⃗

dpu2

)
= − cos(pu2)sin(pu1)

dR⃗

dX
− sin(pu2)sin(pu1)

dR⃗

dY

(36)
d

dpu2

(
dR⃗

dpu2

)
= − cos(pu2)sin(pu1)e⃗X − sin(pu2)sin(pu1)e⃗Y

(37)
d

dpu1

(
dR⃗

dpu2

)
= − sin(pu2)cos(pu1)

dR⃗

dX
+ cos(pu2)cos(pu1)

dR⃗

dZ

(38)
d

dpu1

(
dR⃗

dpu2

)
= − sin(pu2)cos(pu1)e⃗X + cos(pu2)cos(pu1)e⃗Z
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From the above calculation we see that Γ1

11
= Γ1

12
= Γ1

21
,Γ2

11
,Γ2

22
= 0; and Γ2

12
,Γ2

22
 is given 

by the Eqs. 47 and 48

Finally covariant derivatives obtained are 49 and 50

From the above method we derive the covariant derivatives of the nodes which is further 
used to determine the distance between them. These covariant derivatives provide us the 
connection between the tangent space in the curved surface using parallel transport. Thus 

(39)Γ1

11
=

(
de⃗1

dpu1
.e⃗l

)
gl1

(40)Γ1

12
=

(
de⃗2

dpu1
.e⃗l

)
gl1

(41)Γ1

21
=

(
de⃗1

dpu2
.e⃗l

)
gl1

(42)Γ1

22
=

(
de⃗2

dpu2
.e⃗l

)
gl1

(43)Γ2

11
=

(
de⃗1

dpu1
.e⃗l

)
gl2

(44)Γ2

12
=

(
de⃗2

dpu1
.e⃗l

)
gl2

(45)Γ2

21
=

(
de⃗1

dpu2
.e⃗l

)
gl2

(46)Γ2

22
=

(
de⃗2

dpu2
.e⃗l

)
gl2

(47)Γ2

12
=Γ2

21
=

cos(pu1)sin(pu1)

sin(pu1)2
=

cos(pu1)

sin(pu1)
= cot(pu1)

(48)Γ1

22
=(−cos(pu1)sin(pu1))(1) = −

(
1

2
sin(2x)

)
as sin(2x) = 2cos(x)sin(x)

(49)∇e⃗1v⃗ =

[
v2

dpu1
+ v2cot(pu1)

]
e⃗2

(50)∇e⃗2v⃗ =

[
v2

dpu2
− v2 −

1

2
sin(2u1)

]
e⃗1 +

[
v2

dpu2
+ v1cot(pu1)

]
e⃗2
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the connection between the nodes at different time is calculated to determine the deviation 
from the required position.

3.4  Network Architecture Using Graph Theory

The easy way to represent SBWSN architecture is by using graph. SBWSN comprises of a 
geometric structure based topology. The nodes/vertices(V) in the graph represent the satel-
lites and the edges E represent the interconnection between the satellites. They are bidirec-
tional. They also determine which nodes are in communication range and in line of sight. 
It is essential that every node should be in the close proximity of at least one node at any 
given time.

Since we are discussing the small satellites for earth observation the satellite network 
is assumed to be in low earth orbit. This can be further extended to any orbit based on the 
mission application. The graph G is represented by the following Eq. 51

Where V = (v1, v2 …) , E = (uxy) edges connect adjacent vertices. We use weighted graph 
representation w ∶ V ∗ V − R such that w(u, v) = w(v, u) and w(u, v) >= 0 , else the node is 
said to be isolated node if the node does not have a path joining any other node in the net-
work as given by the Eq. 53. If every node is connected to every other node in the network, 
then such graphs are known as strongly connected graphs and the graphs are complete [19]. 
In this work we assume that each node is connected to one or more nodes in the graph with 
different incoming and outgoing paths. The number of incoming paths and outgoing paths 
are termed as in/out degree of the node. The degree of node is defined by the Eq. 52

The general representation is given by the Eq. 53

This can further be represented as a function by the Eq. 54

where x, y in the graph represent the connections between the nodes in the matrix-form, 
using algebraic graph concepts.

These graphs can further be contracted where two nodes u and v can be replaced by v ∗ 
as, weights of v ∗ is given by the Eqs. 55 and 56

As the nodes move, there is a possibility that not all the nodes in the network are connected 
all the time. It is always suggestibility to have a subset of the graph G, such that there exists 
one or more edges getting connected to the vertex of the node connected to outside vertices 

(51)G = (V ,E)

(52)dv =
∑

w(v, u) or w(u, v)

(53)L(u, v) =

⎧⎪⎨⎪⎩

d{v} = w(u, u), if (v = u)

w(u, v) if (nodes u and v are adjacent),

0 Otherwise

(54)L(f (x)) =
∑

f (x) − f (y)w(x, y)

(55)w(x, v ∗) = w(x, v) + w(x, u)

(56)w(v ∗, v ∗) = w(u, u) + w(v, v) + 2w(u, v)
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not belonging to that subset. These form subgraphs. The subgraphs may have single pen-
dent vertex or more. The concatenation of subgraphs form the dynamic clusters used to 
cover a specific swath of earth. The subgraphs are shown in the Fig. 6. These nodes are 
measured for connectivity between them using existence of path between the nodes. The 
Laplacian matrix is used in our work to determine the connected nodes using tangent basis 
[20]. We further use Frobenius’ theorem which gives many independent solutions for the 
linear system of nodes and partial differential equations. This basically provides equiva-
lence connection in the manifold which is formed by a set of tangent vector basis function. 
The distance between them is determined by the Laplacian matrix.

Laplacian Matrix (L) is simple matrix which represents the graph into a matrix. This 
matrix is commonly used to determine eigenvalue and eigenvector that form independent 
solution for linear systems [21–23]. Laplacian matrix is defined by the Eq. 57

where D indicates out-degree or in-degree of the graph and A indicates adjacency matrix. 
Further the laplacian matrix helps in understanding the discrete/continuous representations 
in graph and vector spaces. This optimises the given network interconnections for com-
munication distance, delay and fuel efficiency. we now determine the eigen values of lapla-
cian matrix which is essential to determine if these trajectories are stable in their formation 
using Linear algebra.

The spectral graph theory is a key for understanding the graph properties using eigen 
value and eigen vectors.Form the above we know the graph that has vertices and edges 
forming the topology of the network [21]. As we understand that the given network under 
consideration is on the sphere which is a 2D surface the distance between them cannot be 
directly a scalar entity. This also involves the vector representation. In the next section we 
describe the time scaling method to determine the position of the node in the orbit(curved 
surface) with time slicing method

3.4.1  Stability of SBWSN Using Linear Algebra

One of the major concepts in linear algebra is the eigenvalues. These eigenvalues are associ-
ated in determining the stability of graphs. L is nothing but normalised version of matrix A. 

(57)L = D − A.

Fig. 6  Subgraphs and its concatenation forming clusters
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We take the characteristic equation and find the roots of these characteristic equation known 
as eigenvalues. These are taken along the diagonal of the L matrix. Zero is always a eigen-
value ( 

∑
(xi − xj)2 = 0 ). The eigenvalue with multiplicity of Zero is equal to the number 

of components/interconnections in spectral graph. It also shows the algebraic connectivity 
𝜆1 = 0 <= 𝜆2 <= 𝜆n . More connectivity is found for larger value of �2 . From this we can 
determine the number of components/connectivity in the graph, at any given time slice. The 
communication components determine the neighbourhood set required for formation keeping, 
dynamic clustering and information gathering.

The structural properties and stability of the network is defined by laplacian matrix and 
eigenvalue. The network is stable if all the eigenvalues(non zero) lies in disk radius of 1 that 
are usually having uniform spacing between them ( strongly connected graphs). The strongly 
connected graph lies within the disk radius 1 on the gregorian disc boundary for aperiodic 
graph and for periodic graph lies on the boundary of angular spacing of 2pi/M Gregorian disc.

The clusters are also formed by forming the sub-graphs which is very much required in 
SBWSN. These also help in scalability or reconfiguration during node failure specially when 
there are no edges between the connected nodes. These problem of instability is further 
addressed by using Cheegers inequality which puts extension of lower bound and upper bound 
of the graph. This also devices the use of graph theory concepts in redetermining the graph 
bounds and establishing the formation in the SBWSN.

3.5  Mathematical Model for Formation Stability in PBNT

In this section we deal with the formation and finding the stability of these small satellite net-
work. Let us consider a group of nodes N, whereN = i, j , where ((i, j) = 1, 2, 3,…) . Let Ni 
and Nj be the two satellites that are trying to involved in determining the nearest neighbour 
possibility to interconnect. The node Nij is said to be in the formation if their exists a path 
between atleast with one another node. The linear dynamics of vehicular motion is given by 
Eq. 59

The relative distance information between the nodes is determined by the Eq. 60

pi indicates state vector, i = 1, 2,… , qi represent internal state and rij represents local state/
external state of satellite in the network and Mi set of nodes that can locate the other nodes 
in the network. The deviation or error in the node is given by Eq. 61

Using the state space method and decentralised control law, we map qi and ri to pui as 
given in the equation

(58)p.i = Api + Bqi

(59)qi = C1pi

(60)rij = C2(qi − pi)j ∈ Mi

(61)ei =
1

Mi

Mi∑
j=1

rij

(62)v̇i = KAvi + KB1qi + KB2ri
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Let us consider the source and destination nodes in the network being represented by the 
matrix  64 and matrix  65. The connectivity are now put in the matrix form. The matrix 
entry has a value if their exists a edge between the nodes, else the value is zero.

The matrix 66 shows the communication link and corresponding distance between source 
and destination nodes.

This is further represented as sum of A⊗ I + I ⊗ B similarly A can be written as A⊗ I 
when A is matrix that repeats along the diagonal. Thus the entire formation can be written 
as using standard system dynamics

The correction required for each of the node varies with respect to the basis function, and it 
becomes essential for all the nodes to have the same basis function, we use Schur transfor-
mation and Jorden decomposition for transforming the basis function such that the oblique 
projections have an equivalent orthogonal projections using the expansion or the contrac-
tion of the positions required for having proper correction factor for each individual nodes 
which is applicable for all the nodes in the network. Thus Eigen vectors and Eigen values 
are these factors which determine the projection and the factor of expansion or contrac-
tion required for basis function during transformation. There are many ways to find the 
eigenvalues. One such method is QR method. The QR method finds eigenvalues for real or 
complex matrices as given by the Eq. 69

where Qk is similar transform as Pk of using orthogonality and upper triangular matrix, 
though the convergence in most of the times is guaranteed but involves lot of iterations.

(63)̇pui = KCvi + KD1qi + KD2ri

(64)SrcNodes =

⎡
⎢⎢⎢⎢⎣

a11 a12 ⋯ a1q

a21 a22 ⋯ a2q

a31 a32 ⋯ a3q

⋮ ⋮ ⋮ ⋮

am1 am2 ⋯ mq

⎤
⎥⎥⎥⎥⎦

(65)DestNodes =

⎡⎢⎢⎢⎢⎣

b11 b12 ⋯ b1p

b21 b22 ⋯ b2p

b31 b32 ⋯ b3p

⋮ ⋮ ⋮ ⋮

bn1 bn2 ⋯ bnp

⎤⎥⎥⎥⎥⎦

(66)Distance_between_Nodes =

⎡⎢⎢⎢⎣

a11b11 a12b11 ⋯ a1nb11

a11b21 a12b12 ⋯ a1nb12

⋮ ⋮ ⋮ ⋮

a11bm1 a12bm2 ⋯ a1nbmn

⎤⎥⎥⎥⎦

(67)ẋ = P̂Ax + P̂BK̂D1
P̂C1x + P̂BK̂D2

P̂C2
Lnx + P̂BKCv

(68)v̇ = K̂Av + K̂B1
P̂C1

x + K̂B2
L̂nx.

(69)Pk = QkRk
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Therefore, we use the schur transform in this paper for decomposing the Laplacian matrix 
which can have several subsets of the network. This is helps in dynamic cluster formation. 
The schur decomposition is defined as matrix decomposition where an arbitrary matrix can be 
decomposed in to unitary matrix to an upper triangular matrix, where its eigen values repre-
sent the diagonal elements of the actual matrix.

Let P be a matrix where P ∈ Cn∗n and schur decomposition is given by equation

where Q represents unitary matrix and * indicates its hermitian transpose m ∗ n matrix. 
From the fundamental of linear algebra we know that QQ∗ is a Identity matrix and the 
roots of these characteristic polynomials always lie along the diagonal of the matrix. 
If the matrix are real then Jacobi Transform would be used, if the matrix are com-
plex then schur decomposition is used. Schur decomposes the P invariant subspaces 
0 = V0 ⊂ V1 ⊂ V2 ⊂ V3 ⋯ ⊂ Vn = Cn where an orthonormal basis exists, such that for i 
basis vectors spans only Vi for every i, that occurs in nested sequence which stabilizes the 
complex N dimensional vector space (V0,V1,V2 …Vn).

In our work we assume each of the basis vector as a matrix which hold only a subset of 
nodes from the entire set of nodes in the network. Thus we have chosen this transform for 
determining the stability of the network. The stability of the upper triangular matrix of the 
schur decomposition which has eigenvalue to be stable if the entire system has to be stable. 
From the above schur transformation we have decomposed the entire network into subsets 
which are nested in the vector space with the eigenvalues and vectors that either compress or 
expand the vector space(i.e. Maximizing the minimum eigenvalue/ Minimizing the maximum 
eigenvalue/ Minimizing the spectral norm) to obtain the optimal solution.

In linear algebra system the given matrix A is stable iff all the eigenvalues of the matrix 
have norm(A) < 1 (i.e, 𝜌(A) < 1) . This means the relative equilibrium point is stable for all the 
nodes in the formation. In other words the trajectories should decrease to zero for the system 
to be stable .

In SISO system we determine the stability by the encirclements of the −�−1
i

 is zero by plot-
ting a Nyquist plot for all values �i ≠ 0 by the forward loop = Number of poles = 0. The mimo 
system(P(s) stability for network formation is stable if 𝜌(C(j𝜔)) < M−1 where −∞ < 𝜔 < ∞ . 
We can determine the stability of the system for the given topology with the relative distance 
and visibility of the nodes for formation. These can also be further optimised by minimizing 
the eigenvalues using minimization techniques. This shows that stability of the system is con-
troller by the diagonal elements shown by the Eqs. 72 to 73.

(70)P = QUQ∗

(71)ṗ = PAp + PBu

(72)q = PCi
p

(73)Z = �iPCi
p
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4  Results

The topology of the network should be determined for proper formation of the network. 
Therefore its important to determine the stability of the network topology. In this work, we 
have designed a distributed network topology of small satellites formed by trivalent, toroi-
dal and spherical polyhedron graph forming a fullerene, which is called as polygon based 
network topology (PBNT). It comprises of both pentagonal (Fp) and hexagonal (Fh) faces 
with K regular graphs such that K ≥ 3 with genus equal to 1. It also satisfies Eulers formula 
with n vertices. The fullerene comprises of simple rings and each of this ring forms the 
cluster as shown in the Fig. 7.

Each cluster is further represented as a dtriangular grid, that is linearly convex or non-
linear, with K-connected graph along with Hamiltonian extendible cycle. If one the penta-
gon/Hexagon is determined then rest of the fullerence is determined in the same way. Let 
us consider one pentagon of a PBNT, the vertex are the nodes while the edges are the com-
munication links between the nodes as described by the Eq. 51. In this work, the simulation 
is done using matlab and results are discussed in the two steps.

• Firstly, Simulate triangular formation of the satellite trajectory/Path with vertical planar 
locations.

• Secondly, Determine the stability of Pentagon and Hexagon Graph.

In the first scenario, we consider two satellites and determine the trajectory of the sat-
ellite in the vertical planar location. The satellite are said to be in the formation if the 
position of two satellites align to the required position and proper angular velocity. 
Later we are using the triangular gird formation scenario in the topology, three satellites 
in triangular formation is simulated. The angular distance, speed and velocity determine 
satellite-position in the network. The deviation of these parameters from the actual and 
obtained determine the position of the satellites in the network and is shown by the 
Fig.  8. In formation flying each satellite in the network determines its position with 
its neighbour. Thus the deviation with respect to position and velocity is determined 

Fig. 7  Cluster formation in PBNT
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between two satellites is simulated and shown in Figs. 9 and 10 . This deviation is better 
understood by taking the normalisation of distance of the triangular formation as shown 
in the Fig. 11

The tracking of satellites position is done periodically to maintain the formation 
in the network. The periodicity depends on the orbital parameters, convergence time, 

Fig. 8  Trajectories of the satellites in SBWSN with triangular formation in PBNT

Fig. 9  The deviation of the satellites from the angular position
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hardware and software capabilities of the satellites in the network. If the periodicity is 
too long the deviation is more, correction becomes difficult and may lead to mission 
failure.

The error distance is measured from the desired to the actual position between the two 
satellites and the error is determined as shown in the Figs. 9 and 10 .

Fig. 10  The deviation of the satellites from the angular velocity

Fig. 11  The normalisation of distance in triangular grid formation
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From these simulation one can determine the deviation of each satellite relative to the 
other in the formation. The amount of time taken to converge to the desired formation is 
determined by orbital parameters and the capabilities of the ADCS. Till now we saw trian-
gular gird formation and determination of error or deviation from the desired trajectory to 
have the formation intact.

Scenario 1 Let us consider a simple network as shown in the Fig. 12 and determine 
the laplaicain matrix and have plotted the eigenvalues using the Gershgorin theorem. The 
Eq. 74 represent the laplaicain matrix graph where s is the source node, t is target node, 
A represent the Adjacency matrix. The neighbours in the graph are incident or adjacency 
matrix. In PBNT, triangular grid form the fundamental component which can further be 
tiled during dynamic clustering.

It becomes important to determine if the topology of the network is stable. In our work 
we have polygon based network topology forming a fullerence. Hence we determine the 
stability of network with pentagon followed with the hexagon which are the basic units. 
The fullerence is formed by these basic units with pentagons and hexagons as shown in the 
Fig. 7. If these basic unit are stable then the entire network will be stable.

We now consider dynamic cluster formed by pentagon and hexagon graph that forms 
the fullerence in PBNT. We determine stability of clusters by determining negibhour 
using adjacency or incident matrix and later find the Laplacian matrix for directed 

(74)

s =[1, 1, 1, 2];

t =[2, 3, 4, 3];

A =(2, 1), (3, 1), (4, 1), (1, 2),

(3, 2), (1, 3), (2, 3), (1, 4)

L =

⎡
⎢⎢⎢⎣

3 − 1 − 1 − 1

−1 2 − 2 0

−1 − 1 2 0

−1 0 0 1

⎤⎥⎥⎥⎦

Fig. 12  Dynamic formation of triangulation and its eigenvalues on Gershgorin disk
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graphs with schur, perrons . The Eqs. 75 to 84 represent dynamic clusters. The results of 
these are shown in Figs. 13, 14, 15, 16, 17, 18, 19 and 20 respectively.Nyquist criteria is 
used and also we shown that the clusters are stable as the eigen values lies within radius 
of one on Gershgorin plot. Hence we say that these dynamic cluster are satble and thus 
the entire network is stable.

(75)

s = [1, 1, 1, 2, 2, 2, 3, 4, 5, 5, 5, 5];

t = [2, 4, 5, 1, 3, 4, 2, 3, 1, 2, 3, 4];

A = (1, 2), (1, 4), (1, 5), (2, 1), (2, 3),

(2, 4), (3, 2), (4, 3), (5, 1), (5, 2), (5, 3), (5, 4)

Fig. 13  Dynamic formation of pentagon graph 1 and its eigenvalues on Gershgorin disk

Fig. 14  Dynamic formation of pentagon graph 2 and its eigenvalues on Gershgorin disk
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Fig. 15  Dynamic formation of pentagon Graph 2 and its eigenvalues on Gershgorin disk

Fig. 16  Dynamic formation of hexagon Graph 1 and its eigenvalues on Gershgorin disk

Fig. 17  Dynamic formation of Hexagon Graph 2 and its eigenvalues on Gershgorin disk
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Fig. 18  Dynamic formation of hexagon Graph 3 and its eigenvalues on Gershgorin disk

Fig. 19  Dynamic formation of Graph 4 and its eigenvalues on Gershgorin disk

Fig. 20  Concatenation of Graph 4 to another sub-graph during dynamic cluster formation and its eigenval-
ues on Gershgorin disk
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(76)

s = [1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5];

t = [2, 4, 5, 1, 3, 4, 2, 1, 3, 2, 5, 1, 2, 3, 4];

A = (1, 2), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2),

(4, 2), (4, 3), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4);

(77)

s = [1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5];

t = [2, 4, 5, 1, 3, 4, 5, 5, 1, 3, 2, 5, 1, 2, 3, 4];

A = (1, 2), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5),

(3, 5), (3, 1), (4, 2), (4, 3), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4)

(78)

s = [1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6];

t = [6, 1, 3, 6, 6, 4, 3, 5, 1, 1, 2, 4];

A = (1, 6), (2, 1), (2, 3), (2, 6), (3, 6),

(3, 4), (4, 3), (4, 5), (5, 1), (6, 1), (6, 2), (6, 4)

(79)s = [1, 1, 2, 3, 3, 3, 4, 5, 5, 5, 6];

(80)t = [2, 4, 5, 4, 5, 6, 5, 4, 6, 1, 5];

(81)
A = (1, 2), (1, 4), (2, 5), (3, 4), (3, 5), (3, 6),

(4, 5), (5, 4), (5, 6), (5, 1), (6, 5)

(82)

s = [1, 1, 2, 2, 3, 3, 4, 5, 5, 6];

t =[2, 6, 1, 3, 6, 5, 3, 3, 4, 2];

A = (1, 2), (1, 6), (2, 1), (2, 3),

(3, 6), (3, 5), (4, 3), (5, 3), (5, 4), (6, 2)

(83)

s = [1, 2, 2, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 11, 12, 12];

t = [6, 1, 3, 4, 5, 2, 3, 5, 4, 2, 5, 12, 9, 11, 11, 12, 7, 8];

A = (1, 6), (2, 1), (2, 3), (2, 4), (2, 5), (3, 2), (4, 3), (4, 5), (5, 4),

(6, 2), (6, 5), (7, 12), (8, 9), (8, 11), (9, 11), (11, 12), (12, 7), (12, 8)



2516 P. Kuruba, N. D. Dushyantha 

1 3

These are few examples of dynamic clustering of satellites based on the adjacency and 
Incident matrix. Thus from the above examples we show that the PBNT is stable, while 
maintaining the formation stability.

5  Conclusions

The work in this paper present the method to represent the small satellite network in a 
topology and maintain its stability in formation using the trajectories. The trajectories are 
determined using covariant derivatives and stability is derived using local distance(angular 
distance and angular velocity) between the neighbours of satellites in the network. The 
error in the formation is determined and corrected using underlying ADCS to have rigid 
formation of the network topology. The method to determine if the topology is stable, 
interconnections between the satellites/nodes during dynamic cluster formation has to be 
stable as these satellites are mobile in space. In this work, we have used graph theory as it 
provides the insight of its interconnections during tiling used for dynamic cluster forma-
tions. This also provides necessary information of actual position and the relative positions 
in the network. This work becomes a prerequisite method to determine the available paths/ 
routes that is essential for routing the data from one node to other, for information gather-
ing and aggregation in SBWSN.
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