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Abstract
With the rising demand for cloud services, the high energy consumption of cloud data 
centers is a significant problem that needs to be handled. The Dynamic Voltage and Fre-
quency Scaling approach has been identified as one of the efficient techniques to conserve 
energy, particularly while scheduling real-world scientific workflows. Moreover, scien-
tific workflows demand high-availability of the system. The computational systems in the 
cloud data centers are not failure-free and further frequency scaling impacts negatively on 
the reliability of the system by increasing the transient fault rate. A trade-off is  required 
between energy conservation and the reliability of the computational machine. In this 
paper, we propose an energy-efficient and reliability aware workflow task scheduling in a 
cloud environment (EERS) algorithm, which conserves energy and maximizes the system 
reliability. The EERS comprises five sub-algorithms. First, we apply a task rank calculation 
algorithm to preserve the task dependencies. Second, a task clustering algorithm to reduce 
the communication cost which reduces energy consumption. The third is the sub-target 
time distribution algorithm to define the sub_makespan for each task. Further, we propose 
a cluster-VM mapping algorithm that reduces energy and maximizes system reliability and 
finally, a slack algorithm to reclaim slack associated with the non-critical tasks. The perfor-
mance of the EERS evaluated on the WorkflowSim simulator using two real-world scien-
tific workloads CyberShake and Montage. The results indicate that it surpasses the related 
existing approaches.

Keywords  Cloud computing · Workflow scheduling · Enenrgy-efficiency · Reliability

1  Introduction

Cloud computing is the on-demand delivery of computing services such as servers, 
storage, databases, networking, software, analytics, intelligence over the Internet to 
offer faster innovation, flexible resources, and economies of scale [1]. Because of the 
sustained growth rate for cloud services, there has been substantial growth in energy 
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consumption (EC) of the cloud data centers. This demand for energy consumption 
results leads to high operating costs and higher carbon emissions [2]. As a consequence, 
the data centers become unsustainable [3]. The information technology (IT) infrastruc-
ture is the main contributor to energy consumption in a data center, which includes serv-
ers and other IT components. Optimization of energy consumed by the cloud-related 
infrastructure is the major research deal in recent years [4].

Most of the business and complex scientific applications used workflows to analyze 
complex data sets and to conduct simulation experiments effectively [5]. A scientific 
workflow involves individual data transformations and analysis steps, and mechanisms 
to link them according to the data dependencies among them [6]. Several scientific 
applications comprise numerous tasks with precedence constraints, including chemis-
try, physics, earth science, astronomy, computer science, and bioinformatics. The sci-
entific workflow applications are highly complex with various sizes of tasks, which are 
in the form of a Directed Acyclic Graph (DAG). Therefore, scientific workflow manage-
ment mostly deals with the large-volumes of data. Such complex workflow applications 
demand high computing power and high system reliability. With the rapid proliferation 
of accessing scientific applications, it is necessary to focus on developing the energy-
aware workflow scheduling model in a cloud environment.

The scheduling of workflow tasks in distributed platforms such as grids and cloud 
environments has been extensively considered for many years. Researchers have devel-
oped algorithms geared towards different environments: from small-scale homogeneous 
clusters to large-scale community grids, to the contemporary paradigm, heterogeneous, 
utility-based, and resource-rich cloud computing [5]. Clouds provide unlimited comput-
ing power which is a more relevant platform to execute complex workflow applications. 
But the computational systems in cloud data centers are not failure-free and any type 
of fault may be critical to the running application [7]. Particularly, the transient faults 
increase by the Dynamic Voltage and Frequency Scaling (DVFS) approach. Such fail-
ures may impact the execution nature of the program and provoke unpredictable results 
[8]. In this work, we proposed an efficient heuristic for energy efficient and reliability 
aware workflow tasks scheduling in cloud environment (EERS) which maximizes the 
reliability for workflow tasks while conserving energy.

The primary contributions of this article are summarized as follows:

•	 An energy and reliability aware workflow scheduling algorithm, called EERS is pro-
posed to reduce the application energy consumption while maximizing the system reli-
ability.

•	 The proposed EERS approach consists of five sub-algorithms such as task rank calcula-
tion, task clustering, sub-target time distribution, cluster-VM mapping algorithm, and 
slack algorithm to meet the stated objectives.

•	 Along with energy and reliability aware resources management of our approach, the 
task clustering algorithm reduced communication cost and the slack algorithm reduced 
a significant amount of energy consumption.

•	 The performance of the proposed EERS approach was evaluated through several 
numerical experiments. And the experimental results show that the proposed approach 
can achieve a significant amount of energy-saving while maximizing the application 
reliability without regard to the diverse workflow structures.

The rest of the article is organized as follows. The related work is discussed in Sect.  2. 
We propose system architecture and models in Sect.  3. Then Sect.  4 presents the five 
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sub-algorithms and EERS algorithm implementation. Section 5 gives the algorithm perfor-
mance evaluation and finally the conclusion and future work discussed in Sect. 6.

2 � Related Works

In recent years, there has been significant attention in developing the models to provide 
workflow scheduling and energy-efficient resource management in the cloud environment. 
The optimal workflow scheduling and resource management depend on various factors 
such as the arrival rate of the requests, availability of the resources, and the workload of 
workflow tasks.

Some of the task scheduling mechanisms for the cloud environment addressed opti-
mization parameters such as schedule length and cost. A fuzzy dominance-based HEFT 
algorithm to address the cost and makespan of workflow applications in clouds [9], which 
uses real-world pricing and resource models. A cost-aware large-scale workflow schedul-
ing approach in [10] with DAG splitting mechanism reduces the monetary cost of applica-
tion by maximizing the VM utilization. A list-based heuristic called Heterogeneous Earli-
est Finish Time (HEFT) [11] approach gives the best makespan. A heuristic called Jaya 
algorithm in [12] is used to reduce both the computation and communication costs while 
scheduling the workflow tasks in the cloud environment. A Case Library and Pareto Solu-
tion-based hybrid Genetic Algorithm (CLPS-GA) [13] has focused on two objectives such 
as makespan and energy conservation while scheduling the workflow tasks. It relies on a 
case library and multiparent crossover operator to effectively ensure the stability, diversity, 
and convergence in the solution. An approach in [14] has employed an immune genetic 
algorithm to resolve the QoS constraint satisfaction by considering five objectives for 
workflow scheduling in the cloud environment. The deadline-based workflow scheduling 
algorithm [15] employs the Particle Swarm Optimization (PSO) technique to diminish the 
overall execution cost while scheduling the scientific workflow applications in the Infra-
structure-as-a-Service (IaaS) clouds without violating the deadline constraints. However, 
these works are not considered either energy or reliability objectives.

Many efficient scheduling techniques to maximize system reliability have been studied 
[16–18]. Some of the task scheduling approaches developed for on-demanding comput-
ing environments addressed the reliability of the system and performance. A reliability 
model and load-balanced scheduling approach introduced in [19] by using Colored Petri 
Nets (CPN). A task scheduling model is developed in [20] using Ant Colony Optimiza-
tion (ACO) which is carried out by first estimating the availability of system so that the 
most reliable nodes are selected for task transactions. In [21] an efficient task allocation 
approach developed using Social Spider Optimization (SSO) to maximize the system per-
formance and reliability. A Honey Bee Optimization (HBO)–based technique proposed in 
[22] to solve the load-balanced transaction scheduling. The above works ignored the objec-
tives of energy conservation.

A green energy-efficient scheduling approach [23] employs the DVFS technique which 
enables the computing processors to run the task at low voltages and low frequencies. It 
effectively utilizes the cloud data center resources through task to-VM allocation based on 
the task dependencies of an application to reduce energy consumption and makespan. An 
energy-efficient heuristic is proposed in [24] to schedule real-time workflow applications 
in clouds. It saves energy by effectively utilizing the schedule gaps using per-core DVFS 
and approximate computations. Similar work in [25] addressed energy, monetary cost, and 
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quality of service objectives. A polynomial-time multi-objective heuristic proposed in [26] 
to schedule time-constrained tasks on the cloud environment, which optimize energy, cost, 
and resource utilization while maintaining Service Level Agreements (SLAs). Stackelberg 
game based Game-Score simulator developed in [27] to schedule the tasks in the cloud 
environment, which trade-off between energy consumption and schedule length of a work-
flow. A load-balancing based approach for scheduling tasks in a distributed cloud environ-
ment in [28], optimizes resource utilization by estimating task execution time based on 
the cloud status and queuing model used to improve response time. A PSO based multi-
objective approach for workflow scheduling in clouds optimizes cost, schedule length, and 
resource utilization while considering system reliability [29]. From the review of the exist-
ing state-of-art scheduling strategies, it is observed that most of these strategies focus on 
multi-optimization without considering the reliability of the system.

3 � System Architecture and Models

Our problem subsists in scheduling the workflow tasks with user-specified deadline. Our 
approach aims to minimize energy utilization and maximizing system reliability. To pro-
pose such an efficient technique we discussed our system architecture and models in this 
section. We propose system models such as the cloud datacenter model, application model, 
energy model, cloud system architecture, and system reliability model. For ease of insight 
Table 1 outlines, the primary notations with their meanings used all over in this work.

Table 1   Primary notations

Notation Definition

PM Set of PMs (physical machines), ( pmk ∈ PM , 1 ≤ k ≥ PM)
VM Set of virtual machine (vmk ∈ VM, 1 ≤ k ≥ v)

W Workflow with set of tasks TW (ti ∈ TW , 1 ≤ i ≥ n)

ti ith task of W
C Set of communication edges in DAG (cij ∈ C, 1 ≤ I, j ≥ n and i ≠ j)

tentry Entry task of W
texit Exit task of W
T(ti, vmk) Time to execute task ti on vmk

T(ti) Average execution time of task ti on various VMs

cij An edge from task ti to task tj , (i, j ∈ C and i ≠ j)

w(cij) Weight of the edge cij
T(tij) Data transfer time from tasks ti    to    tj
TM Makespan of W
TD Deadline
EDynamic Dynamic energy
EStatic Static energy
Ceff Effective loading capacitance
f k
op

Operating frequency of vmk

f i,k
op

Operating frequency of the ti on vmk

RW Application reliability
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3.1 � Datacenter Model

The cloud datacenter model considered in this work comprises M heterogeneous physical 
machines (PM) PM = {pm1, pm2,… , pmM} . All PMs supports DVFS, each of which can 
operate at k number of frequency(f) levels (f1, f2,… , fk) and the time to switch among fre-
quencies approximately takes 10–150 �m which is negligible [30]. The DVFS approach oper-
ates processor frequencies under various voltage levels. Every PM is describing with different 
types of resources such as CPUs, memory capacity, bandwidth, network I/O, and the storage 
size. These physical machines virtualized into v number of virtual machines (VMs) each of 
which considered operating at a different frequency level (DVFS enabled) and PM operating 
frequency attribute to its VMs. A VM can be characterized with maximum computing per-
formance in a Million Instructions Per Second (MIPS), bandwidth (B) etc. Hence, the cloud 
workflow scheduler has distinct possibilities in selecting the suitable VM to execute a task by 
meeting workflow constraints. Generally, we consider computing performance relates to the 
processor frequency. A kth virtual machine vmk at some level of operating frequency repre-
sented as f k

op
.

3.2 � Application Model

In general, a workflow W with dependencies among tasks Tw = {t1, t2,… , tn} is modeled as a 
DAG. A DAG W = (Tw,C) where C is the set of edges or directed arcs represents the depend-
encies among tasks. An edge cij is the dependency from ti to tj where ti is one of the parents 
of tj and tj is one of the children of ti . A task without a parent(s) or predecessor(s) is called 
an entry task tentry and a task without child(s) or successor(s) is called exit task texit . A task is 
prompt to execute when all required resources of its available. When the job ti completes its 
execution and its generated output transfers to its children. The data transferred (in MB) from 
task ti to its child tj has represented the weight on the edge cij as w(cij) . We denote the overall 
execution time of workflow (makespan) as TM and associated workflow deadline as TD . For 
any workflow execution deadline TD is describe as a time constraint and is user-defined.

The data communication time T(tij) between two precedence constraint tasks is calcu-
lated as in Eq. (1)

where B is the bandwidth and w(cij) is the data (in MB) communicated between tasks ti and 
tj . The execution cost of any task ti calculated as in Eq. (2)

where T(ti, vmk) is the task ti execution time on vmk and it includes effective execution time 
and data communication time. The mean execution time of task ti is the mean of execution 
times on various available VMs and is calculated as follows

where n is the number of VMs. The earliest start time EST and as well as earliest finish 
time EFT of task ti are calculated as follows

(1)T(tij) =
w(cij)

B

(2)T(ti, vmk) =
wi

f k
max

+ T(tij)

(3)T(ti) =

n
∑

k=1

T(ti, vmk)

n
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The EFT(texit) is the minimum makespan of the W minTM = EST(texit) . Without loss of 
generality, we consider user defined deadline TD should be greater than the minTM i.e. 
TD > minTM.

3.3 � Energy Model

The power utilization of computational servers of cloud data centers is due to CPU, mem-
ory, network interfaces, storage disks, and other underlying circuits. In comparison with 
other computing resources, CPU dominates energy consumption. The power consump-
tion of any workflow execution on cloud infrastructure is includes frequency-independent, 
dynamic and static power consumption:Pind , PDynamic , and PStatic . The PStatic is the sleep or 
static power dissipation (to keep the clock circuit running, to maintain the basic circuits 
etc., which can be eliminated only by turning off the system) and it calculated as in Eq. (6),

where I is the current into the device and V is the supply voltage, Pind is independent power 
consumption, which is free from CPU frequency and supply voltage. The Pind consists of 
components such as memory, storage disks, I/O and other network devices and it can be 
reduced to the negligible amount by keeping the system in standby mode [31].The dynamic 
power dissipation PDynamic is the dominant component of energy consumption in widely 
attractive CMOS (Complementary Metal Oxide Semiconductor) circuits. It is the sum of 
the transient power consumption which is the sum of switching and through current and 
capacitive-load power consumption [32]. The PDynamic depends on the frequency and volt-
age supply of the CPU [33] and it can be estimated as in Eq. (7)

where Ceff  is the effective loading capacitance, f is the clock frequency, and V is the sup-
ply voltage. The clock frequency of CPU f is directly proportional to supply voltage V. 
When application runs at lower frequency levels, then supply voltage reduces linearly. Our 
scheduling approach minimizes this component by maximizing the application reliability. 
To emphasize both dynamic and static power dissipation in a system, we adopt the system 
power model suggested in [31] and afterward used in [30, 34] and the system power (P) 
consumption have given by Eq. (8).

where h describes the state of the system, which is 0 to specify the system is in sleep-
ing mode and 1 for active mode. As the dynamic power utilization is the most compelling 
component and the other factors are ignored in this paper. Energy is defined as a product 
of power and time then the energy consumption when the machine is running calculated 
by using Eq. (9).

(4)EST(ti) =

{

0 if ti = tentry
maxtp∈parent(ti)EFT(tp) otherwise

(5)EFT(ti) = EST(ti) + T(ti, vmk)

(6)PStatic = V ∗ I

(7)PDynamic = CeffV
2f = Ceff f

3

(8)
P = PStatic + h(Pind + PDynamic)

= PStatic + h(Pind + CeffV
2f )
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The energy consumption of a specific task ti with computation cost wi , executing on vmk 
with operating frequency fmax calculated as follows

and the total energy consumed for the application given by the sum of the energies of indi-
vidual tasks in application and is calucted using Eq. (11).

For simplicity, we considered only dynamic energy consumption in this work.

3.4 � System Architecture

This paper aims to maximize system reliability and then reduce the energy consumption of 
cloud data centers. The works in [35–37] introduced cloud system architecture for imple-
menting workflow applications in an energy-efficient way, and a reference architecture for 
Cloud Workflow Management System (CWfMS) in [5] empowers the establishment and 
execution of workflows. Based on these works, we introduce a system reference architec-
ture for Energy-efficient Cloud Workflow Management System (eCWfMS) depicted in 
Fig. 1. The various components depicted in Fig. 1 are standard for most of CWfMSs.

User Interface enables the users to set up, modify, submit, and track their applications.
Workflow Engine is the essential component of the eCWfMS and is accountable for 

the execution of workflow application for this it can have various sub-components such 
as (a) workflow Parser is responsible for converting high-level workflow descriptions such 
as XML to internal specifications such as objects, tasks, parameters, and dependencies 
which are accessed by the scheduler component. (b) cloud scheduler works with the (c) 
resource provisioning modules for panning the execution of the actual workflow algorithm. 
The overall performance of the system, reliability, and energy consumption depends on the 
efficiency of the scheduler. For energy-efficient and reliability aware workflow execution, it 
needs to interact with different components such as:

Service analyzer is to analyze the service requirements of an application, reliability and 
energy designer to minimize the execution cost while meeting the QoS requirements.

Service scheduler is to allocate the requests to computing resources such as leased VMs 
and takes the decision when to start or stop the service of VMs. It often interacts with the 
VM Manager to update the status of VMs and as well as to provision new VMs across the 
physical machines of cloud infrastructure.

Administration and monitoring toolsinclude monitoring modules for tracking the sta-
tus and performance of workflow tasks, continuously and dynamically and enables leased 
resource management such as VMs. The collected data by these can be stored in historical 
databases, which can be useful for performance predictions of the system.

Cloud Information Service (CIS) provides information about different cloud service 
providers, their resource types, such as VM types, including pricing models. For exam-
ple, Amazon EC2 giving different kinds of instances (a virtual server) for various instance 

(9)E = P ∗ t

(10)E(f i,k
op
) = Pind

(

wik

f
i,k
op

)

+ Ceff

(

f i,k
op

)2

T(ti, vmk)

(11)ETotal =

n
∑

i=1

E
(

f i,k
op

)
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families such as small, medium, large and xlarge (extra-large), the computing capabilities 
such as CPU computing power, memory, and storage depends on the instance type.

Cloud Service Provisioning API is the type of application programming interface, which 
is a gateway to enable direct or indirect cloud services to users. In particular, for schedul-
ing problems which we considered in this work, the cloud APIs can enable provisioning 
and removal of the VMs on-demand and monitor the provisioned VM’s resources, storage, 
security, and network configuration.

3.5 � System Reliability

During the execution of an application, faults may occur due to hardware breakdown, soft-
ware failures, cosmic ray radiation, etc. As the frequency of transient faults significant than 
permanent and intermittent faults [30, 33], we focused on transient faults in this paper. 
Cloud provides sharable heterogeneous computing infrastructure through the internet. The 

Fig. 1   Reference cloud system architecture
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computing resources (in particular processors) failures are inevitable and have conflicting 
effects on application performance and energy consumption. These failures of processors 
are discrete events and assumed to follow a Poisson process [38]. The operating frequency 
of CPU influence the fault arrival rate � [30]. This fault arrival rate � influences the perfor-
mance of a node where a computation-intensive application running and hence the reliabil-
ity of such node is essential.

We assume that the transient faults happen while individual tasks are in execution. 
However, with the effect of DVFS, the systems operating frequency can influence the error 
arrival rate and its corresponding supply voltage. Therefore, the fault rate is represented as 
in [33] is given in Eq. (12)

where �0 is the initial fault arrival rate at f k
max

 , f k
op

 is operating frequency of vmk , g(f kop) is a 
decreasing function and g(f k

max
) = 1 . Generally, Eq. (12) is known as an exponential relation 

between the � and the circuit’s critical cost. In our scheduling approach and experimental 
analysis, we assume the model proposed in [33] and afterward used in [30] expressed as 
exponential model as in Eq. (13)

where �0 , f kop and g(f k
op
) are same as mentioned before. The positive constant d stands for 

the faulty rate dependency on frequency scaling and corresponding voltage. It can be easy 
to perceive exponential increase in � with frequency scaling for energy saving, i.e. � is 
maximum at the minimum allowed CPU frequency.

Considering the transient fault model in [30, 33], which follows Poisson distribution 
model, the reliability R of a task ti running on vmk is calculated as follows

where f i,k
op

 is the operating frequency of the node where task ti running. The reliability of 
application W with n number of tasks is the product of individual task reliability

4 � Proposed Algorithm

In this section, we discussed our proposed approach for workflow scheduling in a cloud 
environment. The proposed EERS approach is capable of minimizing energy consumption 
and maximizing system reliability while meeting the user-defined deadline. It includes four 
sub-algorithms, such as task rank algorithm, task clustering algorithm, sub-target time dis-
tribution algorithm, and cluster-VM mapping algorithm, which reduce energy consumption 

(12)�(f k
op
) = �0.g(f

k
op
)

(13)�(f k
op
) = �0g(f

k
op
) = �0.10

d(1−f kop )

1−f k
min

(14)�max = �0.10
d, for f k

op
= f k

min

(15)R(f i,k
op
) = e

−�(f k
op
).

T(ti ,vmk )

f kop

(16)RW =

n
∏

i=1

R(f i,k
op
)
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and maximize the system reliability. This section presents an implementation of these sub-
algorithms precisely.

4.1 � Task Rank Calculation Algorithm

Workflow tasks rank order is established in this stage to fulfill the requirement of task 
scheduling. The task ranks are established in such a way to meet the precedence constraints 
and finds a topological order for scheduling. To prioritize tasks in W without disturbing 
dependencies, each task ti is assigned a rank rank(ti) , that can be computed recursively star-
ing with the exit task texit [30, 34] as follows

Step-1 The exit tasks rank initialized to its average computing time

Step-2 For each task compute rank recursively according to the following expression

where T(ti) is the average computation time of ti on different VMs. Estimate ranks of all 
tasks by repeating the above steps for each task in workflow.

4.2 � Task Clustering Algorithm

Once the parent task completes execution, its generated output transfers to its child tasks. 
If both are scheduled on different VMs, then communication energy consumption incurs. 
A large amount of data communication energy is consumed during inter-processor commu-
nication. We can avoid this energy consumption by grouping the tasks and then schedule 
on the same machine. Consider three tasks ti , ti+1 and ti+2 with the dependency shown in 
Fig. 2, the task ti+2 has two parents, ti and ti+1 with communication costs 3 and 5, respec-
tively. Communication energy can be saved by grouping ti+1 and ti+2 to schedule on the 
same VM.

We adopt the clustering approach in [30] for this paper and we extended it to minimize 
communication energy as follows:

Step-1 Staring from the entry task ti = tentry , for every task ti , if task ti not yet earmark 
for any cluster, then make a new cluster cll

Step-1a add ti to cll and sort the children of ti
Step-2 For each child tj of ti , if cluster not been assigned and parents are assigned to a 

cluster

(17)rank(texit) = T(texit)

(18)rank(ti) = T(ti) + maxtj∈child(ti)rank(tj)

Fig. 2   Clustering of tasks
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Step-2a if a task tj has more than one parent, then check its parents which transfers more 
data to it. Such parent can find as follows

if EFT(tj) ≤ EST(ti) then ti ← tk , goto Step2

Step-2b ti ← tj
Repeat Step 2 for entire graph W, until each task assigned to some cluster.

4.3 � Sub‑target Time Distribution Algorithm

The target time to complete each task is based on the TD is distributed to each task of the 
workflow. It is a proportionate increase in the effective execution time (makespan) of indi-
vidual tasks and hence the application. This makespan extension can be done by reducing 
the frequency of the processor where it is running; hence, we can save energy. To imple-
ment sub-target time distribution we suggested a simple algorithm that can compute in pol-
ynomial time and steps for sub-target time distribution algorithm are as follows

Step-1 Each task ti in a given workflow, calculate the sub-target time using Eq. (20). The 
sub-target time is the deadline to complete execution of task ti.

where T(ti) is the effective execution time of task ti , TD and minTM are deadline and mini-
mum makespan of application respectively.

Step-2 For each task ti update EST and EFT using Eqs. (4) and (5), respectively.
Every task is set with a new deadline or target completion time by repeating the above 

steps for each task in a workflow.

4.4 � Cluster‑VM Mapping Algorithm

Different from the clusters and utility grid computing environment, in a cloud environment, 
as long as the service available, then the cloud scheduling approach can provide a time-slot 
to map the task to avail the service [37]. However, the cloud has inexhaustible resources, 
and it can offer VMs with different characteristics for users. But it is not always good to 
meet several optimization constraints. Therefore, in this section, we propose cluster-VM 
mapping to execute cluster tasks to maximize system reliability and minimize energy con-
sumption. The steps to select a more appropriate VM for a cluster to execute its tasks as 
follows.

Step-1 For each task ti (where ti ∈ cll ), calculate the optimal frequency for energy con-
servation on different available VMs using the Eq. (10).

Step-2 Calculate reliability of each task ti (where ti ∈ cll ), on each VM using Eq. (15)
Step-3 Map the tasks of cluster cll to the highest reliable VM vmopt

k
 to complete its exe-

cution; we denote it as cll → vm
opt

k
.

Step-4 If vmopt

k
 is idle or if it executes in communication mode then scale down its oper-

ating frequency to its minimum i.e. f i,k
op

= f
i,k

min

We can map each cluster to the most suitable VM for energy conservation and maxi-
mize task reliability by repeating the above steps for all the clusters.

(19)tk = maxtk∈parent(tj)wkj,

(20)Tsub−target(ti) = T(ti).
TD

minTM
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4.5 � Slack Algorithm

Consumption of electrical energy has developed into one of the primary interests of the 
cloud-data centers. In the context of workflow application scheduling, there is some idle 
time slots associated with VMs (slack time) while executing non-critical tasks. We can 
redeem this slack associated with non-critical tasks by scaling the supply voltage and 
frequency of the task, to conserve energy [37, 39]. First, we need to estimate the latest 
start time (LST) of each task before we introduce the slacking algorithm. The LST of task 
ti LST(ti) is specified as follows

The slack time of task ti is computed by

A critical task ti has no room to reclaim i.e. Tslack(ti) = 0 , and for non-critical tasks 
Tslack(ti) > 0 . To reduce the frequency f i,k

op
 of a non critical task ti to conserve energy, we 

used the following four steps:
Step-1 Calculate the slack time of the task ti using Eq. (22) and mark all critical tasks as 

“defined” as no idle slot to reclaim.
Step-2 Select a task ti to change the frequency, which has the longest Tpath , and its par-

ents are marked “defined”, where Tpath is the sum of the execution time of the tasks on the 
path from ti to the “defined” task.

Step-3 Reduce task frequency to extend the execution time and save energy as follows

Step-4 Update execution time of ti and mark it “defined”.
Repeat the above steps for entire DAG W until all tasks are marked “defined”.

4.6 � EERS Algorithm

We propose the EERS algorithm, which enables the cloud scheduler to get through less 
energy cost to complete an application and also maximizes system reliability while meet-
ing the user-defined deadline. The EERS algorithm comprises five sub-algorithms which 
were introduced in the above sections. We schedule a task to a specified VM when all 
of its predecessors finishes i.e a task becomes schedulable when all of its predecessors 
complete their execution. When a current task completes execution then its successor tasks 
become schedulable. We specified a sub-deadline for every task before mapping it to the 
most appropriate VM. Thus, each task can be complete its execution within its target time, 
and the entire application can be completed within a specified deadline.

The pseudo-code for our EERS algorithm is presented in Fig.  3. Firstly, the EERS 
algorithm calls the task rank calculation algorithm at line 2 in Fig.  3, to realize a rea-
sonable order of tasks to execute without loss of precedence constraints of workflow. At 
line 3 in Fig.  3, the task clustering algorithm is called to minimize the communication 
cost which reduces energy consumption. Then sub-target time distribution algorithm for 
energy conservation by decreasing the task frequency while meeting user-defined quality 

(21)LST(ti) =

{

TD − T(tentry), for ti = texit,

mintp∈child(ti)(LST(tp) − T(tp)), otherwise

(22)Tslack(ti) = LST(ti) − EST(ti)

(23)f i,k
op

=

(

f i,k
max

)

.
Tpath

Tpath + Tslack(ti)
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parameter(deadline) in line 4. The cluster-VM mapping algorithm to select optimal VM 
to conserve energy and maximize task reliability is called at line 6 in Fig.  3. Finally, a 
slack algorithm is called at line 7 in Fig.  3 to reclaim the slack of non-critical tasks to 
further reduce the energy consumption. The clustering algorithm, task-VM mapping algo-
rithm, and task slacking algorithm reduce energy consumption without compromising the 
performance.

5 � Performance Evaluations

We discussed the performance of the EERS workflow scheduling technique in this sec-
tion. By conducting a series of simulation runs, we evaluated our proposed algorithm. We 
assume that the cloud data center has DVFS enabled virtual machines (VMs) and every 
VM has its computing resources, and bandwidth is constant between VMs instances. The 
computing performance of VMs and other simulation parameters present in Table 2 and 
are self-defined. The other parameter such as failure rates are 10−5 to 10−7 failures/s as in 
[30]. For ease, we suppose that the frequency of VM is directly proportional to its comput-
ing performance, which is realizable from the experimental point of view. Moreover, every 
VM operates at different levels of the frequency with minimum and maximum thresholds, 
and the DVFS takes advantage of these frequency levels to scale the task’s operational fre-
quency to conserve energy.

We used WorkflowSim [40] is a toolkit to simulate the cloud environment, which per-
mits the IaaS cloud to model and simulate. The IaaS cloud provides a virtualized comput-
ing environment (VMs) to execute workflow applications. We choose real-world scientific 
workflows such as CyberShake and Montage to evaluate our proposed EERS algorithm. 
Cybershake is characterized as a memory and data-intensive earthquake science applica-
tion. This model was used in Sothern California to study Seismic Hazards. It used physics-
based 3-D ground simulations to study the seismic wave propagation effects. Montage is an 
I/O-intensive astronomy application developed for scientific research. This toolkit enables 
astronomers for assembling sky images in Flexible Image Transport System (FITS) within 
custom mosaics. Usually, very large scale datasets used in scientific workflow applica-
tions. Each workflow has distinct topological structures. The topological structure of the 

Fig. 3   The pseudo-code of the 
EERS algorithm
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CyberShake and the Montage workflows are shown in Figs. 4 and 5 respectively. Moreover, 
each one has its data requirements and computational characteristics [15, 41].

For experiments, purpose, we assumed that each task’s workload of the workflow ranges 
from 1000 to 3000 MIPS, and the output generated data volume ranges between 100 and 
1000 GB. Due to the complex and massive data volume of workflow applications, the 
deadline for workflow is over 10 h [37].

In our experiments, the main focus is on reliability and energy consumption. These will 
change with the varying workloads (number of tasks in workflow) and a varying number 
of VMs to execute the selected workload. To expose the strength of our proposed sched-
uling algorithm on reducing energy consumption and assured reliability the simulation 
results were compared with other existing works. We perform three well-known schedul-
ing approaches HEFT [11], EES [39], and REEWS [30] to compare with our algorithm. 
The HEFT approach is a prominent list-based heuristic for workflow application schedul-
ing to optimizing the makespan. In every step, HEFT chooses the highest priority (rank 
value) task to assign a processor, which reduces the earliest finish time (EFT) with an 
insertion-based approach. The Enhanced Energy-efficient Scheduling (EES) algorithm is a 
HEFT-based approach to conserve energy while meeting the quality parameters. The fun-
damental idea of the EES method exploits the slack time on non-critical tasks and glob-
ally allocates them to minimize energy. The REEWS is a heuristic algorithm to maximize 
the application reliability and minimize energy consumption while meeting user-defined 
quality constraints. It outperformed RHEFT [18] in reliability and PALS [42] in energy 
saving. REEWS works in four stages: (1) task priority calculation to preserve dependen-
cies; (2) task clustering to minimize communication cost; (3) distribution of target time 
(user-defined deadline); and (4) mapping the cluster to VM with appropriate frequency/
voltage levels.

5.1 � Performance Evaluation with Different Workloads

First, we evaluated the performance of our algorithm for different workloads i.e by vary-
ing the number of tasks as 30, 50, 75, 100, 150, and 200 on CyberShake and 75, 100, 125, 
150, 175, and 200 on Montage real-world scientific workflows. The simulation results for 

Fig. 4   CyberShake
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energy consumption and system reliability are depicted in Figs.  6 and 7 respectively. In 
energy objectives, our proposed EERS consistently reduced energy concerning the work-
loads. It saved more energy as compared to the HEFT, EES, REEWS as the fact that the 

Fig. 5   Montage

Table 2   Simulation environment 
parameters

VM parameter Value(s)

CPU frequency level ( fmax) 2.0–2.4 GHz
Computing capacity (MIPS) 1000–3000
RAM 512 MB
Bandwidth 1000 Mbps
Number of cores 1
Voltage supply (Vmax) 220 V
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EERS is efficient in allocating resources to the tasks in such a way to reduce energy con-
sumption. Moreover, EERS efficient in clustering the tasks to reduce the communication 
costs and hence saves energy. Finally, the EERS used a task reclaiming approach to take 
the advantage of the DVFS techniques to reduce energy utilization by lowering the task’s 
supply voltage and frequency. The REEWS algorithm is an efficient technique in maxi-
mizing the system reliability which outperformed the state-of-the-art techniques such as 
RHEFT and PALS in reliability objective. Our proposed EERS gives better reliability with 
HEFT and on par with REEWS but in every case, our proposed EERS approach consumed 
less energy compared with the other approaches.

5.2 � Performance Evaluation with Different Number of VMs

Further, we evaluated the performance of the EERS approach for different numbers of 
VMs on both CyberShake and Montage workflows. We considered 5, 10, 15, 20, and 25 
VMs on CyberShake and 15, 18, 20, 24, and 28 VMs on Montage. The simulation results 
for energy consumption and system reliability on CyberShake and Montage workflows are 
depicted in Figs.  8 and 9 respectively. Based on energy consumption and reliability the 
EERS algorithm efficient in selecting the number of VMs and as well as the type of VMs. 
Hence, in this case, our EERS algorithm saved more energy on both workflows compared 
to other approaches. With varying numbers of processors/VMs also our approach main-
tained good reliability this is because the EERS algorithm considers failure rate before 
selecting resources for mapping tasks to that resources.

Fig. 6   a Energy consumption and b Reliability for various workloads on CyberShake Workflow

Fig. 7   a Energy consumption and b Reliability for diffrent number of VMs on CyberShake Workflow
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6 � Conclusion

Recently, the need for energy conservation and maximizing system reliability has become 
important research. In this work, we considered scientific real-world workflows to sched-
ule in the cloud environment. We present Energy Efficient and Reliability-Aware Sched-
uler (EERS) for scheduling workflow tasks in Cloud Computing to minimize energy con-
sumption and maximize the application reliability while satisfying user-defined deadline 
constraints. Our proposed EERS approach comprise of five sub-algorithms (1) task rank 
calculation algorithm, (2) task clustering algorithm, (3) Sub-target time distribution algo-
rithm (4) cluster-VM mapping algorithm, and (5) slack algorithm. We discussed our EERS 
performance in Sect.  5 by performed considerable simulation runs on the WorkflowSim 
toolkit and evaluated our algorithm on real-world scientific workflows CyberShake and 
montage for different numbers of virtual machines and different workloads. We compared 
the performance of our EERS algorithm with popular workflow scheduling techniques such 
as HEFT, EES, and REEWS. It was observed from the simulation experimental results that 
our proposed approach consumed less energy with maximizing the system reliability in 
all the cases. We can conclude that the time complexity of the proposed sub-algorithms 
is polynomial. Simulation experiments outcome reveal that our EERS approach surpasses 
other algorithms in both energy consumption and reliability.

As a subsequent work, we will examine the actual electricity costs for workflow tasks 
scheduling, and further, we will incorporate the monetary cost constraints and frequency-
independent energy consumption.

Fig. 8   a Energy consumption and b reliability for various workloads on Montage Workflow

Fig. 9   a Energy consumption and b reliability for diffrent number of VMs on Montage Workflow
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