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Abstract
In wireless sensor network (WSN), limited energy resources with the nodes is a complex 
challenge as far as data routing, collecting and aggregating the data is concerned as all 
these processes are energy demanding. Network lifetime, stability period, and potential 
of the WSN are some of the parameters which are to be maximized subject to the con-
straints. The cluster head selection in the heterogeneous wireless sensor network has not 
been explored much and needs to be improved further to discover the potential of WSN in 
this area. In this study, optimal cluster head selection in heterogeneous wireless sensor net-
work through Diversity-Driven Multi-Parent Evolutionary Algorithm with Adaptive Non-
Uniform Mutation has been suggested. The efficacy of the proposed technique is tested on 
Classical Benchmark Functions, and obtained results are compared with the state of the art 
of algorithms. This algorithm is also validated on a heterogeneous wireless sensor network 
with cluster head selection as a multi-objective optimization problem. The residual energy 
of sensor node and distance travelled are to be optimized in order to minimize the fitness 
function. Simulation suggested that the proposed algorithm is found to be reliable and out-
performs in terms of remaining energy of nodes, alive nodes versus round, dead nodes 
versus rounds, the lifespan of network, throughput, and stability period.
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1  Introduction

Wireless sensor network (WSN) is the set of teeny, battery-operated sensor nodes in the 
defined covered area. These sensor nodes have the responsibility to collect, process, and 
aggregates the data and then forward it to the processing center called a sink. There are 
many challenges associated with these networks, such as the data acquisition is accom-
plished in a remote or dense area, which can be inaccessible, limited energy resources, 
limited onboard processing and computing, and the distributed nature of WSNs. Various 
energy-aware routing protocols are present in the literature to address these issues [1–3] 
A WSN has wide scope in many fields such as monitoring, tracking, and surveillance in 
the military [4, 5], natural calamity conditions [6], health monitoring in biomedical field 
[7, 8], and in dangerous environment analysis and seismic sensing [9, 10].

The deployment of sensor nodes is accomplished randomly or uniformly. On the 
basis of deployment WSN can be classified into two classes: structured and unstruc-
tured. An unstructured WSN carries a heavy group of sensor nodes. The maintenance of 
the network is difficult in the unstructured network as it is a challenging task to manage, 
process, connection, and detection of failures due to a large number of sensor nodes. 
In the structured WSN, there are few sensor nodes, and deployment of these nodes are 
pre-planned, so it becomes easy to maintain the network. The lifespan of sensor nodes 
relies upon the residual energy in the nodes; hence it becomes vital to use the energy-
efficient resources in WSNs. The conventional routing protocols include direct-trans-
mission (DT) [11] and minimum-transmission energy (MTE) [12], are not capable of 
distributing the energy load among nodes in the wireless sensor network. In the direct-
transmission, sensors send information directly to the sink, due to this fact, nodes hav-
ing more distance from the sink would die first. In the MTE nodes, follow the minimum 
distance path, where cost reflects the transmission power expended. For this problem, 
the LEACH protocol was proposed in the literature. To enhance the lifetime of a net-
work and to save energy, nodes are grouped and termed as clusters, and a cluster head 
is selected in each cluster. Remaining sensor nodes behave as cluster members. Each 
sensor node must relate to only one cluster. The cluster head collects the data from each 
cluster members and aggregates information and transmits the useful information to the 
base station (BS) or sink via single-hop or multi-hop communication. The clustering in 
WSN can be classified in the following: centralized, distributed and hybridized cluster-
ing. Also, clustering can be achieved in equal or unequal manner. The equal clustering 
algorithms are LEACH, HEED etc. and unequal clustering algorithms are ULEACH, 
UHEED, EEUC, EDUC etc. the hot spot problem is associated with equal clustering 
due to which unbalanced energy consumption in clusters. The sensor network also cat-
egorized as homogeneous WSN and Heterogeneous WSN. If all sensor nodes have the 
same energy amount, this is called a homogeneous network. In contrast, if some per-
centage of sensor nodes contained extra energy than other nodes is called a heterogene-
ous network.

Different type of engineering optimization problems are tackled by numerous opti-
mization algorithms available in the literature including slime mould algorithm (SMA) 
[13], salp swarm algorithm (SSA) and its variants [14–16], sine cosine algorithm (SCA) 
[17–19], Harris hawk optimizer [20, 21], grey wolf optimizer (GWO) [22–24], gravita-
tional search algorithm (GSA) [25], Multi-verse optimizer (MVO) [26], whale optimiza-
tion algorithm (WOA) [27, 28]. The fuzzy theory is also investigated in the literature as 
in [29, 30].
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In this paper, Diversity driven multi-parent evolutionary algorithm-based optimal clus-
ter-head selection in the heterogeneous WSN is proposed. The paper is arranged as follows: 
the first section described the background and brief introduction to the paper. The second 
section presents the literature review, and the third section highlights the contributions of 
the paper. In the fourth section, the proposed algorithm is detailed, and the next fifth sec-
tion elaborates the problem formulation. The sixth section presents the results and discus-
sion of the proposed work, presenting the competitive performance of the proposed algo-
rithm. Finally, the seventh section concludes the paper.

2 � Related Works

In this section, various cluster head selection and energy-efficient techniques are discussed, 
which are gives the motivation to design the proposed algorithm. The architecture of wire-
less sensor nodes with the cluster head and sink is given in Fig. 1.

Various energy based routing protocols are explored in the literature such as low energy 
adaptive clustering hierarchy (LEACH) version of LEACH (VLEACH) [31], LEACH-B 
protocol [32], hybrid energy-efficient distributed (HEED) protocol [33], adaptive multi 
clustering algorithm based on fuzzy logic (Adaptive MCFL) [34], and Cluster chain weight 
metrics approach (CCWM) [35]. The LEACH protocol guarantees that the energy load is 
well distributed dynamically chosen based on a priori optimal probability. The role of the 
cluster head is performed through each sensor node by rotating uniformly. Cluster-head.

In the literature, various optimization-based energy-aware routing protocols and cluster 
head selection techniques are also proposed described in Table 1. The parameters consid-
ered and identified problems are summarised in this section. Every method delivers new 
contributions to energy-efficient routing or cluster head selection.

Ghugar et al. proposed a protocol layer trust-based intrusion detection system (LB-
IDS) [44] and physical layer trust-based intrusion detection system (PL-IDS) [45] to 
provide security for wireless sensor network. A light weight trust management tech-
nique based on penalty and reward policy has been proposed by Sahoo et al. to detect 
malicious, selfish and compromised nodes [46]. Bhoi et  al. proposed a density-based 

Fig. 1   The Wireless sensor node architecture with cluster heads and sink
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clustering method to identify the faults in WSNs [47], a software defined network based 
fault detection in WSN [48] and a geometric constraint based range free localization 
scheme for WSNs [49]. A fault detection method for heterogeneous WSN is proposed 
by Swain et al. by incorporating three phases namely; clustering phase, fault detection 
phase and fault classification phase [50].

3 � Contribution of the Paper

The significant contributions of the paper are talked about as follows.

(1)	 Proposed new optimization technique A diversity driven multi-parent evolutionary 
algorithm is proposed in this paper, which furthers the process of searching the search 
space by sensing the diversity of the population to avoid local optimum.

(2)	 Optimized cluster head selection for the heterogeneous network The proposed algo-
rithm is modified for the application on heterogeneous wireless sensor node network 
to choose cluster head in order to enhance the life of the network.

(3)	 Use of fuzzy set theory to formulate fitness function and uneven clustering Fuzzy set 
theory is used in decision making to choose a solution effectively out of the available 
non-inferior solutions. Uneven clustering is also performed using the fuzzy theory.

Here a fitness function is designed to evaluate cost function for the selection of clus-
ter head. In this paper, the residual energy of sensor nodes and the distance between 
nodes and sink is considered in the creation of the objective function. Also, to approve 
the proposed optimization algorithm, the wireless sensor network is simulated. Also, 
the presentation of the calculation is widely dissected with different points of view, such 
as alive nodes, residual energy of nodes and cluster head. The efficacy of the optimiza-
tion algorithm is tested on benchmark functions, which include unimodal, multi-modal, 
separable, and non-separable characteristics.

4 � Proposed Algorithm

This section is covering the detailed steps of operation performed. The proposed algo-
rithm is named as Diversity-driven multi-parent evolutionary algorithm (DDMPEA) 
with adaptive non-uniform mutation (ANUM) [51]. In this algorithm, the multi-parent 
selection strategy is adopted for crossover operation to generate new offspring. Some 
defined percentages of individuals are selected randomly from the initial population, 
ensuring that parents are chosen once in an iteration. For mutation, Adaptive non-uni-
form mutation (ANUM) is applied conditionally based on a probability index calculated 
from the fitness variance of the population, which signifies the actual aggregation of the 
population in the search space defined by the problem objective. This mutation helps in 
diverting the population from local minima as sensed by the search space aggregation. 
The steps for the proposed algorithm are illustrated in detail as follows:
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4.1 � Initialization of Population

The initial NP numbers of members are randomly generated within the search space using 
uniform distribution using the following equation

where rij the uniform random number for ith member of the population and jth dimension of 
the variable, NP is the size of the population, and D is the dimension of the search space. 
xmin
j

 and xmax
j

 are the minimum and maximum of jth dimension of the control variable.

4.2 � Opposition‑Based Learning

The optimization algorithms initially randomly chose the members, and to obtain the opti-
mal solution quality of these members is improved. The computational time is calculated 
using the distance and initial guesses obtained through an optimum solution. By utilizing 
the opposite solution of initial guesses simultaneously, it can be possible to enhance the 
search process to obtain better solutions. The initial position, either from the uniformly 
random distribution or its opposite guess, is chosen. The initial position and its opposite 
are being used to compute the objective function. Based on this, a decision has been taken 
for solutions to be considered primarily, which has the capability to accelerate the conver-
gence. The same method can be used not only to initial positions but also continues to each 
position in the current population [30]. The oppositional learning in population is initial-
ized as

4.3 � Multi Parent DE Crossover

In the multi-parent crossover, three parents are selected randomly for crossover to generate 
offspring. A pool of mating parents is created by selecting the best P% of the total popula-
tion. Out of this pool three members xr1, xr2 and xr3 are randomly chosen for the crossover 
operation and create an offspring as per the following equation

where �ij is a weighting factor and is a random number from a normal distribution with a 
mean of 0.7 and a variance of 0.1. t represents the index for the current generation. It is 
taken care that once a member is selected for the crossover is not selected again in the same 
iteration. The following equation is used to fix the off-limit offspring.

(1)xij = xmin
j

+ rij

(
xmax
j

− xmin
j

)
; (i = 1, 2,… ,NP; j = 1, 2,… ,D)

(2)xt
i+NP,j

= xmin
j

+ xmax
j

− xt
ij
(i = 1, 2,… ,NP;j = 1, 2,… ,D)

(3)Ot
ij
= xt

r1,j
+ �ij

(
xt
r2,j

− xt
r3,j

)
;

(
i = 1, 2,… ,

1

3
⋅ NP ⋅

P

100
; j = 1, 2,… ,D

)

(4)Ot
ij
=

⎧⎪⎨⎪⎩

xmin
j

+Ot
ij

2
, ifOt

i,j
< Xmin

j
xmax
j

+Ot
ij

2
, if Ot

i,j
> Xmax

j
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After the multi-parent crossover operation, fitness value is evaluated from newly created 
offspring by solving the objective definition of the problem at hand [52].

4.4 � Adaptive Non‑uniform Mutation Strategy

The mutation is an operator used to maintain diversity from one generation to next. Fitness 
variance of the population is used as a signal of the diminishing diversity of the popula-
tion. Whenever an algorithm tends to stick in a local minimum, the fitness variance of the 
population tends to become zero. This condition is used to trigger the adaptive non-uni-
form mutation to perturb the population from being stuck somewhere in a local optimum. 
Hence, the proposed algorithm kicks out the population from premature convergence situa-
tion by using an adaptive non-uniform mutation operator. The adaptive non-uniform muta-
tion is performed according to Eq. (5).

where � stands for the weighting factor from a normal distribution with a value of a mean 
as 0 and a variance of 1[53]. Omt

ij
 is a mutated version of offspring Ot

ij
 . This mutation is 

carried out if ri(0, 1) < Pm , where ri(0, 1) is a uniform random number between 0 and 1 for 
ith offspring. Pm is the mutation probability and is defined as

where �1 is the threshold value of variance based on the search space range of the search 
variables as

�2 is the fitness variance of the population. The degree of diversity, h , in the tth iteration is 
defined as

where xt
best

 is a position of the variable in the search space corresponding to the best fitness 
value and d2 is L2 − norm of d.

The parameter h is the normalized distance of the member of the population from the 
optimum point, not necessarily the global optimum. The value of h signifies the diversity 
in the population. When the value of h is high, particles are more dispersed in space and 
requiring the small value of mutation probability. When the value of h is small, particles are 
congregated to assemble in the near proximity of a probable local optimum and hence to 
require significant mutation probability. The essential requirement is to improve the solu-
tions in terms of enhanced ability of exploration is fulfilled by mutation strategy. When the 
algorithm stuck at local minima, an individual’s position and its interaction with the rest 
of the population are relatively estimated by employing the concept of the fitness variance.

(5)Omt
ij
= Ot

ij
(1 + 0.5�);

(
i = 1, 2,… ,

1

3
⋅ NP ⋅

P

100
; j = 1, 2,… ,D

)

(6)Pm =

{ exp (−h)

5.0
, 𝜎2 < 𝜎1

0, 𝜎2 ≥ 𝜎1

(7)�1 =

(
xmax
j

− xmin
j

)
1

100

(8)h =

max1≤i≤NP

(
xt
i,j
− xt

best2

)

maxt

{
max1≤i≤NP

{
xt
i,j
− xt

best2

}}
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The fitness variance, which is used as an indicator of a stuck population, is calculated 
using Eq. (9).

where favg is the average of fitness values of population, f  is the returning factor and fi is 
the fitness of ith individual. The returning factor is used to control the fitness variance of 
particles. The value of returning factor is calculated as

This fitness variance hints about the degree of the congregation of the population. The 
smaller the value of fitness variance, the nearer the particles are assembling at a point in 
the search space; otherwise, they are randomly dispersed in the search space [54].

A pool is created involving the present population at time t , newly created offspring 
from crossover and the mutated offspring when the following steps are performed. This 
population from this pool is arranged according to their cost evaluations. Finally, the best 
NP members are selected from this pool to substitute the individuals of the present popu-
lation. The gradual procedure is elaborated in Algorithm-1. The flow chart of proposed 
algorithm is given in Fig. 2.

(9)�2 =

NP∑
i=1

[
fi − favg

f

]2

(10)f =

{
max

{|||fi − favg
|||
}
,

{|||fi − favg
|||
}
< 1

1, otherwise
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5 � Problem Formulation for Cluster‑Head Selection in Heterogeneous 
Wireless Sensor Networks

In this section, the formulation of the problem for heterogeneous wireless sensor networks is 
discussed in which a portion of the nodes has an additional energy source initially. The sce-
nario in which a population percentage of sensor nodes carries additional energy resources 
compared to other sensor nodes in different proportions is considered. In this structure, the 
total number of nodes, n , are divided into three categories; advanced nodes, intermediate 
nodes and normal nodes expressed by NADV , NINT and NNRM respectively.

(11)NADV = n × m

(12)NINT = n × m0

Fig. 2   Flow Chart of Diversity driven multi-parent evolutionary algorithm with adaptive non-uniform 
mutation
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where m0 and m are the fractions of intermediate and advanced nodes, respectively. The 
energy of the advanced nodes and intermediate nodes are α and β times higher in energy 
as compared to normal nodes, respectively [55]. The energy of normal, intermediated and 
advanced nodes is as follows

where the total energy of the network is denoted by ET and E0 represents the initial energy 
of the sensor node.

The problem of cluster head selection in a heterogeneous wireless sensor network is cre-
ated as a multi-objective optimization problem. The two objectives which are considered are 
residual energy of the node and the distances between cluster heads and base station and clus-
ter head and other nodes. The objectives considered are conflicting in nature in the sense that 
when distance objective is decreasing, the residual energy of the nodes increases as with lesser 
distances consumed energy decreases. Search space is searched for non-inferior solutions by 
employing the proposed algorithm DDMPEA-ANUM. Fuzzy set theory is used for decision 
making to find the best solution.

5.1 � System Energy Dissipation Model

The calculation of energy dissipation for data transmission in WSN is carried out by compar-
ing the distance travelled like the distance between the transmitter and the receiver, and the 

critical value d0 =
√

Eefs

Eamp

 . In transmission of each packet energy loss occurs which follows a 

free-space and multi-path fading model. A model for radio transmission and reception is 
shown in Fig. 3.

The energy required in the transmission of k-bit data at the distance d , is given by Edis(l, d) 
and calculated as

where Eefs is for free space energy model, Eamp is an energy consumed in the power ampli-
fier and Eelec represents the electronic energy of the circuit given as

(13)NNRM = n × (1 − m − m0)

(14)EADV = E0 × (1 + �) × n × m

(15)EINT = E0 × (1 + �) × n × m0

(16)ENRM = E0 ×
(
1 − m − m0

)
× n

(17)ET = EADV + EINT + ENRM

(18)ET = E0 × (1 + �) × n × m + E0 × (1 + �) × n × m0 + E0 ×
(
1 − m − m0

)
× n

(19)ET = n × E0 ×
(
1 + � × m0 + m × �

)

(20)Edis(k, d) = k × Eelec + k × Eefs × d2 ∀d ≤ d0

(21)Edis(k, d) = k × Eelec + k × Eamp × d4 ∀d > d0
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where ETX is transmitter circuit’s energy and EDA is energy required in data aggregation. d 
is the distance between the sender node and the receiver node. k represents the packet size 
of the data transmitted. The energy consumed during the reception of data per bit is given 
by

Hence the total energy consumed by cluster head nodes is given by

and the total energy dissipated by other nodes is given by

5.2 � Residual Energy of the NODE

The energy estimation of each node is revise subsequently to sending or getting k . bytes of 
information. This procedure is rehashed until each node is said to be a dead node. A node 
is said to be dead node when the leftover energy gets negative or zero. The residual energy 
of the node in the current round is considered as the first objective for evaluating the opti-
mum cluster. The cluster head consumes more energy as compared to other sensor nodes as 
it has the responsibility of transmitting, receiving, aggregating, and forwarding the data. After 
every round of communication the cluster head decreases its energy more rapidly than the 
other nodes. Therefore, the re-establishment of cluster heads in each round on the basis of the 
residual energy of a node becomes obligatory. The residual energy of the node is represented 
mathematically as

where Etr
R
 is the residual energy of ith node after tr number of rounds and Etr

C
 is the energy 

consumed in the tth
r

 round. It is clear that for each type of heterogeneous nodes, the value of 
E
tr
R
 will be different according to the type of node. For the first round 

(
tr = 1

)
 , Etr

R
 would be 

(22)Eelec = ETX + EDA

(23)Edis(l) = Eelec × k

(24)E
tr
C
(i) = NCH ×

(
Edis(k) + Eelec

)

(25)E
tr
C
(i) = Edis(k, d)

(26)E
tr+1

R
(i) = E

tr
R
(i) − E

tr
C
(i); (i = 1, 2,… , n)

Fig. 3   Radio energy dissipation model
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EADV ,EINT and ENRM for advanced, intermediate, and normal nodes, respectively. It is obvi-
ous that the node with the higher value of energy wins the selection of a node to be cluster 
head.

5.3 � Distance Between Node and Sink

Any communication that takes place between nodes and cluster head or between nodes 
and sink consumes some energy according to the role performed by the node. Higher the 
distance between the nodes while communicating; higher energy will be required and vice-
versa. The distance between sensor nodes to sink is calculated as

This is the second fitness objective for the multi-objective problem at hand. The dis-
tance between sensor nodes and cluster heads is calculated as

where NCH are the number of cluster heads specified.

5.4 � Decision Making

In the problem at hand, two objectives are considered, which are of conflicting nature as 
residual energy is to be maximized, and the distances between the cluster heads and base 
station are bound to be reduced. Hence, to find the best-compromised solution, the fuzzy 
set theory is employed. In general, the decision-maker’s assessment is of an imprecise type, 
and it is worth thinking that the DM might have blurred or imprecise objectives for each 
objective feature. The Fuzzy Sets are described as membership functions by equations. 
These functions reflect a membership degree in some fuzzy sets by using values from 0 to 
1. The membership function is defined by assuming �

(
Fk
i

)
 is a decreasing and continuous 

function that is strictly monotonous. In fuzzy set theory membership values are calculated 
for both fitness parameters; residual energy of each node (considered as F1

i
 ) and distance 

between sink and nodes (considered as F2
i
 ) as given below

The satisfaction level of Fk
i
  objective of non-inferior solution arranged in range of [0,1], 

is reflected by the value of membership function. The accomplishment of k non dominated 
solutions [56] given below

(27)Di =

√(
xBS − xi

)2
+
(
yBS − yi

)2
; (i = 1, 2,… , n)

(28)Dij =

√(
xj − xi

)2
+
(
yj − yi

)2
;

(
i = 1, 2,… , n; j = 1, 2,… ,NCH

)

(29)𝜇
�
Fk
i

�
=

⎧⎪⎨⎪⎩

1; Fk
i
≤ Fmin

k
Fmax
k

−Fk
i

Fmax
k

−Fmin
i

; Fmin
k

< Fk
i
< Fmax

k

0; Fk
i
≥ Fmax

k

(i = 1, 2,… , n;k = 1, 2)

(30)�i
D
=

�∑2

k=1
�
�
Fk
i

��
�∑n

i=1

∑2

k=1
�
�
Fk
i

��
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The solution corresponding to the maximum membership �i
D
 chosen as the best solu-

tion. Hence the problem statement becomes

In the proposed work, the clusters are re-elected after each round, and as a result, the 
load is very much conveyed and adjusted among the nodes of the network. After cluster 
head selection, uneven clustering is accomplished using fuzzy theory based on the dis-
tance between nodes and sink. The working procedure for optimum clustering is given in 
Algorithm-2.

5.5 � Implementation

The proposed protocol works in two stages, namely, setup stage and steady stage (Fig. 4). 
In this step, the wireless sensor network is formulated by the uniformly random deploy-
ment of heterogenous energy sensor nodes termed as advanced, intermediate, and nor-
mal nodes at the start. From the second iteration onwards, the locations of these nodes 
are modified employing the proposed algorithm in the crossover and mutation steps. Then, 
the decision maker chooses the configuration to be updated to further the process of the 
algorithm. The base station or sink is placed in the center of the formulated network. After 
the network formulation, cluster heads are selected, and nodes are assigned to their clus-
ter heads on the basis of the distance between sensor nodes and the sink and the residual 
energy of nodes. Cluster head selection operation is performed by employing the proposed 

(31)
Max

{
𝜇i
D
∶ i = 1, 2,… , n

}

subject to xmin
j

< xij < xmax
j
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optimization technique. The parameters utilized in the formulation of fitness function are 
residual energy of each node and distance between nodes and sink.

The second stage, that is, the steady-state stage, indicates the initialization of data 
transmission. It is run for some specified number of rounds in every iteration. For com-
munication to take place, the threshold value of the distance is compared with the distance 
between sensor nodes and the sink. This helps to make the decision that communication 
occurs via single hop or multiple hops. When data is received by the cluster head, it col-
lects, processed the data and forwards it to the sink. Also, the energy of each node is ana-
lysed if it is equal or less than zero if it happens so, the node is flagged as the dead node. 
This dead node does not participate in the process further after it is flagged as so.

As mentioned in Eq.  (9) of the proposed algorithm, the fitness variance is calculated 
using the objective function value of each member. But in the case of the problem at hand, 
there is only one objective value collectively for the whole NP population, i.e., the number 
of live nodes after a certain specified number of data transmission rounds executed. Hence, 
this parameter is molded according to the problem at hand to the location variance of sen-
sor nodes. The advantage of this modification is that whenever nodes tend to aggregate at a 
particular location, the mutation is performed. The two-dimensional spatial variance of the 
sensor node locations is calculated as follows

Fig. 4   Flow chart of DDMPEA with ANUM for CH selection and working of proposed protocol



599Cluster Head Selection in Heterogeneous Wireless Sensor Network…

1 3

where 
(
x, y

)
 is the mean of all the sensor node locations. The value of mutation probability 

is modified accordingly as

The whole working process of DDMPEA with ANUM applied in this work is described 
in Algorithm-3 as follows.

6 � Results and Discussion

The efficacy of DDMPEA with ANUM is tested in two different scenarios. First, on the 
basic benchmark optimization problems and second on the cluster head selection in case of 
a heterogeneous wireless sensor network. The simulation is carried out in MATLAB-2015b 

(32)�2 =
1

n

n∑
i=1

√(
xi − x

)2
+
(
yi − y

)2

(33)Pm =

{
exp (−𝜎2)

5.0
, 𝜎2 < 𝜎1

0, 𝜎2 ≥ 𝜎1
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platform running under the windows-10 operating system with the Intel Core i3 processor 
@ 1.70 GHz frequency with 4 GB RAM memory. The obtained results are tabulated and 
discussed in this section.

6.1 � Basic Benchmark Functions

This section discusses the performance of the proposed algorithm tested on benchmark 
functions. The functions f1 − f7 are unimodal while functions f8 − f23 are multi-modal [18]. 
The results are obtained and tabulated in terms of mean, median, standard deviation, and 
worst values in Table 2. The population size is taken as 50, and maximum iterations are set 
to 1000 for comparison. The other optimization algorithms considered for comparison are 
SCA [17], PSO[57], TLBO[58], MFO[59], DE[60], WOA [27], GWO[22], CSA[61] and 
SCA-PSO[18] as available in the literature.

For functions f1, f2, f3 and f4 , the results obtained from the proposed algorithm are com-
petitive to the results obtained from other algorithms. Functions f8 to f13 are multi-modal, 
separable and non-separable, high dimensional benchmark functions which are usually 
used to benchmark the ability of an algorithm to tackle with the premature convergence 
problem. From the results obtained, it is observed that functions f9 , f10 and f11 gives com-
petitive results as compared to the results from other algorithms in terms of mean, median, 
standard deviation and worst value. Hence, it can be inferred that the proposed algorithm 
works effectively to solve the premature convergence problem. This observation shows 
the better exploration ability of the proposed algorithm. SCA perform better for function 
f8 . For functions f12 and f13 classical DE performs better compared to results from other 
algorithms.

Functions f14 to f23 are the multi-modal low dimensional functions. It can be observed 
from Table 1, the proposed algorithm works effectively for these functions too. Functions 
f16 , f18 , f19 , f20 , f22 and f23 gives optimum global values in terms of mean, median, stand-
ard deviation and worst value. The convergence behaviour of benchmark functions and 
their box plots are given in Figs. 5 and 6., respectively. From the box plots, it is observed 
that proposed algorithm gives results with minimum standard deviation in case of almost 
all considered functions.

6.1.1 � Statistical Analysis of Benchmark Functions

The comparison of results obtained by the proposed algorithm with the results available 
in the literature from other algorithms is tabulated based on the mean, standard deviation, 
median, and worst values from 30 independent runs. For the comparison of results from 
each run, a nonparametric test, the Wilcoxon rank-sum test is conducted with a 5% signifi-
cance level, and obtained p values are shown in Table 3. The null hypothesis is rejected if 
the p-values are less than 0.05, which represents that the better objective functions values 
are obtained by the proposed algorithm in each case are statistically significant and have 
not occurred by chance. For this analysis, the best value is considered of which has the 
smallest mean value. In case if there exists more than one mean value of compared algo-
rithms, then algorithm which have the smallest standard deviation is selected. Not applica-
ble (N/A) is written for the best algorithm because the best algorithm cannot be compared 
with itself.

From Table  3, it is clear that DDMPEA with ANUM obtained best results for func-
tion f5, f6, f9 − f11, f16 − f19 and f21 − f23 . For function f8 CSA gives the best values. For 
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Fig. 5   Convergence behaviour for the results of DDMPEA with ANUM algorithm
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remaining functions, the proposed algorithm gives competitive results as compared to 
other optimization algorithms.

6.2 � Heterogeneous Wireless Sensor Network

Validating the proposed algorithm on benchmark problems, the application of heteroge-
neous wireless sensor networks is investigated. The parameters considered for simula-
tion of heterogeneous WSN are given in Table 4. The heterogeneous energy sensor nodes 
are deployed randomly in area 100 × 100 m2, and the sink is located in the middle of the 
network.

Fig. 6   Box plots of the results of proposed algorithm for function f1–f6, f9–f12, f16–f20
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The 0.5 J is taken as initial energy of normal nodes, and the intermediate nodes have 
energy two times of normal nodes, while advanced nodes have three times more energy of 
normal nodes. The number of intermediate nodes is ten percent of total sensor nodes in the 
considered network, and the number of advanced nodes is 20 percent of total nodes, and 
energy fraction is given in Table 4. The assumptions considered for the proposed protocol.

A few assumptions are considered about the qualities for a portion of the sensor nodes 
enlisted bellow.

•	 In the network, all sensor nodes are stationary after the deployment, including the sink. 
They have enough capacity for forwarding and receiving data packets from other nodes 
and sink, covering their sensing range. Also, the coverage area is taken in meter square.

•	 The deployed nodes are heterogeneous in terms of their initial energy, i.e., some of 
the nodes have more energy resources compared to other nodes. Hence three types of 
nodes are considered advanced, intermediate, and normal nodes.

•	 The sink is viewed as having an infinite energy source.
•	 Once the sensor nodes are depleting their energies, they cannot be recharged again. 

Also, the sensor nodes are not aware of their location.
•	 The different components, for example, signal blurring, happen during transmission 

and gathering, impedance, and sign misfortune because of different natural elements, 
and physical deterrents are not thought of.

6.2.1 � Performance Measures

The analysis of the proposed protocol is carried out using measures such as network life-
time, residual energy of the network, stability period, and the number of data packets trans-
mitted to the sink (network throughput).

The lifetime of a network The number of alive nodes in the network represents the life-
time of the network, i.e. the active nodes having sufficient energy for transmission of data 
packets.

Table 4   Parameters considered for Heterogeneous wireless sensor network

The area considered for network 100 × 100 m2

Number of sensor nodes 100
The initial energy of nodes (Joules) (E0) 0.5
Heterogeneity in terms of energy for nodes Normal, intermedi-

ate and advanced 
nodes

Energy fraction of intermediate nodes (β) and advanced nodes (α) β = 1, α = 2
Number of intermediate (m) and advanced nodes (m0) m = 0.1, m0 = 0.2
The energy required for running transmitter and receiver Eelec 50 nJ/bit
Threshold distance (d0) 87 m
Amplification energy required for smaller distance d ≤ d0

(
Eefs

)
10 pJ/bit/m2

Amplification energy required for larger distance d > d0
(
Emp

)
0.0013 pJ/bit/m4

Energy consumption incurred while data aggregation (E_da) 5 nJ/bit/signal
Data packet size 2000 bits
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residual energy of the network As the data transmission takes place in the wireless sen-
sor network, the sum of residual energy of sensor nodes decreases gradually due to the fact 
that nodes squander their energy during the data transmission with other sensor nodes and 
the sink. This performance measure is obtained by adding residual energy of all nodes after 
each round of data transmission.

Stability Period The stability period of WSN is defined in terms of numbers of the 
round until the first sensor node consumes its total energy in the process of data transmis-
sion. This first dead sensor node can be advanced, intermediate, or normal.

Network throughput The number of data packets satisfyingly transmitted over time is 
termed as network throughput. This performance metric plays a vital role as it ensures the 
reliability of the network to obtain the best network performance.

6.2.2 � Simulation Analysis

The simulation analysis of the proposed protocol is carried out on the basis of performance 
measures discussed in Sect. 6.2.1. The working process is described in Sect. 5.5 for a heter-
ogeneous wireless sensor network. The obtained results of the proposed protocol are com-
pared with other optimization algorithms based protocols such as GAOC, GADA_LEACH, 
TEDRP, and DCH_GA from genetic algorithm based paper [55].

Network Lifetime From Fig. 7., it is evident that in the proposed protocol, sensor nodes 
die after 21,000 rounds whereas GAOC, GADA-LEACH, and DCH-GA cover 19,648, 
17,113, 18,498 and 14,729 rounds respectively. The improvement in network lifetime by 
proposed protocols as compared to other protocols, in terms of percentage is 6.88, 22.71, 
13.52, and 42.57% compared to GAOC, GADA-LEACH, TEDRP, and DCH-GA respec-
tively. The alive nodes vs. rounds given in Fig. 8.

The dead nodes vs. rounds given in Fig. 9. In the proposed work, half sensor node dead 
(HND) after 10,627 rounds of data transmission in the wireless sensor network. The HND 
for GAOC, GADA-LEACH, TEDRP, and DCH-GA are 10,674, 7722, 9086, and 7111, 
respectively.

The residual energy of the network The occurrence of the data transmission process 
in heterogeneous wireless sensor networks costs the energy loss of sensor nodes. The 

Fig. 7   Comparison of DDMPEA with ANUM with other protocols in terms of stability period, HND and 
network lifetime
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remaining energy in WSN is observed after each round of data transmission. Figure 10. 
presents energy consumption per round in the data communication process. The figure 
is given for 100 sensor nodes, which are used to cover the 100 × 100 m2 area. The total 
energy for this configuration is 70 J.

Stability period From Figs. 7. and 8., it is clear that the proposed algorithm shows 
improvement in the stability period of WSN in percentage as 0.77, 33.41, 33.71 and 
62.69% as compared to GAOC, GADA-LEACH, TEDRP and DCH-GA respectively. 
This improvement ensures reliable data transmission in the network.

Network throughput This parameter is related to the number of data packets trans-
mitted successfully to the base station. The proposed algorithm transmits 1,680,000 
data bits to the sink from the cluster heads. This performance metric plays a significant 
role in acquiring a higher network lifespan.

Fig. 8   Alive nodes vs. rounds for proposed algorithm

Fig. 9   Dead nodes vs rounds for proposed protocol
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6.2.3 � Summarized Analysis of Proposed Protocol

From the obtained results, it is clear that the proposed method not only enhances the reli-
ability but also improves the stability period of the network. The comparative analysis and 
percentage improvement in performance metrics are shown in Tables 5 and 6.

7 � Conclusion

In a given study, a new technique named ’Diversity driven multi-parent evolutionary algo-
rithm with adaptive non-uniform mutation’ has been suggested for cluster head selection 
in heterogeneous wireless sensor networks. Residual energy and distance travelled are two 
objective functions that are to be optimized simultaneously in order to minimize the over-
all fitness function. Fuzzy set theory is utilized to evaluate membership function for both 
objective functions, i.e. residual energy and distance travelled. The best value of a mem-
bership function is selected for cluster head selection based on higher cardinal ranking. 

Fig. 10   Residual energy of heterogeneous WSN for 100 sensor nodes

Table 5   Comparison of proposed protocol with other protocols in terms of performance metrics

Value of advanced fractions and quantity fractions of the node 
(
m = 0.1,m0 = 0.2, � = 1, � = 2

)

Protocols No. of 
data sink

Stability Period of 
HWSN (rounds)

Number of Half 
node dead (rounds)

Network lifetime 
of HWSN 
(rounds)

DDMPEA with ANUM-OC 1 5870 10,627 21,000
GAOC 1 5825 10,674 19,648
GADA-LEACH 1 4400 7722 17,113
TEDRP 1 4390 9086 18,498
DCH-GA 1 3608 7111 14,720
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The clustering of nodes is achieved utilizing fuzzy theory based on the remaining energy 
of nodes and distance between sensor nodes and base station. The proposed algorithm 
proved to be beneficial as it shows the improvement in the stability period, alive nodes, 
and network lifetime in comparison with other optimization-based methods. The percent-
age improvement in the stability period is 0.77, 62.91, 33.71, and 33.41 percentage as com-
pared to GAOC, DCH-GA, TEDRP, and GADA-LEACH, respectively. In the same man-
ner, the percentage improvement in network lifetime is 6.88, 42.51, 13.52, and 22.71% as 
compared to these protocols. The efficacy of the proposed algorithm is also validated on 
benchmark functions, and improvement is observed in terms of mean, worst, median, best, 
and standard deviation.

For future work, we are going to investigate the following issues: First, the proposed 
DDMPEA with ANUM can be applied to other challenging real-world problems like signal 
processing and fault diagnosis. Second, it could be interesting to incorporate DDMPEA 
with ANUM with some effective mechanisms of other metaheuristics, such as SCA, and 
SSA.
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