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Abstract
Evaluating the computational complexity of decoders is a very important aspect in the 
area of Error Control Coding. However, most evaluations have been performed based on 
hardware implementations. In this paper, different decoding algorithms for binary Turbo 
codes which are used in LTE standards are investigated. Based on the different mathemati-
cal operations in the diverse equations, the computational complexity is derived in terms 
of the number of binary logical operations. This work is important since it demonstrates 
the computational complexity breakdown at the binary logic level as it is not always evi-
dent to have access to hardware implementations for research purposes. Also, in contrast to 
comparing different Mathematical operations, comparing binary logic operations provides 
a standard pedestal in view to achieve a fair comparative analysis for computational com-
plexity. The usage of the decoding method with fewer number of binary logical operations 
significantly reduces the computational complexity which in turn leads to a more energy 
efficient/power saving implementation. Results demonstrate the variation in computational 
complexities when using different algorithms for Turbo decoding as well as with the incor-
poration of Sign Difference Ratio (SDR) and Regression-based extrinsic information scal-
ing and stopping mechanisms. When considering the conventional decoding mechanisms 
and streams of 16 bits in length, Method 3 uses 0.0065% more operations in total as com-
pared to Method 1. Furthermore, Method 2 uses only 0.0035% of the total logical complex-
ity required with Method 1. These computational complexity analysis at the binary logical 
level can be further used with other error correcting codes adopted in different communica-
tion standards.
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1  Introduction

Energy efficiency/power saving implementations of decoder systems in telecommunication 
standards [1, 2] is one of the major concerns in line with the concept of green commu-
nications [3, 4] and in parallel to computational methods in the field of mechanics [5–7] 
and Big Data analytics [8]. Implementations of low-complexity decoders [9, 10] have been 
brought forward by some researchers and others have performed computational complexity 
evaluations of the hardware implementations of decoding algorithms [11].

The search for low complexity decoding algorithms is of paramount importance in 
communication standards. The reason is mainly because reducing the computational com-
plexity engenders a corresponding reduction in the power usage of the electronic devices. 
Most complexity analysis is performed on Digital Signal Processing hardware and meas-
ured in terms of CPU cycles [12–14]. In this work, we propose a computational complex-
ity analysis at the level of binary logical operations by considering three different sets of 
Turbo decoding equations. The aim behind using binary logical operations is to have a 
standardized level at which the computational complexity is measured. The different Turbo 
decoding methods do not have the same sets of Mathematical operations (addition, sub-
traction, multiplication, etc.) and different Mathematical operations are not necessarily 
equal in terms of complexity when implemented at the hardware level. However, when 
converting the different mathematical operations into the number of binary logical opera-
tions required, a fair computational complexity analysis can be performed. Additionally, 
the Turbo decoding mechanisms are equipped with Regression and SDR-based extrinsic 
information scaling and stopping techniques. A comparative analysis is performed in terms 
of the error performances as well as the amount of binary logical operations required.

The paper is organized as follows. Section 2 highlights the related-works. Section 3 pro-
vides the complexity analysis in terms of binary logical operations for each of the decoding 
approaches of the binary Turbo codes. Section 4 gives an overview of the different binary 
Turbo Decoding algorithms and their corresponding complexities in terms of logical oper-
ations. Section 5 discusses the performance and complexity analysis. Finally, the work is 
concluded in Sect. 6.

2 � Related Works

Several research works have been initiated and conducted in the quest for low-complexity 
decoding algorithms having an acceptable trade-off with respect to the corresponding error 
performances so as to be deployed in relevant communication standards. For example, in 
[15], the authors have proposed a decoding algorithm for block Turbo codes with low com-
plexity. The algorithm operates on an adaptive application of two different estimation rules 
and the results demonstrate that the reduction in computational complexity of the proposed 
algorithm has no significant loss in error performance compared to the conventional one. 
The authors of [16, 17] have proposed an alternate soft-output decoding mechanism with 
low complexity for polar codes whose error performance is improved in addition to a sig-
nificant reduction in terms of storage and processing. The authors of [18] have proposed a 
normalized Log-MAP (Nor-Log-MAP) decoding algorithm in which the function max* is 
approximated by using a fixed normalized factor multiplied by the max function. Simula-
tion results show that the proposed algorithm helps in achieving a saving of around 2.1% 
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in terms of logic resources as compared to the conventional one. Gains of the order of 
0.25–0.5 dB in error performance are also realised.

Evaluations of computational complexity have also been performed in the literature. For 
example, in [19], the authors have analyzed the computational complexity of several turbo 
decoding algorithms in terms of mathematical operations. The algorithms have also been 
implemented on a Digital Signal Processor and measurements pertaining to a number of 
CPU cycles per decoded bit have been taken and analyzed. Results have demonstrated that 
the Max Log MAP algorithm yields a lower computational complexity than the Viterbi 
algorithm with no significant loss in error performance. The authors of [20] have proposed 
two mechanisms which reduce the decoding complexity of Turbo Product Codes using 
extended Hamming codes as component codes. This reduction in computational complex-
ity is achieved in terms of the Hard Decision Decoding whereby a single component code 
is required with the proposed algorithm. An additional early termination technique is also 
proposed for un-decodable blocks which aid in the complexity reduction. The simulation 
results show that the error performance remains fairly unchanged as compared to the con-
ventional decoding algorithms in addition to the significant reduction in overall computa-
tional complexity. In [21], the comparison of performance and computational complex-
ity for two different decoding mechanisms was performed. In this work, the complexity 
was measured using the number of clock cycles needed to complete the different decod-
ing algorithms. Results demonstrated that Turbo codes were recommended to be used with 
moderate code-rate and LDPC codes were recommended to be used with high code-rates. 
Furthermore, the work of [22] investigated three different and efficient error control codes. 
A derivation of the total number of operations used by the different algorithms has been 
performed and an evaluation of the results obtained has been compared with benchmarks 
of state-of-the-art SDR platforms.

3 � Logical Complexity Analysis

The assumptions made in the derivation of the total number of computations in this work 
are as follows:

1.	 One bitwise logical operation would be either a shift (left or right), or a Boolean opera-
tion (OR, NOR, AND, NAND, XOR, XNOR, and NOT).

2.	 Each value computed would be represented by K bits in general on the binary scale.

The computations for the different operations are shown next.

3.1 � Derivation of Complexity in Terms of Logical Operations

In this section, a detailed breakdown of the different mathematical operations in terms of 
logical operations has been shown.

3.1.1 � Addition

The electronic circuit of a Half-Adder [23] which takes as input two bits (BIT 1 and BIT 2) 
and outputs a SUM BIT and a CARRY BIT is shown in Fig. 1.

One Half-Addition, therefore requires 2 logical operations (1 XOR and 1 AND).
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The electronic circuit of a Full-Adder [23] which takes as input three bits (BIT 1, BIT 2, 
and INPUT CARRY BIT) and outputs a SUM BIT and a CARRY BIT is shown in Fig. 2.

One Full-Addition requires 5 logical operators (2 XOR, 2 AND, and 1 OR). The addition 
of a K-bit stream to another K-bit stream requires: 1 Half-Adder and (K − 1) Full-Adders.

The circuit for performing the addition in parallel is shown in Fig. 3.
The total number of logical operations required is:(1 × 2) + ((K − 1) × 5) = 2 + 5K − 5 

and can be represented as:

3.1.2 � Subtraction

The algorithm for subtraction of bit streams (STREAM_1–STREAM_2) is as follows [23]:

1.	 Perform 2′s complement of STREAM_2
2.	 Add the 2′s complement of STREAM_2 to STREAM_1.

(1)TAdd
L

= 5K − 3

Fig. 1   Half-Adder representation 
with Binary Logic Gates

Fig. 2   Full-Adder representation with Binary Logic Gates
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The 2′complement operation requires K NOT Gates, (K − 1) Full-Adders, and 1 Half-
Adder. The total number of logical operations in this case is: K + 5K − 5 + 2 = 6K − 3. The 
addition operation requires (5K − 3) logical operations. The circuit for subtraction in paral-
lel would be very similar to that for addition with the only difference that there would be 
two levels instead (One for performing the 2′s complement and the other for the addition 
of the two streams). The total number of logical operations required for the subtraction is: 
(6K − 3) + (5K − 3) and can be represented as:

3.1.3 � Comparison

A comparison operation can be performed in terms of subtraction operations as dem-
onstrated above, whereby the overflow bit determines the decision of the comparison 
(whether greater or smaller than). The total number of logical operations required for the 
comparison operation can be represented as:

3.1.4 � Multiplication

The algorithm for binary Multiplication of a multiplicand with a multiplier is as follows:

1.	 Fix the multiplicand.
2.	 For each bit in the multiplier.

a.	 Shift the multiplicand one bit to the left.

3.	 End For Loop.
4.	 Sum all the shifted versions of the multiplicand to obtain the result of the multiplication.

(2a)TSub
L

= 11K − 6

(2b)T
Comp

L
= 11K − 6

Fig. 3   Representation of Addition in parallel
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The multiplication of bit streams (STREAM_1 and STREAM_2) requires the follow-
ing operations [23]:

(K − 1) left shifts and (K − 1) total additions of (2K − 2) bits.
(K − 1) additions of (2K − 2) bits => (K−1) Half-Adders and ((2K−2) × (K−1)) Full-
Adders.

•	 (K−1) Half-Adders
•	 (2K2−4K + 2) Full-Adders

Total number of opera-
tions => (K−1) + (2 × (K−1)) + (5 × (2K2−4K + 2)) = K − 1 + 2K − 2 + 10K2 − 20K + 10 
and can be represented as:

3.1.5 � Division

The algorithm for the binary Division of a dividend with a divisor is as follows:

1.	 Set quotient to 0
2.	 Align leftmost digits in dividend and divisor
3.	 Repeat

a.	 If that portion of the dividend above the divisor is greater than or equal to the divisor

	 i.	 Then subtract divisor from that portion of the dividend and
	 ii.	 Concatenate 1 to the right hand end of the quotient
	 iii.	 Else concatenate 0 to the right hand end of the quotient

b.	 Shift the divisor one place right

4.	 Until dividend is less than the divisor
5.	 Quotient is correct, dividend is remainder
6.	 STOP

Assuming that the dividend is a K-bit stream, the divisor is an m-bit stream and the 
binary division by shift and subtract algorithm is used [24], the following number of 
operations are required:

	 (i)	 K shifts
	 (ii)	

⌊
K

m+1

⌋
 shifts consisting of subtractions with (m + 1) bits

Total number of opera-
tions => K +

⌊
K

m+1

⌋
× (11(m + 1) − 6) = K +

⌊
K

m+1

⌋
× (11m − 5).

Taking the upper bound, where m is minimum and is taken to be equal to 1, the total 
number of operations can be represented as:

(3)TMult
L

= 10K
2 + 23K + 7
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3.1.6 � Logarithm

A logarithm can be bounded based on its properties [25]. Consider the basic inequality:

Assuming the upper bound value is computed for the Natural logarithms, the total number 
of computations would result into:

	 (i)	 K NOT gates => K logical operations
	 (ii)	 (k − 1) Full-Adders => (5K − 5) logical operations
	 (iii)	 1 Half-Adder => 2 logical operations
	 (iv)	 x − 1 operation => (k − 1) full-adders; 1 half-adder => (5K − 3) logical operations.

The total number of logical operations would be: K + 5K − 5 + 2 + 5K − 3 and can be 
represented as:

3.1.7 � Exponential

An exponential e� can be considered as multiplications of the constant value, e by itself � 
times, such that:

With e and � being represented by K bits at the binary level, the exponential would consist 
of (2K − 1) multiplications of e (K-bits). Therefore, the total number of computations would 
be represented as:

3.1.8 � Maximum Operation

The selection of the maximum of bit streams (STREAM_1–STREAM_2) requires the fol-
lowing operations [23]:

Treating STREAM_1 and STREAM_2 as signed K-bit integers, then

1.	 Invert STREAM_2 to its − STRE_2 representation;
2.	 Sum STREAM_1 to − STREAM_2;
3.	 Use the sign of the result as a selector variable of a 2-input, K-bit multiplexer.

Converting STREAM_2 to − STREAM_2 by performing 2′s complement. The logical 
operations required are:

(4)TDiv
L

= K +

(
17 ×

⌊
K

2

⌋)

(5)
x − 1

x
≤ ln(x) ≤ x − 1, for x > 0

(6)T
Log

L
= 11K −6

(7)e� = e × e × e ×⋯ × e

(8)T
Exp

L
=
(
2K−1

)
×
(
10K

2 + 23K + 7
)
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	 (i)	 K NOT gates => K logical operations
	 (ii)	 (K − 1) Full-Adder => 5 × (K − 1) logical operations
	 (iii)	 1 Half-Adder => 2 logical operations
	 (iv)	 The addition of STREAM_1 to − STREAM_2 would require the following opera-

tions:
	 (v)	 (K − 1) Full-Adder => 5 × (K − 1) logical operations
	 (vi)	 1 Half-Adder => 2 logical operations.

Total number of logical operations => K + 5K − 5 + 2 + 5K − 3 = 11K − 6.
The Selector or Multiplexor would require a separate digital circuit system. Consider a 

2:1 MUX as shown in Fig. 4.
Extending from the above logic, 2K-bit inputs through a 2:1 MUX would require K × K 

binary AND Operations; K × (K − 1) binary OR operations; K × log2(K) NOT operations. 
The number of maximum operations would also be impacted by the number of symbols 
in non-binary Turbo codes. To generalize, the total number of operations required with a 
maximum of Ms states would be represented as:

4 � Logical Complexity of Binary LTE Turbo Codes

The dissimilar decoding techniques and logical complexities for binary LTE Turbo codes 
are shown in the following sub-sections. The equations of the total computational complex-
ities in terms of binary logical operations for the different decoding approaches of Binary 
LTE Turbo codes are obtained based on the analysis in Sect. 2.

4.1 � Background: Binary Turbo Codes

Figure 5 depicts a classic framework for Binary Turbo decoding. The decoding process 
is described subsequently. The aggregation of an interleaver together with two decod-
ers make up the Turbo decoder. The first Decoder takes r0 and r1 which correspond to 
the corrupted forms of S0 and P1, which are intercepted at the receiver end. Decoder 2 
accepts r0 which is the interleaved version is of r0 and r2 , which is the noisy version of 
P2. �1e and �2e are the extrinsic information generated by the decoders. �2 is the Log 

(9)TMax
L

=
(
Ms − 1

)
×
(
2K

2 + 10K−6 +
(
K × log2(K)

))

Fig. 4.   2:1 MUX representation with Binary Logic Gates
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Likelihood Ratio (LLR) output from Decoder 2 and �t is the final hard output obtained 
after the hard-limiting operation. Standards like CDMA-2000 and Long Term Evolu-
tion (LTE) have adopted Turbo codes with the aim to attain higher data rates.

Several equations have been proposed for the diverse Turbo decoding algorithms. 
As such, the existing Maximum Logarithmic Maximum A-posteriori Probability (Max 
Log-MAP) binary Turbo decoding system employing different sets of equations are 
presented in the following sub-sections. The decoding mechanisms are explained in 
details in [27].

In view to enhance the iterative decoding performance in terms of Bit Error Rate 
(BER), extrinsic information scaling mechanisms such as Sign Difference Ratio (SDR) 
[28] and Regression-based [29] have been developed. In addition to improving the 
error performance, these works also demonstrate the techniques for early-stopping of 
the decoding mechanisms by employing the computed scale factors. The concept of 
early-stopping helps in reducing the computational complexity without extensive trade-
offs in terms of the error performance. These improvements are however obtained at 
the expense of additional computations included in the decoding process for comput-
ing the scale factor, scaling the extrinsic information and performing comparisons with 
a set threshold to halt further unnecessary iterations. The decoding frameworks with 
SDR and Regression-based scaling and stopping are depicted in Figs. 6 and 7 respec-
tively. The detailed operating principles of these algorithms can be obtained from [28, 
29] respectively.

4.2 � Logical Complexity with Decoding Methods

This section details the complexity breakdowns for each Turbo decoder using each 
of the Turbo decoding algorithms. The complexity analysis in this sub-section does 
not involve the incorporation of extrinsic information scaling and early stopping 
mechanisms.

Fig. 5   Generic Turbo decoding structure. Source: [26]
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4.2.1 � Logical Complexity with Decoding Method 1

The computational complexity breakdown for each Turbo decoder using Method 1 with 
packet length of N is explained in [27] and presented in Table 1.

The equations for the number of computations per mathematical operation for Method 1 
are as follows [27]:

(10)C
binary

M1log
= 16N

(11)C
binary

M1exp
= 3N

(12)C
binary

M1max
= (8 + 8 + 2)N

(13)C
binary

M1add
= (16 + 16 + 16 + 32 + 2)N

(14)C
binary

M1sub
= (48 + 1 + 2)N

Fig. 6   Turbo decoding structure with SDR scaling and stopping mechanism. Source: [28]
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(15)C
binary

M1mult
= 32N

(16)C
binary

M1div
= 2N

Fig. 7   Turbo decoding structure with Regression-based scaling and stopping mechanism. Source: [29]

Table 1   Computational breakdown for each decoder with Method 1

Log() Exp() Max() Add() Sub() Mult() Div()

Branch transition metric 1 × 16 × N 1 × 16 × N 3 × 16 × N 2 × 16 × N
Forward metric 1 × 8 × N 2 × 8 × N
Backward metric 1 × 8 × N 2 × 8 × N
A-posteriori LLR 2 × N 32 × N 1 × N
Extrinsic LLR 2 × N
A-posteriori Probabilities 3 × N 2 × N 2 × N
Total 16 N 3 N 18 N 82 N 51 N 32 N 2 N
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where,

C
binary

M1log
 is the number of computations required for logarithm operations for Method 1,

C
binary

M1exp
 is the amount of computations required for exponential operations for Method 1,

C
binary

M1max
 is the number of computations required for Maximum operations for Method 1,

C
binary

M1add
 is the amount of computations required for addition operations for Method 1,

C
binary

M1sub
 is the number of computations required for subtraction operations for Method 1,

C
binary

M1mult
 is the number of computations required for multiplication operations for Method 

1,
C
binary

M1div
 is the number of computations required for division operations for Method 1.

The equations for the computational complexities of the decoding Method 1 for binary 
LTE Turbo codes in terms of binary logical operations are as follows:

4.2.2 � Logical Complexity with Decoding Method 2

The computational complexity breakdown for each Turbo decoder using Method 2 with 
packet length of N is explained in [27] and presented in Table 2.

The equations for the number of computations per mathematical operation for Method 2 
is as follows [27]:

(17)C
binary

M1log
= 16N = 16N(11K − 6)

(18)C
binary

M1exp
= 3N

(
2K − 1

)(
10K

2 + 22K + 8
)

(19)C
binary

M1max
= 18N

(
Ms − 1

)(
2K

2 + 10K + Klog2(K) − 6
)

(20)C
binary

M1add
= 82N(5K − 3)

(21)C
binary

M1sub
= 51N(11K − 6)

(22)C
binary

M1mult
= 32N

(
10K

2 + 22K + 8
)

(23)C
binary

M1div
= 2N

(
K +

(
17 ×

⌊
K

2

⌋))

(24)

C
binary

M1total
= 16N(11K − 6) + 3N

((
2K−1

)(
10K

2 + 22K + 8
))

+ 18N
((
2K

2 + 10K + Klog2(K)−6
))(

Ms − 1
)
+ 82N(5K − 3)

+ 51N(11K − 6) + 32N
(
10K

2 + 22K + 8
)
+ 2N

(
K +

(
17 ×

⌊
K

2

⌋))
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where,

C
binary

M2max
 is the number of computations required for Maximum operations for Method 2,

C
binary

M2add
 is the number of computations required for addition operations for Method 2,

C
binary

M2sub
 is the number of computations required for subtraction operations for Method 2,

The equations for the computational complexities of the decoding Method 2 for binary 
LTE Turbo codes in terms of binary logical operations are as follows:

4.2.3 � Logical Complexity with Decoding Method 3

The computational complexity breakdown for each Turbo decoder using Method 3 with 
packet length of N is explained in [27] and presented in Table 3.

The equations for the number of computations per mathematical operation for Method 3 is 
as follows:

(25)C
binary

M2max
= (8 + 8 + 2)N

(26)C
binary

M2add
= (8 + 32 + 32 + 16)N

(27)C
binary

M2sub
= 1N

(28)C
binary

M2max
= 18N

(
Ms − 1

)(
2K

2 + 10K + Klog2(K) − 6
)

(29)C
binary

M2add
= 88N(5K − 3)

(30)C
binary

M2sub
= 1N(11K − 6)

(31)
C
binary

M2total
= 18N

((
2K

2 + 10K + Klog2(K)−6
))(

Ms − 1
)
+ 88N(5K − 3) + N(11K − 6)

(32)C
binary

M3exp
= 3N

Table 2   Ccomputational 
breakdown for each decoder with 
Method 2

Max() Add() Sub()

Branch transition metric 1 × 8 × N
Forward metric 1 × 8 × N 4 × 8 × N
Backward metric 1 × 8 × N 4 × 8 × N
Un-coded extrinsic log confidences 2 × 8 × N
Extrinsic LLR 2 × N 1 × N
Total 18 N 88 N 1 N
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where,

C
binary

M3exp
 is the number of computations needed for exponential operations for Method 3,

C
binary

M3max
 is the number of computations needed for Maximum operations for Method 3,

C
binary

M3add
 is the number of computations needed for addition operations for Method 3,

C
binary

M3sub
 is the number of computations needed for subtraction operations for Method 3,

C
binary

M3mult
 is the number of computations needed for multiplication operations for Method 

3.

The equations for the computational complexities of the decoding Method 3 for binary 
LTE Turbo codes in terms of binary logical operations are as follows:

(33)C
binary

M3max
= (8 + 8 + 2)N

(34)C
binary

M3add
= (32 + 16 + 16 + 32 + 7)N

(35)C
binary

M3sub
= (1 + 2)N

(36)C
binary

M3mult
= 48N

(37)C
binary

M3exp
= 3N

(
2K − 1

)(
10K

2 + 22K + 8
)

(38)C
binary

M3max
= 18N

(
Ms − 1

)(
2K

2 + 10K + Klog2(K) − 6
)

(39)C
binary

M3add
= 103N(5K − 3)

(40)C
binary

M3sub
= 3N(11K − 6)

Table 3   Computational breakdown for each decoder with Method 3

Exp() Max() Add() Sub() Mult()

Branch transition metric 2 × 16 × N 3 × 16 × N
Forward metric 1 × 8 × N 2 × 8 × N
Backward metric 1 × 8 × N 2 × 8 × N
A-posteriori LLR 2 × N 32 × N 1 × N
Extrinsic LLR 2 × N
A-posteriori probabilities 3 × N 7 × N
Total 3 N 18 N 103 N 3 N 48 N
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4.3 � Logical Complexity with SDR Scaling and Stopping

The scaling parameter at iteration n for each decoder d is calculated as:

where,

f
(
∧
(n)

de
,∧

(n)

d

)
= 1 if ∧(n)

de
, and ∧(n)

d
 have the same sign, otherwise f

(
∧
(n)

de
,∧

(n)

d

)
= 0,

N represents the size of the frame in bits.

Table 4 presents the breakdown related to the SDR based scaling parameter at each half-
iteration, the details of which can be obtained in the work of [27].

The equations for the number of computations per mathematical operation for SDR 
scaling and stopping in terms of binary logical operations are as follows:

where,

C
binary

SDRcomp
 is the number of computations required for comparison operations for SDR 

scaling and stopping,

(41)C
binary

M3mult
= 48N

(
10K

2 + 22K + 8
)

(42)

C
binary

M3total
= 3N

((
2K−1

)(
10K

2 + 22K + 8
))

+ 18N
((
2K

2 + 10K + Klog2(K)−6
))(

Ms − 1
)

+ 103N(5K − 3) + 3N(11K − 6) + 48N
(
10K

2 + 22K + 8
)

(43)Sdn =
1

N

N∑
t=1

f
(
∧
(n)

de
,∧

(n)

d

)

(44)C
binary

SDRcomp
= (N + 1)(11K − 6)

(45)C
binary

SDRadd
= (N − 1)(5K − 3)

(46)C
binary

SDRdiv
= K +

(
17x

K

2

)

(47)C
binary

SDRmult
= 10K

2 + 23K + 7

Table 4   Complexity breakdown for one SDR-based scale factor

Where, Comp() represents Comparisons, Add() represents Additions, and Div() represents Divisions.

Comp() Add() Div() Mult() Total

SDR scaling and stopping mechanism N + 1 N − 1 1 2 N + 1
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C
binary

SDRadd
 is the number of computations required for addition operations for SDR scaling and 

stopping,
C
binary

SDRdiv
 is the number of computations required for division operations for SDR scaling and 

stopping,
C
binary

SDRmult
 is the number of computations required for multiplication operations for SDR scal-

ing and stopping.

4.4 � Logical Complexity with Regression Scaling and Stopping

The scaling parameter based on regression, r2(n)
d

 , is presented in (47).

where,

d = {1, 2} which is the decoder number,
N is the length of the packet and is set to 6144 in this simulation,
r
2(n)

d
 is the scaling parameter at iteration n for decoder d,

∧
(n)

d
(t) is the tth a-posteriori LLR of decoder d at iteration n and time t,

̂
∧
(n)

d
 is the mean a-posteriori LLR at iteration n for decoder d,

∧
(n)

de
(t) is the tth extrinsic LLR at iteration n for decoder d,

̂
∧
(n)

de
 is the mean extrinsic LLR at iteration n for decoder d,

n takes values ½, 1, … I (maximum number of iterations).

Intuitively, a correlation value of 1.0 between the a-posteriori LLR and extrinsic values 
yields a stopping criterion. However, based on simulations carried out and as explained in 
[29], a threshold of 0.98 can be used for the stopping mechanism.

The breakdown for the Regression based scaling and stopping at every half-iteration is pre-
sented in Table 5.

The equations for the number of computations per mathematical operation for Regression 
scaling and stopping in terms of binary logical operations are as follows:

(47)r
2(n)

d
=

⎛⎜⎜⎜⎜⎜⎝

∑N

t=1

�
∧
(n)

d
(t) −

̂
∧
(n)

d

�
x

�
∧
(n)

de
(t) −

̂
∧
(n)

de

�

�
∑N

t=1

�
∧
(n)

d
(t) −

̂
∧
(n)

d

�2

x
∑N

t=1

�
∧
(n)

de
(t) −

̂
∧
(n)

de

�2

⎞⎟⎟⎟⎟⎟⎠

2

(48)C
binary

Regsub
= 4N(11K − 6)

(49)C
binary

Regmult
= (3N + 2)

(
10K

2 + 23K + 7
)

Table 5   Complexity breakdown: one Regression-based scaling and stopping

Sub() Mult() Add() Div() Comp() Total

Regression-based stopping and scaling 4 N 3 N + 2 3 N − 3 1 1 10 N + 1



1607On the Logical Computational Complexity Analysis of Turbo…

1 3

where,

C
binary

Regsub
 is the number of calculations necessary for subtraction operations for Regression 

scaling and stopping,
C
binary

Regmult
 is the number of calculations necessary for multiplication operations for Regres-

sion scaling and stopping,
C
binary

Regadd
 is the number of calculations necessary for addition operations for Regression 

scaling and stopping,
C
binary

Regdiv
 is the number of calculations necessary for division operations for Regression 

scaling and stopping,
C
binary

Regcomp
 is the number of calculations necessary for comparison operations for Regres-

sion scaling and stopping.

5 � Performance and Complexity Analysis

The performance and complexity analysis of the different Binary LTE Turbo decoding 
algorithms has been performed in this section.

5.1 � Performance Analysis

In this sub-section, the graphs pertaining to the error performances and iteration profiles 
are plotted and analysed. For each of the Turbo decoding method, simulations have been 
performed using the following system criteria:

•	 Packet size: 6144 bits
•	 Number of packets: 200
•	 Code-rate: 1/3
•	 Maximum number of iterations: 12
•	 Modulation: Binary Phase Shift Keying (BPSK)
•	 Channel Noise: Additive white Gaussian Noise (AWGN)

Simulations have been performed for the following 3 schemes for each of the Turbo 
decoding method:

•	 Decoding without scaling or stopping
•	 Decoding with SDR-based scaling and stopping
•	 Decoding with Regression-based scaling and stopping

(50)C
binary

Regadd
= (3N − 3)(5K − 3)

(51)C
binary

Regdiv
= K +

(
17 ×

⌊
K

2

⌋)

(52)C
binary

Regcomp
= (11K − 6)
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The BER performance graph is presented in Fig. 8.
When comparing the conventional decoding methods without any scaling or stopping 

mechanisms from the above figure, it can be observed that Method 2 performs better than 
both Methods 1 and 3 with gains of 0.2  dB and 0.1  dB respectively at a BER of 10−7. 
When applying SDR scaling and stopping to the 3 decoding methods, there is visually no 
significant improvement in terms of the error performance as compared to the conventional 
decoding mechanisms. Regression-based scaling and stopping mechanism improves sig-
nificantly the error performances of decoding Methods 1 and 3. Methods 1 and 3 provide a 
gain of 0.35 and 0.3 dB respectively compared to the conventional decoding methods at a 
BER of 10−3 itself. Decoding Method 2 does not perform well after reaching the water-fall 
region. The performance degrades at BER 10−3 and an error-floor is observed at a BER of 
around 10−4. The iterations profile is demonstrated in Fig. 9.

The number of iterations for the conventional decoding methods without scaling and 
stopping mechanisms remains constant at 12 which is the specified value for maximum 
number of iterations. The decoding methods with SDR-based scaling and stopping mecha-
nisms demonstrate a continuous reduction in the number of iterations which is a significant 
improvement to compensate for the almost no BER performance gain compared to the con-
ventional decoding methods. The 3 decoding methods with SDR scaling and stopping pro-
vide gains of 3 and 4.5 iterations at Eb/N0 values of 0.6 and 0.7 dB respectively compared 
to the conventional decoding schemes. With the incorporation of regression-based stopping 
and scaling, the gains obtained in terms of the iterations profile is even more significant 
compared to those of the conventional decoding methods and the ones using SDR-based 
scaling and stopping mechanisms. Methods 1 and 3 with regression-based stopping and 
scaling have already reached a BER of 10−7 at Eb/N0 of 0.6 dB and at this same Eb/N0 they 
provide a gain of nearly 6 and 3 iterations compared to the conventional decoding methods 
and those using SDR-scaling and stopping respectively. Method 2 with regression-based 
scaling and stopping outperforms the conventional and SDR-based schemes throughout the 
Eb/N0 range. It also uses fewer iterations as compared to regression-based Methods 1 and 
3 above Eb/N0 of 0.75 dB. This improved iterations profile is not significant enough when 

Fig. 8   BER performance graph for Binary LTE Turbo Decoding methods
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considering the BER performance. The error-floor which is observed in the BER perfor-
mance of Method 2 using regression-based scaling and stopping does not suggest a good 
trade-off between performance and complexity reduction in this case.

5.2 � Total Computational Complexity without Scaling/Stopping

The total computational complexity analysis for binary LTE Turbo codes has been per-
formed in this sub-section for different values of K. Tables 6, 7, and 8 depict the total num-
ber of binary logical operations for values of K = 16, 32, and 64 respectively.

The bar charts for Logarithm, Exponential, Maximum, Addition, Subtraction, Multipli-
cation, and Division operations in the Binary LTE Turbo codes are shown in Figs. 10, 11, 
12, 13, 14, 15 and 16 respectively. The bar chart for the total number of binary operations 
is shown in Fig. 10.

Figure 11 is broken down into Figs. 11a–c for more clarity.
Figures 11a–c show that exponential operations are used only in Methods 1 and 3.
Figure 12 shows that all 3 techniques use the same extent of Maximum processes.

Fig. 9   Iterations profile for Binary LTE Turbo Decoding methods

Table 6   Total number of binary 
logical operations with K = 16

Method 1 Method 2 Method 3

Log() 2720 N 0 0
Exp() 574,086,600 N 0 574,086,600 N
Max() 13,140 N 13,140 N 13,140 N
Add() 6314 N 6776 N 7931 N
Sub() 8670 N 170 N 510 N
Mult() 93,440 N 0 140,160 N
Div() 304 N 0 0
TOTAL 574,211,224 N 20,086 N 574,248,341 N
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Figure 13 shows that Method 3 uses more addition operations than Method 2 which in 
turn uses more addition operations than Method 1.

Figure 14 shows that Method 1 uses more subtraction operations than Method 3 which 
in turn uses more addition operations than Method 2.

Figure  15 shows that only Methods 1 and 3 use multiplication operations. Method 3 
uses more multiplication operations than Method 1.

Table 7   Total number of binary 
logical operations with K = 32

Method 1 Method 2 Method 3

Log() 5536 N 0 0
Exp() 1.4112e14 N 0 1.4112e14 N
Max() 45,396 N 45,396 N 45,396 N
Add() 12,874 N 13,816 N 16,171 N
Sub() 17,646 N 346 N 1038 N
Mult() 350,464 N 0 525,696 N
Div() 608 N 0 0
TOTAL 1.4112e14 N 59,558 N 574,248,341 N

Table 8   Total number of binary 
logical operations with K = 64

Method 1 Method 2 Method 3

Log() 11,168 N 0 0
Exp() 2.3451e24 N 0 574,086,600 N
Max() 13,140 N 165,780 N 13,140 N
Add() 6314 N 27,896 N 7931 N
Sub() 8670 N 698 N 510 N
Mult() 93,440 N 0 140,160 N
Div() 1216 N 0 0
TOTAL 2.3451e24 N 194,374 N 574,248,341 N

Fig. 10   Bar chart for Logarithm 
operations in Binary LTE Turbo 
codes
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Figure 17 is broken down into Fig. 17a–c for more clarity. All 3 figures show that Meth-
ods 1 and 3 use more operations than Method 2. The total number of binary logical opera-
tions used by Method 2 is significantly lower than Methods 1 and 3 in the context of binary 
Turbo codes. Considering K = 16, Methods 1 and 3 use approximately 25,590 times more 
binary logical operations in total than Method 2 at each half-iteration. Therefore using 

Fig. 11   Bar chart for Exponential operations in Binary LTE Turbo codes a K = 16, b K = 32, c K = 64

Fig. 12   Bar chart for Maximum 
operations in Binary LTE Turbo 
codes
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Fig. 13   Bar chart for Addition 
operations in Binary LTE Turbo 
codes

Fig. 14   Bar chart for Subtraction 
operations in Binary LTE Turbo 
codes

Fig. 15   Bar chart for Multiplica-
tion operations in Binary LTE 
Turbo codes
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Method 2 with binary Turbo codes significantly reduces the complexity which in turn leads 
to a more energy efficient/power saving implementation. The energy efficiency of Turbo 
decoding Method 2 is supported by the error performance profiles of the 3 conventional 
Max-Log MAP decoding methods without the incorporation of any extrinsic information 

Fig. 16   Bar chart for Division 
operations in Binary LTE Turbo 
codes

Fig. 17   Bar chart for Total operations in Binary LTE Turbo codes a K = 16, b K = 32, c K = 64
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scaling and stopping technique. The BER graphs for the 3 decoding methods almost over-
lap over the whole Eb/N0 region.

5.3 � Total Computational Complexity with Scaling/Stopping

The total computational complexity analysis for binary LTE Turbo codes with SDR and 
Regression-based scaling and stopping mechanisms has been performed in this sub-section 
for K = 64 and N = 6144.

Table  9 shows the total number of binary logical operations for the 3 decoding 
approaches with SDR-based scaling and stopping. The same is shown in Table 10 for the 3 
decoding methods with Regression-based stopping and scaling incorporated.

5.4 � Comparative Analysis of Computational Complexity

The total number of logical computations with K = 16 and N = 6144 is given in Table 11.
The bar chart representation of the values in the above table is shown in Fig. 18.

Table 9   Total number of binary logical operations for binary LTE Turbo codes with SDR-based stopping 
and scaling with K = 16 and N = 6144

Method 1 Method 2 Method 3

Log() 2720 N 0 0
Exp() 574,086,600 N 0 574,086,600 N
Max() 13,140 N 13,140 N 13,140 N
Add() 6631 N − 317 7093 N − 317 8248 N − 317
Sub() 9368 N + 698 868 N + 698 1208 N + 698
Mult() 93,440 N + 42,439 42,439 140,160 N + 42,439
Div() 304 N + 608 608 608
TOTAL 574,212,203 N + 43,428 21,101 N + 43,428 574,249,356 N + 43,428
Total 3.5280e+12 129,687,972 3.5282e+12

Table 10   Total number of binary logical operations for binary LTE Turbo codes with Regression-based 
scaling and stopping with K = 16 and N = 6144

Method 1 Method 2 Method 3

Log() 5536 N 0 0
Exp() 1.4112e14 N 0 1.4112e14 N
Max() 45,396 N 45,396 N 45,396 N
Add() 13,825 N − 951 14767 N − 951 17122 N − 951
Sub() 20,438 N + 698 3138 N + 698 3830 N + 698
Mult() 477,781 N + 84,878 127,317 N + 84,878 653,013 N + 84,878
Div() 608 N + 608 608 608
TOTAL 1.4112e+14 N + 85,233
Total 8.6704e+17 1.1712e+09 8.6704e+17
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The bars pertaining to Methods 1 and 3 reveal that SDR scaling and stopping does not 
increase the number of computations significantly as compared to the Regression-based stop-
ping and scaling. The order in terms of the number of computations remains at 1012 when 
incorporating SDR-based stopping and scaling while the order goes up to 1017 when using 
Regression-based stopping and scaling. This rise in the number of computations is compen-
sated by the significant improvement in error performance and reduced number of iterations 
over the Eb/N0 range. Figure 19 is given below to better analyze the trend with Method 2.

The same trend is observed with Method 2. The order in terms of the number of computa-
tions remains at 108 when incorporating SDR-based stopping and scaling while when using 
Regression-based stopping and scaling, the order goes up 109. Despite the order of the total 
number of computations being lower with Method 2, the error performance graph reveals 
that the incorporation of Regression-based extrinsic information scaling and stopping with 
Method 2 causes an error-floor to occur at a BER of around 10−4. SDR-scaling and stopping 
on the contrary is a good candidate to be used with Method 2 when considering the error 
performance, iterations profile and the trade-off pertaining to the increase in total number of 
computations.

Table 11   Total number of binary logical operations for binary LTE Turbo codes

Conventional decoding Decoding with SDR-based 
stopping and scaling

Decoding with regression-
based stopping and scaling

Method 1 3.5280e+12 3.5280e+12 8.6704e+17
Method 2 123,408,384 129,687,972 1.1712e+09
Method 3 3.5282e+12 3.5282e+12 8.6704e+17

Fig. 18   Bar chart for total number of binary logical operations for binary LTE Turbo codes
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6 � Conclusion

The work presented in this paper is essentially the derivation and analysis of the com-
putational complexity of different decoding algorithms for binary LTE Turbo codes. 
The evaluation of the computational complexity is performed in terms of binary logical 
operations for generalisation. Results demonstrate the variation in computational com-
plexities when using different algorithms for Turbo decoding. When considering streams 
of 16 bits, Method 3 uses 0.0065% more operations in total as compared to Method 1. 
Furthermore, Method 2 uses only 0.0035% of the total logical complexity needed with 
Method 1. The incorporation of SDR and Regression-based scaling and stopping with 
the Turbo decoding Methods have also been simulated and analysed. When considering 
Methods 1 and 3, the order of the computational complexity remains at 1012 when using 
SDR with the provision of an average gain of 0.1 dB in error performance and a gain of 
3 iterations at an Eb/N0 value of 0.6 dB. The average gain in error performance is 0.3 dB 
when using the regression-based stopping and scaling. In terms of the iterations profile, 
gains of above 6 iterations are obtained at an Eb/N0 value of 0.7 dB over the conven-
tional decoding methods.

This work is important since the use of a decoding method with fewer number of binary 
logical operations significantly reduces the computational complexity which in turn leads 
to a more energy efficient/power saving hardware implementation. Also, evaluating the 
computational complexity in terms of the number of binary logical operations provides a 
more generalised mechanism to compare different decoding algorithms for error control 
codes in contrast to being limited to only complexities based on the types of hardware used.

Several future works can be foreseen from this work. A straightforward future work 
would be to perform a comparative analysis of the computational complexity in terms 
of the number of binary logical operations between Turbo codes and other error con-
trol codes for example non-binary Turbo codes and Low Density Parity Check Codes 
(LDPC). Another future work would be to formulate the exact mathematical expression 
for the Logarithm operation instead of assuming the maximum bound.

Acknowledgements  The authors would like to thank the University of Mauritius for providing the neces-
sary facilities in conducting this work.

Fig. 19   Bar chart for total number of binary logical operations for binary LTE Turbo codes—Method 2 
Only
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