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Abstract
Spectrum sensing (SS) is an essential task of the secondary user (SU) in a cognitive radio 
system. SS monitors the primary user (PU) activity in order to avoid any collision with 
SU, as the latter should be silent when PU is active on a given channel. Hybrid SS (HSS) 
is one of the powerful methods used to monitor PU activity. It consists of using different 
detectors together to make a final decision on the PU status. In this manuscript, artificial 
neural networks (ANN) are used to perform HSS. Since our data is composed from the test 
statistics (TSs) of several detectors, thus it can be modeled as tabular. Fully connected neu-
ral networks become the most suitable ANN model. We applied cutting-edge techniques in 
the field of deep learning in order to get the best possible accurate neural network model 
in our application. These techniques boil down to: embedding, regularization, batch nor-
malization and smart learning rate selection. With the help TSs related to several detectors, 
ANN is trained to distinguish between two hypotheses, H

0
 : PU is absent and H

1
 : PU is 

active. Numerical results show the effectiveness of our proposed ANN-based HSS, as it 
outperforms the classical ANN-based energy detector and proves its capability to detect 
PU signal at very low SNR.

Keywords Spectrum sensing · Artificial neural network · Cognitive radio

1 Introduction

Cognitive Radio has been proposed in order to overcome the spectrum scarcity problem. 
Unlicensed, namely known as Secondary User (SU) may opportunistically access the chan-
nel of the licensed user known as primary user (PU) when the latter is absent [1]. Thus, 
one of the most important functions in CR becomes the spectrum sensing (SS), which 
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is responsible to verify the primary channel status whether it is occupied or not. Several 
detector have been proposed to perform the SS tasks, such as: energy detector (ED), auto-
correlation detector (ACD) and cyclo-stationary detector (CSD) [2].

In classical SS, i.e. signal detection, the SU applies a test statistic (TS) on the received 
signal and compares it to a predefined threshold in order to make a decision on the PU 
status. If the TS is above a certain threshold, then PU is considered as active. In fact, in 
order to set the optimal threshold that meets the target detection and false alarm rates, this 
approach predetermines that the statistical distribution of TS is known, which is not always 
possible due to the unstable, and may be unknown, statistical properties of the noise, the 
PU signal or the transmission channel.

To overcome the analytic statistical problems of the classical SS and improve its perfor-
mance, several published works propose the adoption of the machine learning (ML) and 
the neural networks (NN) techniques in order to make decisions on the PU channel occu-
pancy [3–9]. The main aim of the proposed works is to tune ML or NN systems with the 
statistics of both hypotheses: the first one is H0 when PU is assumed to be absent, and H1 
when PU is assumed to be active.

In [5], ML techniques such as the K-means and support-vector machine (SVM) are used 
to distinguish between the H0 and H1 hypotheses in a cooperative SS. Two low-dimension 
probability vectors related to both H0 and H1 of ED are used in order to train the system. 
SVM is used in order to set the threshold curve between H0 and H1 clusters. K-nearest-
based ML is adopted in [10] for a cooperative SS. The related mechanism of the proposed 
work is divided into two phases: training and classification. The global decision of the 
presence/absence taken at the end of the classification phase of the PU takes into consid-
eration the reliability of each CR user when reporting to the fusion center during the train-
ing phase.

For a local SS, an ensemble classifier is proposed in [11]. The classifier seeks to dis-
criminate between H0 and H1 hypotheses by being trained with the extracted cyclic features 
of PU’s signal in low SNR conditions. This ensemble classifier is based on decision trees 
and AdaBoost algorithm. Wideband SS is tackled in [12], where three ML techniques: neu-
ral networks, expectation maximization and k-means are used in order to detect presence of 
one or multiple primary users in a wideband spectrum.

In order to enhance the accuracy of the ML system in making decision on the PU sta-
tus, hybrid SS (HSS) has been proposed [6, 7]. HSS consists of making a sensing decision 
based on several detectors instead of considering only one as per the classical SS. In [6, 
7], Artificial neural network (ANN) have been applied in order to perform a HSS. ANN is 
trained using the TSs of two detectors related to H0 and H1 (in [6] ED and cyclostationary 
detector (CSD) are used and in [7] ED and likelihood ratio statistics are used).

The strength of the HSS consists on compensate the weak points of a given detector by 
the advantages of the another one. For instance, ED suffers from the noise uncertainty at 
low SNR, which is overcome by ACD. In return, ACD is adversely impacted by the low 
oversampling rate of the PU signal, while ED is not affected by this issue. A HSS scheme is 
proposed in [13], where ED and CSD are adopted. First, ED is evaluated to verify whether 
primary user is present or not. The CSD is used when energy detector is not sure about the 
presence or absence of PU. Moghimi et al. [14] and Cardenas-Juarez et al. [15] exploit the 
ED and the waveform detector (WFD) which is coherent detector that is based on the cor-
relation of the received PU signal with a known reference of this signal. An optimal hybrid 
detector based on ED and WFD is derived as a linear combination of an energy detection 
metric and a coherent correlation metric.
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However, the classical dealing with the HSS requires the knowledge of some statisti-
cal features of the combined detectors. This may be hard to obtain since the PU signal’s 
statistical parameters are not always known/available. This fact makes the numerical tech-
niques such as NN an efficient solution. In return, even when NN was used in literature, 
the hybridization was limited to two detectors as in [6, 7], which does not reflect the real 
potential of such technique.

In this paper, we present a more general study on the performance of the HSS by admit-
ting up to six different detectors. ANN are trained by the TSs of the detectors using data 
related to H0 and H1 . A discussion on the performance is presented according to several 
criterion related to the ANN itself and the number of detectors to be combined in HSS. 
Regarding the ANN system, a discussion on the number of layers and the number of nodes 
in each layer is detailed showing the effect of them on the accuracy of the decision on the 
PU channel status. For the adopted detectors, the performance is evaluated based on the 
Probability of Detection, PD, and the False Alarm Rate (FAR). In addition, the impact of 
the number of combined detectors in HSS on the performance is detailed.

The remaining of this paper is organized as follows. In Sect. 2, our system model on the 
PU signal and the noise is presented. The data model, the neural network model, and the 
discrimination process between the two hypotheses H0 and H1 are given in Sect. 3. Numeri-
cal results and discussions are provided in Sect. 4. Finally Sect. 5 concludes our work.

2  System Model

The decision in SS is binary where two hypotheses must be distinguished H0 and H1:

The measured TS value leads SU to decide on the PU activity by comparing TS to a 
predefined threshold.

Accordingly, two classes of TS values have to be defined: H0-class and H1-class related 
to the hypotheses H0 and H1 respectively. In fact, H0-class only depends on the system 
parameters such as the noise and the hardware imperfections, in other words it is independ-
ent from the PU signal since the received signal r(n) can be presented as follows:

where w(n) stands for an additive white Gaussian noise (AWGN) and s(n) is assumed to be 
the received PU signal to be detected.

For HSS, the SU evaluates a m × 1-dimension vector V related to m detectors.

where the upper script tr stands for the transpose operation, TDi
 is the TS related to the 

detector Di, i ∈ [1,m] . Each TS is a mathematical application applied on r(n). For instance, 
ED evaluates the sum of squares of the samples of r(n), whereas ACD stands for the cor-
relation between r(n) and a shifted version of itself, and so on. In classical SS, SU may 
evaluate only one TS related to a given detector. This TS is compared to a threshold to take 

(1)
{

H0 ∶ PU is absent

H1 ∶ PU is active

(2)
{

r(n) = w(n) under H0

r(n) = s(n) + w(n) under H1

(3)V = [TD1
, TD2

,… , TDm
]tr
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a decision on PU status. However, in HSS, a vector of TSs related to several detectors are 
evaluated and combined in order to examine the PU channel status. In our work, this ANN 
is used to combine the data of these detectors and exploit them in outcome a final decision 
on PU.

3  The Data Model

In this section we present the details about our dataset and the ANN model used in order 
to combine the evaluated TSs of the adopted detectors. By training the ANN system with 
hybrid data, we use such system to make a decision on the PU status.

3.1  Dataset

The data consists of two categories according to the two hypotheses H0 and H1 . The data 
was generated corresponding to the TSs of six detectors: ED [16], ACD [17], maximum 
eigenvalue detector (EVM) [18], maximum–minimum eigenvalue detector (EVMM) 
[18], cumulative power spectral density detector (CPSD)[19] and goodness-of-fit detec-
tor (GoF) [20]. The data respects an AWGN noise and a 16-QAM modulated PU signal 
with an oversampling rate Ns = 4 . The TSs related to the adopted detectors are given in 
the “Appendix”. Our dataset, as depicted by Fig. 1, consists of seven features which are 
{ED, ACD, EVM, EVMM, CPSD, GoF, SNR} and a label. The label values are 0 under 
hypothesis H0 and 1 under H1 . Figure 1 presents a description of the dataset. In particular, 
the dataset contains 9 × 106 rows. Our choice to include the SNR into the set of features is 
an important issue. Indeed, this prevents building a separate neural network model (NN 
model) and from training it over each SNR value.

We splitted the dataset randomly into 80% training set and 20% validation set. Figure 2 
illustrates the count of rows with H0 and H1 respectively (i.e. labels 0 and 1) in the valida-
tion set. It can be observed that the data is uniformly distributed among all SNR values. 
This also applies to the training set.

In order to carefully analyse the data may look in depth, we picked out 1000 random 
samples from the validation dataset and we plot the scattering of two detectors: ED and 
ACD as depicted in Fig.  3. The H1 data drifts away from the H0 data class as the SNR 

Fig. 1  Dataset description: 9 × 10
6 rows; 7 features (6 detectors and SNR); the label has two possible val-

ues: 0 for hypothesis H
0
 and 1 for hypothesis H

1
 . The mean, min, max, standard deviation and percentiles 

( 25% , 50% and 75% ) of the features and the label are also presented
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increases. H0 data keeps the same place in the space of the scattering for all SNR values 
because it is only related to the noise. However, low SNR values (i.e. − 21 dB) makes the 
discrimination between H0 and H1 a tough task due to the huge mix-up of H0 and H1 related 
data (see Fig. 3). However, at a relatively good SNR value (i.e. 6 dB), the classification 
becomes an easy task.

The data input of the model is a batch of 64 rows (see Sect.  4.1 for a discussion on 
the batch size). Figure 4 illustrates the first 10 rows of a batch drawn randomly from the 
dataset.

Fig. 2  Histogram of Dataset to show the distribution of the data over the hypotheses H
0
 and H

1
 . These two 

hypotheses are uniformly considered in our simulations with respect to various SNR values

Fig. 3  The scattering of ( �, � ) for 
N = 1500 samples, 10,000 trials 
and different values of SNR
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We iterate on the training set by selecting a batch on each step and we fed it as an input 
to Algorithm 1. After completing a whole pass on the training set, we switch to the valida-
tion set and we apply Algorithm 2 in order to assess the accuracy of the model. This com-
pletes one epoch. This procedure can be repeated until getting an acceptable value of the 
accuracy (e.g. an accuracy value > 95%).

3.2  The Neural Network Model

Since our data is in tabular form, we select a fully connected neural network (FCNN). 
A FCNN consists of one input layer, several hidden layers and one ouput layer. The fea-
tures’ set is the input layer for our model. The output layer will simply consist of two nodes 
because we are trying to predict whether a row of features’ values belongs hypothesis H0 
or H1 . That is, the values of the two output nodes will be two probability values that sum to 
one. It remains to specify the number of hidden layers, i.e. the ones between the input and 
output layers,

The number of hidden layers and the number of nodes in each layer, are considered as 
hyper-parameters and can be tweaked. Two layers are considered. The first layer with 1000 
nodes and the second one with 500 nodes. We give a discussion of the model parameters’ 
tweaking in Sect. 4.1.

As a subtle point, notice that the SNR has discrete values, hence it is considered as a 
categorical variable as opposite to the six detector variables which are continuous. It is 
a common behaviour to use embedding [21] in the case of a categorical variable since it 
leads to improve the model accuracy. The embedding process is shown in Fig. 5. In this 
figure, we take a one-hot encoded vector [21] of SNR concatenated with a bias (i.e. a real 
value which will be learnt by the NN) which yields a vector of length 10. This vector is 
mapped to a vector of length 6, called the embedding vector. The embedding vector dimen-
sion is a hyper-parameter and can be tweaked (Sect. 4.1). A bias is added because this is 
required by the embedding process. We concatenate this 6 − D vector with the six detectors 
(Eq. 3) in order to produce the input layer of the FCNN (Fig. 5). Then, we add two hidden 
layers with [1000, 500] nodes and an output layer with 2 nodes.

For the performance metrics, we select the binary negative log likelihood (NLL) loss 
function [22] because the type of our problem is binary classification.

Fig. 4  10 rows from a batch
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A brief explanation of the NLL loss function is given hereinafter: Let us take a features’ 
row from the dataset. The ground truth label (or target) of this row is 0 or 1 (e.g. the first row in 
Fig. 4, has a ground truth label = 0 ). After SNR embedding and concatenation with the other 
features as explained before, we get a vector x of dimension (12, 1) (the input layer in Fig. 5). 
Call the output layer ŷ = [ŷ0, ŷ1]

tr where ŷi, i = 0, 1 is the probability of getting Hi, i = 0, 1 as 
prediction and the upperscript tr is the transpose operator. We encode the ground truth label 
using one-hot encoding [21]. That is, label 0 is encoded as vector y = [1, 0]⊤ whereas label 1 
is encoded as y = [0, 1]tr . That is y = [y0, y1] where y0 = 1 if label = 0 and y0 = 0 if label =1. 
Note that, y1 = 1 − y0 . The binary NLL loss function for this row (e.g. row 1) is expressed as:

For a batch of 64 rows, the loss function becomes:

where yn0 (resp. ŷn0 ) is the encoded label value (resp. predicted probability) of row n of 
the batch. During the training phase (Algorithm 1) the model will try to minimize the loss 
function. During the validation phase (Algorithm 2), the loss is also calculated. In addition, 
we get the confusion matrix and we will derive from it the model accuracy. Furthermore, 
we well obtain two other important metrics which are the detection probability and the 
false alarm rate (these two also are derived from the confusion matrix). An example is 
given in Fig. 6 where the True Positive TP = 898,399 , the False Positive FP = 62,934,the 
False Negative FN = 2246 and the True Negative TN = 836,421 . Hence, we get the accu-
racy as : TP+TN

P+N
= 0.9637 ( P + N is the total count of the validation set which is 1800, 000). 

L1 = −y0 log(ŷ0) − (1 − y0) log(1 − ŷ0)

(4)L =

64∑

n=1

−yn0 log(ŷn0) − (1 − yn0) log(1 − ŷn0)∕64

Fig. 5  The NN model archirecture: On the left we see the embedding layer. The output of the embedding 
layer, which is a vector of 6 real values, is concatenated to the vector of 6 detectors (6 real values) in order 
to produce the input layer of the NN (a vector of 12 real values). Then we add sequentially: Hidden Layer 1 
(a vector of 1000 real values), Hidden Layer 2 (a vector of 500 real values) and the output layer (a vector of 
2 real values)
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Fig. 6  An example of the confusion matrix on the validation set showing the actual and predicted values, 
where 0 (resp. 1) represents H

0
 (resp. H

1
)

Fig. 7  The NN model details: we begin by an embedding layer transforming a list of 10 values [i.e. 9 SNR 
values and a bias (see Fig. 5)] to a vector of 6 real values. Then we apply batch normalisation to it and we 
concatenate it with the 6 detectors’ values. Then we apply sequentially two hidden layers and on each layer 
we apply ReLU, batch normalisation and dropout. Finally, we add the output layer
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Consequently, the Detection Probability PD can be evaluated as: PD =
TP

TP+FP
= 0.9345 

and the False Alarm Rate FAR is: FAR =
FN

FN+TN
= 0.002678.

The details of the model are described in Fig. 7. First, an embedding layer is constructed 
as discussed before. Then, we apply a regularization technique called Dropout1 [23]. Drop-
out consists of dropping a percentage of a layer nodes randomly in the training process. 
This percentage is determined by the value p in Fig. 6. For the embedding layer, we put 
p = 0 , that means we do not drop any node since the number of nodes in this layer is too 
small (6 nodes). Normalization is also an important procedure in FCNN, which is normally 
used in order to avoid the cases where the NN parameters vanish or explode. Batch nor-
malization [24] is very efficient and hence we applied it to all the layers except the output. 
Equation 5 is the core operation in batch normalization.

x represents a batch, E(x) and Var(x) are the mean and the variance of x respectively, � is 
added to ensure numerical stability, and � and � (affine= True ) are two learnable param-
eters. Also by default, during training this layer keeps running estimates of its computed 
mean and variance (track_running_stats= True ), which are then used for normalization 
during evaluation. The running estimates are kept with a default momentum of 0.12. After 
normalization, a linear layer is added (Eq. 6):

where W is a learnable parameter matrix, x is the batch, . is the dot product and b is a 
learnable bias vector. For instance, the first linear layer model connects the input layer (12 
nodes) to the first hidden layer (1000 nodes) as shown in Fig. 5. Given a batch size = 64 , 
hence the dimension of matrix W becomes (12, 1000), whereas the dimensions of x are 
(12, 64) and those of b are (1000, 64).

After adding the linear layer, we introduce a non-linearity by applying an activation 
function. In our case, it is the ReLU (Rectified Linear Units) function [25]. ReLU is simply 
max(0, y), to get rid of negative values.

As mentioned before, the model contains two phases: training and validation (see Algo-
rithms 1 and 2). Note that the backward pass is applied during the training phase only; 
Where the parameters of the model are updated in order to minimize the loss function. The 
validation phase, however, contains only a forward pass. Note also the Dropout is turned 
off during the validation.

(5)y =
x − E(x)

√
Var(x) + �

∗ � + �

(6)y = Wtr.x + b

1 Regularization is used in order to give the model the ability to generalize on unseen datasets.
2 Momentum is a hyperparameter, i.e. it can be tweaked. However, the value of 0.1 is generally adopted in 
the literature [24].
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4  Results

4.1  Model Tweaking

We tested several model architectures with various numbers of layers and different number 
of nodes per layer.

The results reported in Table 1 are after one epoch of training, since the accuracy was 
almost independent from the number of epochs. We conducted our experiments on a cloud 
AWS (Amazon Web Service) machine equipped with a k80 GPU (12 GB integrated RAM; 
5.6 TFLOPS [27]). It is clear that increasing the number of layers and the number of nodes 
per layer leads to better accuracy. However, we did not notice an accuracy improvement 
with a number of layers more than two. Also, we increased the number of nodes to the 
maximum value allowed by the machine RAM. In addition to the number of layers and the 
number of nodes, there are other hyperparameters to tweak. The most important one is the 
learning rate. We applied the methodology suggested in [28] in order to select a learning 
rate which minimizes the loss function. The result is illustrated in Fig. 8. We obtained this 
figure by applying algorithm 1 on a small percentage of the training set (5% in our case).

According to [28], the learning rate should be selected from the decreasing zone in 
Fig. 8. That is, in the range [10−5, 10−1] . In our experiments we used the value 10−5.

Other parameters are: batch size, momentum, epsilon, dropout probability and the 
length of the embedding vector.

Table 1  Accuracy as function of different model architectures

Accuracy

1 layer, 7 nodes 1 layer, 20 nodes 2 layers, [5,5] nodes 2 layers, [1000, 500] nodes
0.83 0.84 0.87 0.96
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For the batch size, we selected a value of 64 (a larger value can be used but this requires 
more RAM). For the embedding vector length, the best practice [21] is to reduce the 
dimension of the categorical input vector (SNR vector in Fig. 5). Hence, any value less 
than 9 is acceptable. In our experiments, we fixed this value to 6. For the remaining param-
eters, we used momentum = 0.1 ([26]), epsilon = 10−5 (this should be a number close to 0 
[24]) and dropout probability p = 0.001 for the hidden layer 1 and p = 0.01 for the hidden 
layer 2 (p should be a small percentage of the nodes’ layer). With these parameters, we 
obtained a high accuracy value (0.96) for the model architecture with 2 layers, [1000, 500] 
nodes. Also, as illustrated in Fig.  9, validation and training losses are very close which 
means that our model does not over-fit, i.e. it can generalize well to any dataset.

4.2  Sensing Performance Evaluation

In this section, we present results obtained from our model. We emphasize on two per-
formance measures: the probability of detection (PD) and the false alarm rate (FAR). Our 
dataset contains six detectors which are: ED, ACD, EVM, EVMM, CPSD and GoF. We 
may present results for any combination among these detectors; However this will be a time 

Fig. 8  Selection of the learning rate

Fig. 9  The loss value as function 
of the processed batches
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consuming. Instead, we take the following set of combinations where ED is common in 
all the adopted combinations: {ED, ED − EVM, ED − EVM − GoF, ED − EVM − GoF−

EVMM, ED − EVM − GoF − EVMM − CPSD,all detectors} . Our assumption comes form 
the fact that ED is the classical detector in SS and is widely considered as the reference 
one, thus ED is common in all the considered combinations.

Figure 10 shows the evolution of PD and FAR of ANN-based HSS detector in terms of 
SNR for all the adopted combinations. Noting that adopting ED solely reflects the classical 
case when ANN is used to train/validate only one detector, thus it can be considered as the 
reference of the non-HSS. However, for the combination ED − EVM , PD increases from 
0.6 at SNR = − 24 dB to a value greater than 0.95 at SNR of − 12 dB. This evolution of 
PD is accompanied with a decrease of FAR from 0.06 at SNR = − 24 dB to a value less 
than 0.1 at − 12 dB. On the other hand, for the ANN-based ED (no HSS is adopted) PD 
increases from 0.65 to 0.85 for the SNR range [− 24 ; − 12] dB, while FAR presents very 
high values compared to ED − EVM on such SNR range.

Furthermore, Fig.  10 shows that PD increases with the number of used detectors, 
whereas FAR decreases with the number of used detectors. When three detectors are 
used, i.e. ED − EVM − GoF , PD achieves 0.92 at −  12 dB and FAR becomes less 

Fig. 10  Evaluation of PD and 
FAR in terms of SNRs
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than 0.06 for the same SNR. These two performance indicators, PD and FAR, become 
respectively higher than 0.95 and less than 0.001 when six detectors are used. This fact 
reflects the efficiency of the hybrid sensing in terms of both protecting PU form the 
interference (when PD is high) and exploiting the available spectrum resources (when 
FAR is low).

However, for very low SNR, i.e. − 24 dB, PD is above 0.825 with a FAR less than 
0.001, which reveals the high robustness of such a hybrid detector in achieving good 
performance when the other techniques fail.

In Fig. 11, we present the average values of PD and FAR over all SNRs. The average 
could be interpreted as the robustness of the proposed technique in terms of SNR. In 
fact, the data corresponding to H0 are noise-only related and not impacted by the SNR, 
thus their detectors scattering remains stable in the space independently of the SNR. 
On the another hand, the data under H1 is PU signal dependent, and subsequently it is 
related to the SNR of the received PU signal. Hence, the performance analysis present-
ing the average PD and FAR gives us an in-depth view on the efficiency of the proposed 
technique to distinguish between H0 and H1 , for wide range of SNR ([− 24 ; 0] dB). For 
the case where no HSS is used, i.e. only ED is used, thre average PD is around 0.84 for 
an average FAR of 0.25 as shown in Fig. 11 respectively. In contrast, for HSS when the 
number of used detectors increases the average PD increases accordingly, whereas the 
average FAR decreases. An average PD higher than 0.93 is observed when more than 3 
detectors are used, while an almost zero FAR is obtained.

5  Conclusion

In this paper, we presented hybrid spectrum sensing (HSS) technique using artificial 
neural network (ANN). Instead of using one detection method as per the classical spec-
trum sensing, several test statistics (TSs) of several detectors are combined using ANN. 
ANN system is trained with the TSs of the used detectors for the noise-only case and for 
the case where PU is active. The numerical results corroborate the efficiency of the pro-
posed HSS compared to the non hybrid detection technique, where ANN is trained with 
the TS on only one detector. In addition, the results proved that the detection outcome 
becomes more reliable as the number of detectors increases.

Appendix: Mathematical Formulae of Adopted Detectors

Energy detector (ED) is defined as the sum of the square modulus of the received signal:

where N is the number of received samples.
Autocorrelation detector (ACD) consists of evaluating the inter-sample correlation of 

the received signal, and is defined as follows:

(7)TED =
1

N

N∑

1

|r(n)|2
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where ∗ stands for the congugate operation, Ns is the number of samples per symbol and �2
w
 

is the AWGN noise variance.

(8)TACD =
1

NsNTED

Ns−1∑

l=1

Re

{ N∑

n=1

r(n)r∗(n − l)

}

Fig. 11  The average PD and 
FAR for the SNR range [− 24 ; 
0] dB for the used combination 
in the proposed ANN-based HSS 
technique
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The CSPD detector evaluates the non-flatness of the noise in frequency domain and is 
given by [19, eq. 26]:

where R(m) is the discrete Fourrier transform of r(n).
EVM consists of finding the maximum eigenvalue of the covariance matrix R∇ of ∇(n) 

which is a set of shifted versions of r(n).

where �i, i ∈ [1, L] is the ith eigenvalue of R∇ , L is related to the number of shifted ver-
sions of r(n), and || ⋅ ||∞ is the ∞ norm.

Similarly to EVM, EVMM is evaluated based on the ratio of the maximal eigenvalue to 
the minimal eigenvalue of R†:

where �min = min{�1, �2,… , �L}

Finally, TGoF consists of detecting the presence of PU signal by determining whether 
the received samples are drawn from the noise distribution with a Cumulative Distribution 
Function F [29]:
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