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Abstract
This paper is concerned with Electroencephalography (EEG) seizure prediction, which 
means the detection of the pre-ictal state prior to ictal activity occurrence. The basic idea 
of the proposed approach for EEG seizure prediction is to work on the signals in the Hil-
bert domain. The operation in the Hilbert domain guarantees working on the low-pass 
spectra of EEG signal segments to avoid artifacts. Signal attributes in the Hilbert domain 
including amplitude, derivative, local mean, local variance, and median are analyzed sta-
tistically to perform the channel selection and seizure prediction tasks. Pre-defined predic-
tion and false-alarm probabilities are set to select the channels, the attributes, and bins of 
probability density functions (PDFs) that can be useful for seizure prediction. Due to the 
multi-channel nature of this process, there is a need for a majority voting strategy to take 
a decision for each signal segment. Simulation results reveal an average prediction rate 
of 96.46%, an average false-alarm rate of 0.028077/h and an average prediction time of 
60.1595 min for a 90-min prediction horizon.
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1 Introduction

One of the most popular neurological diseases is epilepsy. It is widespread all over the 
world with about 1% of world population injured with this disease [1]. There is a need for 
certain precautions to deal with epilepsy patients to reduce the hazards facing them during 
seizure periods. That is why seizure prediction is necessary. If a seizure is predicted prior 
to its occurrence, alarms can be given to the patients to save them from dangerous actions 
[2]. Seizure prediction in itself is the process of anticipating a seizure prior to occurrence 
with a suitably long time. This also means the detection of the pre-ictal states from EEG 
signal activities if they are assumed to exist [3, 4].

Electroencephalogram (EEG) signals reflect the brain activities during human 
actions. For patients, epilepsy seizures occur due to some electrical discharges in groups 
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of cells [5]. These discharges are reflected in EEG signals, which are recorded with dif-
ferent electrodes. Hence, EEG signals are of multi-channel nature. So, we can say that 
channel selection for epilepsy activity detection and prediction is a must [6–8]. In addi-
tion, technological improvements in implantable devices for seizure control [3, 4] have 
led to tremendous improvements in the accuracy and sensitivity of epileptic seizure pre-
diction [9–11].

Several algorithms have been presented for EEG seizure prediction. Zandi et  al. [12, 
13] presented an approach for seizure prediction based on computing zero-crossing rate in 
sEEG with different window intervals. For each interval, the distribution of the histogram 
is computed. Then, the obtained distribution is compared with two reference inter-ictal and 
pre-ictal distributions. This approach presented an average sensitivity of 88.34%, an aver-
age prediction time of 22.5  min and a false prediction rate of 0.155/h. Hung et  al. [14] 
presented a seizure prediction algorithm based on chaotic features in the wavelet domain. 
Their approach achieved an average accuracy of 87% with an average prediction time of 
27 min and a false-alarm rate of 0.24/h.

Shiang et al. [15] developed a seizure prediction algorithm based on computing differ-
ent attributes, namely cross-correlation, non-linear independence, difference of Lyapunov 
exponents and phase locking in the wavelet domain. A sensitivity of 74% was obtained. 
Gadhoumi et  al. used wavelet features extracted from iEEG signals for seizure predic-
tion. The features used in this approach are the entropy and wavelet energy. This approach 
achieved an accuracy of 85% with a false-alarm rate equal to 0.35/h [16]. In addition, the 
empirical mode decomposition (EMD) has also been utilized for EEG seizure predic-
tion. The main advantage of the EMD is the ability to decompose the signal in an additive 
manner to a group of envelopes. Features are extracted from the intrinsic modes in the 
EMD domain. A hybrid feature extraction method based on three intrinsic mode functions 
(IMFs) and the variance of the envelope (VOE) of the approximation has been used [17]. 
Moreover, some sort of dimensionality reduction with principal component analysis (PCA) 
has been used in [18, 19].

The zero-crossing rate (ZCR) of EEG signals in the wavelet domain has been exploited 
for EEG seizure prediction [20]. The reason for using the ZCR is that in epileptic activi-
ties, rapid changes occur in EEG signals. These changes are estimated based on the ZCR 
in the wavelet domain. A support vector machine (SVM) has been used for the classifica-
tion purpose. This algorithm achieved an average accuracy equal to 94%. N. Ozdemir et al. 
[21] adopted a seizure prediction algorithm based on Hilbert-Huang transform (HHT) and 
Bayesian classification. The HHT is utilized for feature extraction. After that, a correlation-
based feature selection (CFS) algorithm is used to select the best features. Then, classifica-
tion by means of Bayesian networks is implemented. A sensitivity of 96.55% and a false 
positive rate of 0.21/h were obtained.

Aarabi and He [22] presented a seizure prediction model based on the estimation of 
the spectra of iEEG signals. First, the EEG signal is band-pass filtered to be in the band 
of 0.5–100 Hz, and then notch filtered at 50 Hz. Then, the data is split into independent 
training and testing sets, and both are segmented into 10-s non-overlapping segments. The 
power spectral densities of 10-s iEEG segments are computed using the Welch spectral 
estimation method [23], where the signal is divided into segments overlapped by 50%, and 
then the Hamming window and the Fourier transform are applied. After that, the power 
spectra are computed. The Bayesian inference method is used to estimate the parameters 
of the model. This method achieved average sensitivities of 87.07 and 92.6% for maximum 
seizure occurrence periods of 30 and 50 min, respectively.
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Alotaiby et  al. [24] introduced a seizure prediction algorithm based on common 
spatial patterns (CSPs) as feature extractors. A linear discriminant analysis classifier 
is used for the classification purpose. Their algorithm achieved an average prediction 
time equal to 89%. The false prediction rate is 0.39/h, with an average prediction time 
of 68.71 min.

Myers et  al. [25] presented a seizure prediction algorithm that depends on phase/
amplitude lock values (PLV/ALV) by calculating the difference of phase and ampli-
tude between electrodes that are local and remote to the epilepsy center. Their method 
reported an average sensitivity of 77%, and an average false prediction rate of 0.17/h. 
Consul et  al. [26] presented a seizure prediction algorithm using phase  difference in 
Hilbert domain. Their algorithm achieved a sensitivity of 88.2% with a  prediction 
latency between 51 s and 188 min.

Chu et  al. [27] presented a seizure prediction algorithm depending on attractor 
state analysis of the macroscopic dynamics of the brain. A sensitivity of 86.6%, a false 
prediction rate of 0.367/h and an average prediction time of 45.3 min were obtained. 
Sedik et al. [28] introduced a statistical framework for seizure prediction based on the 
utilization of digital filters. A prediction rate equal to 96.2485%, a false-alarm rate of 
0.10526/h and a prediction time of 66.6 min were obtained. This framework has been 
applied only on 4 patients from the CHB-MIT dataset.

Daoud et  al. [29] introduced a patient-specific seizure prediction algorithm using 
deep learning. Raw EEG signals are used as the input to the model without any pre-
processing. Four deep learning models have been used to extract the most differentiat-
ing features to enhance the classification performance. Their algorithm achieved an 
average accuracy of 99.6% and a false-alarm rate of 0.004/h. Yang et al. [30] presented 
an approach for seizure prediction depending on permutation entropy as a main fea-
ture. An SVM has been used for the classification purpose. This approach achieved an 
average sensitivity of 94% and a false prediction rate of 0.111/h

This paper introduces a patient-specific algorithm for EEG channel selection and 
seizure prediction from sEEG. Signal attributes in the Hilbert domain including ampli-
tude, derivative, local mean, local variance, and median are analyzed statistically to 
perform the channel selection and seizure prediction tasks. Pre-defined prediction and 
false-alarm probabilities are set to select the channels, the attributes, and bins of PDFs 
that can be useful for seizure prediction. In the training phase, EEG signal segments 
of length 10 s are analyzed into non-overlapping segments and filtered using a band-
pass finite impulse response (FIR) filter (3–100  Hz) to remove undesired artifacts. 
Then, the Hilbert transform is estimated for each segment to compute the instantane-
ous amplitude. Figure 1 shows the instantaneous amplitudes for normal and pre-ictal 
segments. The selected signal attributes are treated statistically to yield PDFs. Seizure 
prediction is tested in this paper over three horizons of 30, 60, and 90 min, which are 
within the ranges used by other authors [13, 25, 27].

Contributions of the proposed approach are the utilization of the Hilbert transform 
to calculate the instantaneous amplitude of the analytic signals without the need for 
domain change, in addition to the simplicity of hardware implementation. Moreover, 
we introduce an adaptive channel selection algorithm, which specifies the effective 
channels for prediction. Moreover, we use a threshold-based classifier to decrease the 
computational complexity. The results obtained using the proposed approach are com-
pared to those of previously published methods.
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The rest of the paper is organized as follows. Section  2 provides materials and 
methods. Section 3 includes results and discussion. Finally, the conclusions are given 
in Sect. 4.

2  Materials and Methods

2.1  Dataset

Experiments are carried out on long-term continuous multi-channel scalp EEG recordings for 
24 patients from the publicly available CHB-MIT dataset [31]. This dataset has been collected 
for 23 cases. One of them was recorded again after 1.5 years. All signals were measured with 
a sampling frequency of 256 Hz. The dataset for every patient has 23 channels, except for 
patients 12, 13, 14, 16, 17, 20, 21 and 22, who have 28 channels and patient 15, who has 31 
channels. The dataset includes 686 sEEG hours. Table 1 introduces the seizure information for 
each case.

2.2  Hilbert Transform

Hilbert transform is a convolution between the Hilbert transformer 1∕(�t) and the signal. It 
does not involve a change of domain, unlike many other transforms. The Hilbert transform of 
a signal X(t) is calculated as follows [32]:

where P represents the Cauchy principal value of the integral. An analytic complex-time 
signal Z(t) is constructed from a real-valued input signal X(t) and the imaginary part Y(t). 
The imaginary part represents the Hilbert transform of the real part. A(t) is the instantane-
ous amplitude of the complex signal, and �(t) is the phase of that signal.
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1
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Fig. 1  Instantaneous amplitude in the Hilbert domain of normal and pre-ictal EEG segments
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2.3  Statistical Analysis

Features extracted from the signals can be utilized to distinguish between normal and pre-ictal 
EEG states. The five statistical parameters representing the features used in the proposal are 
presented.

2.3.1  Signal Amplitude

The instantaneous amplitude after Hilbert transform is considered.

(2)Z(t) =X(t) + jY(t) = A(t)ej(�(t)

(3)A(t) =|Z(t)|

Table 1  Seizure information for 
each case

Patient No. No. of hours No. of seizures Gender Age

1 40.55 7 F 11
2 35.16 3 M 11
3 36 7 F 14
4 150.7 4 M 22
5 39 5 F 7
6 68.24 10 F 1.5
7 67.05 3 F 14.5
8 20 5 M 3.5
9 65.02 4 F 10
10 50.02 7 M 3
11 34.62 3 F 12
12 23.671 40 F 2
13 32 12 F 3
14 25.851 8 F 9
15 39.42 20 M 16
16 19 10 F 7
17 22 3 F 12
18 35.633 6 F 18
19 29.93 3 F 19
20 27.595 8 F 6
21 31.816 4 F 13
22 32 3 F 9
23 25.733 7 F 6
24 12 16 M 12.5
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2.3.2  Signal Derivative

It is important to use a differentiator as a digital filter to acquire any abrupt changes in the sig-
nal. A suitable digital filter for this task is given by [33]:

2.3.3  Local Mean

Local mean is a measure of the signal trend. It can be estimated with a moving average 
filter of window (2k + 1) as follows [34]:

2.3.4  Local Variance

Local variance reflects how the signal is spread around the local mean. A moving aver-
age filter can be used for this task as follows [34]:

where X̂(n) represents the local mean of X(n), which can be calculated using Eq. (5).

2.3.5  Instantaneous Median

Median filter is a type of order statistics filters. It depends on the selection of the median 
value of a certain signal segment as a tool to eliminate extrema of the signal. It can be 
implemented in a recursive or non-recursive manner. The non-recursive median filter 
output is given as [35]:

where X(n) and Y(n) are the nth samples of the input and output sequences, respectively.

2.4  Statistical Analysis for EEG Signal Classification

The strategy adopted in the proposed approach is a thresholding strategy applied on cer-
tain bins extracted from certain PDFs. These bins must satisfy the distinguishability cri-
teria between pre-ictal and normal states. The selection of bins and thresholds depends 
on setting pre-defined prediction and false-alarm probabilities. In our work in this paper, 
we set a prediction probability threshold of 70% and a false-alarm threshold of 30%. 
Firstly, known normal and pre-ictal signal segments of length 10  s are analyzed in 

(4)H(z) = 1 − z−1

(5)X̂(n) =
1

2k + 1

n+k∑
m=n−k

X(m)

(6)�̂�
2

x
(n) =

1

2k + 1

n+k∑
m=n−k

(X(m) − X̂(n))2

(7)Y(n) = MED[X(n − k),… ,X(n),… ,X(n + k)]
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Hilbert domain. The selected signal attributes are treated statistically to yield PDFs for 
each attribute with 9 bins. Each bin is treated across signal segments as a random vari-
able and the PDFs of these random variables are estimated to select the bins that satisfy 
the 70% for prediction probability and 30% for false-alarm probability for discrimina-
tion between normal and pre-ictal states. The intersection points between the PDFs of 
selected bins are estimated to determine the thresholds. Multiple decisions are taken for 
each incoming signal segment to decide whether it belongs to a normal or a pre-ictal 
activity. These decisions are merged together to yield a final decision about each seg-
ment. The training and testing phases are illustrated in Figs. 2 and 3, respectively. 

2.4.1  Performance Metrics

Different evaluation metrics have been considered for the EEG seizure prediction process 
[8]:
The prediction rate ( Rp ) is calculated as:

The false-alarm rate ( Rfa ) is calculated as:

(8)Rp =
Np

Nt
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Fig. 2  Block diagram of the training phase of the proposed Hilbert-transform-based approach
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Fig. 3  Block diagram of the testing phase of the proposed Hilbert-transform-based approach



3378 H. M. Emara et al.

1 3

The average prediction time ( Tavg ) is calculated as:

where Np represents the number of predicted seizures, Nt is the total number of seizures, 
Nfa represents the number of false alarms, Ht is the total number of hours and Tp represents 
the prediction time.

3  Experimental Results and Discussion

For each segment of  the EGG  signal, five PDFs are estimated for each channel. These 
include amplitude, derivative, local mean, local variance, and median PDFs. Bin selection 
process for discrimination is performed on all bins from all PDFs from all channels. The 
prediction matrix in (11) reveals the bin selection and thresholding processes for patient 
20. The first column determines the type of the attribute used for discrimination. (1) refers 
to amplitude, (2) refers to derivative, (3) refers to local mean, (4) refers to local variance 
and (5) refers to median. The second column determines the index of the selected channel. 
The third column determines the index of the bin selected for discrimination between nor-
mal and pre-ictal states.

We adopted 9 bins in each PDF. Prior to the prediction process, we set pre-defined pre-
diction and false-alarm probability thresholds of 70% and 30%, respectively. Hence, the 
bins that satisfy the 70% predict probability with a false-alarm probability below 30% are 
selected. Hence, all values of column 4 are larger than 70%, and all values of column 5 are 
below 30%. Each selected bin is treated as a random number across segments. Hence, the 
PDF of the selected bin itself differs between pre-ictal and normal states. Two different 
distributions for both states intersect with a certain threshold chosen for discrimination as 
shown in Fig. 4. The threshold differs for each selected bin. Hence, different values of the 
thresholds lie in column 6. To discriminate between two scenarios, we put 1 or 0 for each 
state of the normal distribution on the right or on the left as shown in column 7.

(9)Rfa =
Nfa

Ht

(10)Tavg =
Tp

Np

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Bin value

P
D

F

PDF of bin 2 of channel 12 amplitude distribution

 

 
Normal state
Pre-ictal state

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bin value

P
D

F

PDF of bin 3 of channel 20 derivative distribution

 

 
Normal state
Pre-ictal state

(b)

Fig. 4  PDFs for amplitude and derivative attributes



3379Hilbert Transform and Statistical Analysis for Channel Selection…

1 3

Fig. 5  Majority voting results for 
patient 1
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Fig. 6  Majority voting results for 
patient 8
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patient 14
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A group of decisions is obtained for each segment. Some of them are positive, 
meaning a pre-ictal state, and some are negative meaning a normal state. If we repre-
sent the positive decisions with 1 and the negative decisions with 0, an averaging or 
majority voting process gives a certain indicator from the state. The obtained signal 
needs some smoothing with a non-recursive averaging filter. A filter of such type with 
length 60 is used to get a discrete time sequence representing the segment diagnosis 
state. In this paper, we adopt the name of discrimination count for this sequence. The 
level-crossing strategy is applied on this count for seizure prediction. Figures 5, 6, 7 
and 8 show the majority voting results for patients 1, 8, 14 and 20, respectively. The 
horizontal axis represents the selected segment index and the vertical axis represents 
the bins that are selected for classification.

Different prediction horizons of 30, 60 and 90  min have been considered in our 
simulation experiments. The prediction horizon represents the period within which a 
seizure is anticipated. A long prediction horizon is preferred due to the ability to pre-
dict seizures as early as possible, which allows an alert to be sent to the patient or the 
care-giver very early to take an action to save the patient’s life. A 15-min post-seizure 
horizon is taken into consideration. In this horizon, all prediction alerts are ignored. 
The prediction time ( TP ) in our simulations is the time between the prediction alert and 
the start of the ictal state.

     

(11)P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 2 0.95000 0.079167 0.072266 1

5 12 2 0.7083 0.2806 0.1599 1

2 3 2 0.95000 0.084722 0.073398 1

3 12 9 0.7000 0.2667 0.1587 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 20 4 0.7083 0.2792 0.1606 0

4 4 5 1.0000 0.075 0.204102 1

2 20 6 0.941667 0.1875 0.023281 1

4 3 7 0.916667 0.118056 0.011953 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 8  Majority voting results for 
patient 20

Time (Hours)
0 5 10 15 20 25 30

 D
is

cr
im

in
at

io
n 

co
un

t
0

20

40

60

80

100

120

140

160

180



3381Hilbert Transform and Statistical Analysis for Channel Selection…

1 3

Table  2 presents the evaluation parameters, where the first and second columns 
show the prediction probability constraint and the false-alarm probability constraint, 
respectively. The third, fourth, fifth and sixth columns represent the decision threshold 
( Dth ) for each patient from the dataset for time domain, fast Fourier transform (FFT), 
wavelet transform (WT) and the proposed approach using the Hilbert transform (HT), 
respectively.

In order to study the impact of the transform on the performance of the proposed 
approach, a comparison between the time-domain, frequency-domain, wavelet-domain 
and the proposed HT-based approach for 30, 60 and 90 min horizons is presented.

3.1  Results for 30‑min Horizon

The results for 30-min horizon are presented in Table  3. It is clear that the proposed 
approach outperforms the time-domain, frequency-domain and wavelet-domain approaches 
in terms of prediction time TP , number of false alarms NFA and number of predicted sei-
zures NP.

For example, for patient 1, although the proposed approach has the same prediction 
rate as those of both the time-domain and the wavelet-domain approaches, it has better 

Table 2  Evaluation parameters

Patient No. Pred. prob. 
constraint (%)

False-alarm prob. 
constraint (%)

Time domain 
Dth

FFT  
Dth

WT  
Dth

HT 
 Dth

1 70 30 140 120 120 140
2 70 30 5 50 43 60
3 60 40 8 10 13 15
4 60 40 25 15 12 10
5 70 30 15 15 10 12
6 70 30 25 12 12 7
7 70 30 35 23 20 17
8 70 30 150 120 140 170
9 70 30 120 140 150 100
10 70 30 70 50 80 75
11 70 30 2 5 4 7
12 70 30 20 15 13 15
13 60 40 45 60 35 50
14 60 40 70 70 60 65
15 70 30 50 37 45 30
16 70 30 120 150 135 150
17 60 40 5 15 12 10
18 70 30 60 45 55 62
19 70 30 2 1.5 3 4
20 70 30 120 130 120 150
21 60 40 7 10 12 5
22 60 40 4 3.5 5 4
23 70 30 40 42 45 37
24 70 30 3.5 2 2.5 3.5
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performance in terms of false-alarm rate and prediction time compared to these approaches. 
Moreover, the frequency-domain approach achieves a longer prediction time compared to 
the proposed approach by about 4  min. In addition, the proposed approach reduces the 
false-alarm rate by about 66.67% of that of the frequency-domain approach. Furthermore, 
the proposed approach increases the number of predicted seizures by about 50% of that of 
the frequency-domain approach.

In addition, let us concentrate on the results of patient 15, where the proposed approach 
provides a 100% prediction rate. Furthermore, it provides a prediction time, which is 
longer than those of the time-domain, frequency-domain and wavelet-domain approaches 
by values that are about 5.61, 3, and 3 min, respectively. Moreover, the proposed approach 
reduces the false-alarm rate by about 80, 66.67, and 75% compared to those of the time-
domain, frequency-domain and wavelet-domain approaches, respectively.

The prediction rate is estimated based on the number of predicted seizures. The predic-
tion of a seizure depends on the detection of a single alert prior to the seizure within the 
prediction horizon. The proposed approach provides an average prediction rate of 89.9% 
for all patients. It improves the average prediction rate for all patients by values that reach 
37, 7.3, and 6.6% compared to those of the time-domain, frequency-domain and wavelet-
domain approaches, respectively. Moreover, the proposed approach reduces the false-alarm 
rate for all patients by about 58.4, 56.9, and 58.84% compared to those of the time-domain, 
frequency-domain and wavelet-domain approaches, respectively.

3.2  Results for 60‑min Horizon

The obtained results for 60-min horizon are given in Table 4. It is clear from the results 
that the proposed approach improves the prediction rate by values that reach 9.76, 3.45, 
and 4.65% compared to those of the time-domain, frequency-domain and wavelet-domain 
approaches, respectively. It is noteworthy that the proposed approach produces a 100% pre-
diction rate for patients 3, 4, 7, 8, 11, 15, 18, and 20. Moreover, the proposed approach 
reduces the false-alarm rate for all patients by about 61.1, 67.7, and 62.5% compared to 
those of the time-domain, frequency-domain and wavelet-domain approaches, respectively. 
It should be noted that the proposed approach produces zero false alarms for patients 3, 11, 
and 24.

Furthermore, the proposed approach provides an average prediction time for all patients, 
which is longer than those of the time-domain, frequency-domain and wavelet-domain 
approaches by values that are about 13.6, 8.83, and 17.1 min, respectively. This means that 
the proposed approach can predict the seizures earlier than rival approaches, and hence 
it  allows the patients to take the necessary precautions earlier before the occurrence of 
the seizure. For example, for patient 9, the proposed approach provides a prediction time 
that reaches 56.78 min, which is longer than those of the time-domain, frequency-domain 
and wavelet-domain approaches by values that are about 21.19, 23.92, and 23.34  min, 
respectively.

Considering another patient, specifically patient 19, it is clear that the proposed 
approach provides a prediction time that reaches 56.85  min, which is longer than those 
of the time-domain, frequency-domain and wavelet-domain approaches by values that are 
about 13, 7.6, and 17.16 min, respectively.
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3.3  Results for 90‑min Horizon

A summary of the results for  the 90-min horizon is presented in Table 5. The proposed 
approach provides a 96.46% average prediction rate for all patients, which is higher than 
those of the time-domain, frequency-domain and wavelet-domain approaches by 14.4, 9.8, 
and 10.4%, respectively. Specifically, the proposed approach achieves a 100% prediction 
rate for patients 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 15, 18, and 20. In addition, the proposed 
approach produces an average prediction time for all patients, which reaches 60.15958 
min. It is longer than those of the time-domain, frequency-domain and wavelet-domain 
approaches by values that are about 22.2, 13.1, and 17.5 min, respectively.

Moreover, the proposed approach has a better performance in terms of false-alarm rate. 
I reduces the false-alarm rate for all patients by about 71.3, 76.1, and 70.3% of those of 
the time-domain, frequency-domain and wavelet-domain approaches, respectively. Specifi-
cally, the proposed approach provides zero false alarms for patients 3, 4, 11, 12, 16, 20, and 
24.  

3.4  Comparison with Existing Seizure Prediction Approaches

The comparison of the proposed prediction approach with other published approaches is 
shown in Table 6. Improvements in performance in terms of prediction rate, false-alarm 
rate and prediction time are obtained with less computational complexity. In addition, an 
adaptive algorithm for channel selection and a simple thresholding-based classifier are 
used. The proposed approach provides prediction rates that are 45.88, 8.42, 8.56, 20.17, 
10.15, and 9.8% higher than those of the approaches presented in [13, 15, 25–27] and [24], 
respectively. In addition, it reduces the false-alarm rate Rfa by 81.9, 83.5, 92.4, 93, 74, and 
72% compared to those of [13, 25, 27, 24, 30] and [28], respectively. Moreover, it provides 
prediction times that are 62.62 and 14.23% higher than those of [13] and [24].

Table 6  Comparison between the proposed approach and other published approaches

Author Year Patients Rp (%) Rfa (/h) Tp (min)

Chiang et al. [15] 2011 7 patients from CHB-MIT
1 patient from NTUH

52.2 – –

Zandi et al. [13] 2013 17 patients from VGH
3 patients from CHB-MIT

88.34 0.155 22.5

Consul et al. [26] 2013 10 patients from CHB-MIT 88.2 – 51 s–188 min
Myers et al. [25] 2016 10 patients from CHB-MIT 77 0.17 –
Chu et al. [27] 2017 13 patients from CHB-MIT

3 patients from SNUH
86.67 0.367 –

Alotaiby et al. [24] 2017 24 patients from CHB-MIT 87 0.4 52.7
Yang et al. [30] 2018 19 patients from Freiburg 94 0.111 61.93
Sediek et al. [28] 2019 4 patients from CHB-MIT 96.2485 0.10526 66.6
Proposed approach
30-min horizon – 24 patients from CHB-MIT 89.9 0.077 22.57
60-min horizon 90.9 0.053034 46.72625
90-min horizon 96.46 0.028077 60.15958
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4  Conclusions

This paper presented an efficient seizure prediction approach that depends on statistical 
analysis of EEG signals in the Hilbert domain. The PDFs are estimated for signal attrib-
utes, and their bins are traced to select the most appropriate ones for seizure prediction 
under certain constraints. Seizure prediction has been tested in this paper over three hori-
zons. Simulation results proved that the 90-min horizon is the best for efficient seizure pre-
diction. In addition, the comparison with the published approaches for EEG seizure predic-
tion ensures superiority of the proposed approach from the prediction time, prediction rate, 
and false-alarm rate perspectives.
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