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Abstract

Compressive sensing (CS) is a new sampling theory used in many signal processing appli-
cations due to its simplicity and efficiency. However, signal reconstruction is considered
as one of the biggest challenge faced by the CS method. Therefore in this paper, we aim
to address this challenge by proposing an Adaptive Iterative Forward—Backward Greedy
Algorithm (AFB). AFB algorithm is different from all other reconstruction algorithms, as
it depends on solving the least squares problem in the forward phase, which increases the
probability of selecting the correct columns better than other reconstruction algorithms. In
addition, AFB improves the selection process by removing the incorrect columns selected
in the previous step. To evaluate the AFB’s reconstruction performance, we used two types
of data: computer-generated data and real data set (Intel Berkeley data set). The simulation
results show that AFB outperforms Forward—Backward Pursuit, Subspace Pursuit, Orthog-
onal Matching Pursuit, and Regularized OMP in terms of reducing reconstruction error.
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1 Introduction

Compressive sensing (CS) [1-5] method has been proposed as a novel data reduction
method for reducing the size of data transmitted through the IoT network. According to
CS method, the base station (BS) needs only M > K log N/K, where M is the size of com-
pressed samples, K is the sparsity level and N is the signal dimension, to recover the origi-
nal signal x € RY from only y € RM measurements such that y = @x and @ is CS matrix.
On the other hand, the CS reconstruction process aims to recover N samples from only M
measurements, where M < N, which makes it NP-hard problem [6]. The CS reconstruc-
tion problem can be expressed as follows:

min, || x ||y s.t.y = @x (1)

In Eq. 1, the CS reconstruction process aims to recover the sparsity level of the original
signal x such that the CS matrix @ and the measurements vector y are given. A lot of algo-
rithms have been proposed to address this problem such as convex relaxation and greedy
algorithm. In convex relaxation algorithms, the problem in (1) is relaxed by replacing L, to
L, [7] as follows:

min, || x ||; s.t.y = ®Px ()

and then use convex problem solvers such as L;-magic toolbox [8] to solve the problem in
Eq. 2. Although the convex optimization based reconstruction algorithms have the stabil-
ity and the ability to reconstruct the full signal correctly, they suffer from highly complex
computations that make them unsuitable for IoT network. On the other hand, Greedy algo-
rithms present themselves as sufficient reconstruction algorithms. During the greedy algo-
rithm reconstruction process, one or more CS matrix @’s columns are iteratively selected
based on their correlation with the current residual. There are different greedy algorithms
that can be used, such as OMP [9] algorithm, in which one column is selected from @
and then its orthogonality is removed from the current residual. This process is repeated
until we obtain the estimated signal x’. Based on OMP algorithm, a lot of algorithms have
been proposed such as ROMP [10] and StOMP [11]. In addition to this, algorithms such
as CoSaMP [12], SP [13], IHT [14] and FBP [15] , which use backward steps to prune the
wrong elements that have been added during the forward step, also received significant
attention. All of these algorithms are sufficient but cannot provide the optimal solution.

In this paper, to improve the signal reconstruction process, we propose a new iterative
greedy algorithm called Adaptive Iterative Forward—Backward Greedy Algorithm (AFB).
AFB is considered as a reversible greedy algorithm that follows a reversible construction
so that, the support-set can be pruned (backward step ) in order to remove the unreliable
elements selected in the past (forward step).

The rest of the paper is organized as follows: sect. 2 briefly review the related works.
In Sect. 3, we introduce our approach to carry out the proposed problem. In SecSect. 4,
we give an example scenario. The simulation of our approach is presented in Sect. 5. In
Sect. 6, we conclude our work.
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2 Related Research

During the past few years, CS signal reconstruction problem has gained significant
attention from researchers and a lot of efforts have been done to enhance the reconstruc-
tion process at the BS side. Due to the high correlation between IoT sensor nodes, these
sensors’ data have high sparsity property. CS method utilizes this property to reduce
the signal dimension from N to vector M such that M << N. On the other hand, during
the CS reconstruction process, it is required to reconstruct N from M, which makes it
NP-hard problem. To address this problem, many reconstruction algorithms have been
proposed. CS reconstruction algorithms can be classified into two categories: Convex
optimization and Greedy based algorithms. In convex optimization based reconstruc-
tion algorithms, the CS reconstruction problem formulated as L; norm is solved using
any linear programming methods. Convex optimization based reconstruction algorithms
have the ability to recover the original signal correctly. However, they suffer from high
and complex computation processes which inhibit them from being the best reconstruc-
tion choice for the IoT networks. In contrast, GA based reconstruction algorithms could
be more suitable for IoT networks as they provide the same efficiency and performance
in reconstruction through moderate computations. In [16], Matching Pursuit algorithm
(MP) is considered as the first GA based algorithm in which the support-set is initial-
ized by the index of the largest magnitude entries in @'y during the forward step and
then it solves the least squares problem. However, MP algorithm doesn’t consider the
non-orthogonality of the CS matrix, which leads to incorrect selection of columns cor-
responding to the nonzero values. This drawback has been solved by the OMP algorithm
[9]. In each iteration of OMP, the algorithm selects the index of the largest magnitude
entries in @'r, where r is the residual of y, and then solves the least squares problem.
Different algorithms have been proposed based on OMP algorithm as in [10, 11]. In
[11], a faster and enhanced version of OMP is proposed which is called Stagewise OMP
( StOMP ). StOMP enhances the forward step of OMP by selecting a number of col-
umns, instead of one column as in OMP, the magnitude values of the columns in @'r are
greater than a threshold and then uses these columns to solve the least squares problem.
In [10], in each iteration, the proposed algorithm finds the same inner-product magni-
tudes and then collects them in sets to select the maximum energy set.

The above algorithms are classified as irreversible GA class as they do not have a
backward step. This prevents such algorithms to remove the elements selected wrongly
during the forward step. L.e., in these algorithms, there is no option to remove any ele-
ment that is already added to the support set. On the other hand, reversible greedy
reconstruction algorithms such as CoSaMP [12], SP [13], IHT [14] and FBP [15] algo-
rithms use the backward step to prune the wrong elements that have been added to the
support set during the forward step. CoSaMP and SP algorithms initialize the support-
set by adding the indices of b largest amplitude values of @'y. The size of b is different
in each algorithm, for example b = K in SP and b = 2K in CoSaMP, where the value
of sparsity level K is known. On the other hand, FBP [15] algorithm has the ability to
perform without the knowledge of K. It assigns forward and backward step size depend-
ing on the measurement size. In [14], IHT algorithm considers iterative gradient search
algorithm which updates the estimate-set depending on e gradient of the residue and
keeps only the largest K entries by removing the wrong selection.
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3 Adaptive Iterative Forward-Backward Greedy Algorithm (AFB)

In this section, a new greedy based reconstruction algorithm called Adaptive Itera-
tive Forward—Backward Greedy Algorithm (AFB) is proposed. AFB algorithm can be
used by the BS to reconstruct the sensor readings again. Before describing these algo-
rithms, we define the notations that we use to represent the operations in the proposed
algorithm.

resid(y,x) £ y — @x 3)

supp(x, k) & {the set of indices corresponding

“4)

to the k largest amplitude components of x},

Algorithm 1 AFB Algorithm

1: INPUT: CS matrix: ¢, Compressed Samples vector: y
2: OUTPUT: S: sparse approximation D% of the original signal
Algorithm Parameter initialization:

3: 70 =y  {the residual initialization }

4: D% =0  {the approximation set initialization}
5: A=¢  {the estimated set initialization}

6: U=¢  {candidate set initialization }

7. Z =¢  {least squares signal approximation set }
8: L=0 {(number of rounds)}

9: while true do

100 L=L+1 {round increment}

Selection and Estimation Step:
11: Z= digrL’l (solve LS problem)
12: U = supp(Z,n) (Find n = M/2 columns Eq.4)
13: A =UUsupp(DL™1) (Union of old and new solution)
Check and Remove Step:
14: R|A= @TAy (find the first solution)
15 R|A°=0  (fill the index of non-selected column index with zero)
16: DL = Ry (retaining only M/3)
Update step:

17:  rl = resid(y, DV) Eq.3
18:  if ||r¥||2 < v orL = Limqy then
19: break

20: end if

21: end while

3.1 AFB Algorithm Description

In this section, we describe the newly proposed reconstruction algorithm called Adaptive
Iterative Forward—Backward Greedy Algorithm (AFB), for successful reconstruction of
sensor readings. AFB is a greedy algorithm and it consists of two-processes. In the first
process (Selection and Estimation), the estimated set U will be updated by adding n (where
n denotes the Selection step size) columns from the CS matrix. These columns have largest
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entries in the least-squares signal approximation set Z from @ as the correct solution of
least-squares problem Z = @rL~! | In the second process (Check and Remove), the esti-
mated set U is clipped by removing v columns which were wrongly selected in the Selec-
tion and Estimation process. This accurately identifies the true support of U, where v is
called the Removable step size. The described details of AFB algorithm is presented in
Algorithm 1.

3.1.1 Algorithm Description

The algorithm includes four steps: Parameter Initialization, Selection and Estimation,
Check and Remove, and Update.

Parameter Initialization Residual ° =y, approximation D° = 0, Estimated set A = ¢,
candidate set U = ¢ and number of rounds L = 0 (Algorithm 1, Lines 3 — 8).

Selection and Estimation In this step, set U will be updated by adding the #(n = M/2)
largest elements from the solution Z of the least squares problem (Z = @Zr(L‘”). Then
extend the set A by adding the components of U to the approximation set DX~ (Algo-
rithm 1, Lines 11 — 13).

Check and Remove In this step, the projection coefficients R are computed by the
orthogonal projection of y onto submatrix of @ whose columns are listed in the set A. Then
(correction step), the proposed algorithm removes the indices of incorrect columns which
were wrongly selected by the Selection and Estimation step, i.e., the algorithm updates the
approximation set DX = R,, /3 by removing v =5 — M /3 columns indices which have the
smallest values in set R (Algorithm 1, Lines 14 — 16).

Update The samples are updated as r* = y — @D’ and it will be terminated in two situa-
tions: (1) the residue set ||7L||, is smaller than y, the termination parameter. The termination
parameter selection process is based on the level of noise (Algorithm 1, Lines 17-18) (2)
the number of iterations reached the maximum L, ,, (for example, L,,,. = M ). At the end
of the algorithm, D" contains the corresponding nonzero values, which is the approximate
solution of the original signal.

4 Example Scenario

In this section, we provide a simple example, with step by step explanation of our
algorithm.

1. Given the parameters M =5, N = 10, S < M/2 = 2, and a randomly generated M X N
sampling matrix @ from the standard i.i.d. Gaussian ensemble with mean O and standard
deviation 1/N, i.e.

0.052 -0.013 -0.029 0.030 -0.133 0.045 -1.136 0.103 -0.019 0.082
-0.002 —-0.071 —0.084 —0.125 —0233 —0.013 0.045 -0.111 —0.021 0.152
D5y =| —0.003 0.135 —-0.112 —0.086 —0.144 —0.018 —0.084 0.126 —0.030 0.046
-0.079 -0.022 0.252 -0.017 0.033 -0.047 —0.033 0.066 0.002 -0.021
0.101 -0.058 0.165 0.079 0.039 0.086 0.055 -0.006 0.005 0.062
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2. Select a set G of size |G| = S uniformly at random, and generate the sparse signal vec-
tor x by setting all entries of x (such that x is an N X 1 vector) supported on G to ones,
referred to as a binary signal, i.e.

x=(0110000000)
3. Finally, compute the measurement y (such that y is an M X 1 vector)
y=@x = ( —0.0427 —0.1562 0.0231 0.2301 0.1066)

By applying AFB algorithm with sampled measurement vector y and measurement matrix
@ as inputs, the algorithm executes as follows:

1. Parameter Initialization The AFB algorithm is initialized as: /* =y, D° =0, A = ¢,
Z=¢,U=¢,y=10%n=M/2=3,0=p-M/3=2and L, =M=>5.

At iteration L = 1: The algorithm will execute the following steps:

2. Selection and Estimation This is the first stage of AFB in which:

1. AFB solves the least squares problem:

o Z=0""=(-0.047 0.564 0.843 —0.272 0.160 0.130 0.231 0.451 —0.043 — 0.004)

2. The column indices(2,3,8) will be added to expand A , since these indices have the larg-
est magnitude elements in Z:

o U=supp(Z,n)=1{2,3,8)
o A=UuUsuppD°) ={2,3,8)

3. Check and Remove:
The projection coefficients R are computed by the orthogonal projection of y onto sub-
matrix of @ whose columns are listed in the set A:

e RA=@ly=(110)
e R|A°=0,thenR=(0110000000)

Then, the algorithm produces a new approximation by retaining only M /3 = 2 (the largest
entries in R) entries in R:

e D'=Ry;;=(0110000000)

4. Update Finally, the samples are updated so that they reflect the residual, the part of the
signal that has not been approximated:

o r'l=y-®D' =0

Now, AFB checks the termination rule to decide whether to break the iteration or to begin
a new one:

o (' l,=0<y= 107%) = true)||(L = L,..) = true)) = true then break the iteration.
The algorithm executes one iteration and returns D' = (0110000 00 0) as output. It’s

clear that, the AFB algorithm correctly yields the optimal solution.
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5 Simulation Results

In this section, using MATLAB R2016b, we evaluate the overall performance of the pro-
posed reconstruction algorithm (AFB) and we compare the performance of the proposed
algorithm with the performance of OMP, ROMP, SP and FBP algorithms (with Selec-
tion size= M/2 and Removable size= M/3). First, we test the proposed AFB algorithm by
reconstructing the signals collected from 54 sensors located in Intel Berkeley Research Lab
[17]. The experiments also cover reconstruction of computer-generated signals for diverse
non-zero coefficient distributions, which include uniform and Gaussian distributions along
with binary non-zero coefficients. The reconstruction performance has been evaluated
using Gaussian and Bernoulli observation matrices.

Second, we evaluate the performance of the proposed reconstruction algorithm in the
presence of noisy observations and compare the results with FBP, SP, OMP and ROMP
algorithms. Reconstruction accuracy is expressed in terms of Average Normalized Mean
Squared Error (ANMSE) for 500 test-samples . For every test-sample, we utilize specific
observation matrix which is drawn from Gaussian distribution.

5.1 Experiments Over Real Dataset

In this section, we experiment the proposed algorithm by reconstructing the signals col-
lected from the WSN centrally located at the Intel Berkeley Research lab. We use the Dis-
crete Cosine Transform (DCT) as the sparsifying domain. It is noted that the environmen-
tal signals in the detected area possess sparse DCT coefficient vectors as demonstrated in
Fig. 1. Figure 2a—d. It can be noted from the figures that our algorithm succeeds to achieve
high performance in recovering temperature and humidity.

(a) Original Temperature trace (b) Representation in DCT domain
25 r r . . - 800 - r r r . .

700

600

500

300

200

100

L L L L L L ~100 L L L L L L
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

(a) (b)

Fig. 1 a Intel temperature trace. b Intel temperature trace in DCT domain
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(a)Original temperature signal.

(a)Original humidity signal.
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(b)Reconstructed signal using the AFB method.
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(b)Reconstructed signal using the AFB method.
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(a)Original light signal.
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(a)Original voltage signal.
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(b)Reconstructed signal using the AFB method. (b)Reconstructed signal using the AFB method.
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Fig.2 Reconstruction results over a Intel temperature trace, b Intel humidity trace, ¢ Intel light trace and d
Intel voltage trace employing Gaussian observation matrices

5.2 Different Coefficient Distributions

Here, we executed three tests: the first test utilizes uniform sparse data with nonzero val-
ues collected from the Uniform distribution U[—1, 1]. Figure 3 shows that the proposed
AFB algorithm provides lower ANMSE than FBP, SP, ROMP and OMP. The second test
utilizes Gaussian sparse values, whose non-zero entries are taken from the standard Gauss-
ian distribution. Figure 4 shows that the proposed algorithm has considerably better recon-
struction performance than OMP, ROMP, SP and FBP.Finally, the third test utilizes sparse
binary vectors and the non-zero coefficients are chosen to be 1. Figure 5, shows that the
AFB algorithm outperforms OMP, ROMP, SP and FBP methods in this case too. In all the
three cases, the performance of proposed AFB algorithm exceeds the performance of the
existing algorithms because of the correct selection of columns in each round, where the
selection depends on solving the least squares problem which gives the ability to find the
correct columns in each round.
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Average Normalized Mean Squared Error
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Fig.3 Reconstruction
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results over sparsity for Uniform sparse signals employing Gaussian observation
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Fig.4 Reconstruction results over sparsity for Gaussian sparse vectors using Gaussian observation matrices

5.3 Performance Evaluation Under Different Observation Lengths

We have conducted another important test to evaluate the reconstruction capability by
changing the observation length M and fixing the sparse ratio S. Figure 6a depicts the
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Average Normalized Mean Squared Error

0.7

Reconstruction Rate (500 Realizations): M

=128, N=256
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Fig.5 Reconstruction results over sparsity for sparse binary signals using Gaussian observation matrices
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Fig.6 a Reconstruction results over observation lengths for Binary sparse signals where S = 20 using a
single Gaussian observation matrix for each M. b Reconstruction results over observation lengths for binary
sparse signals where S = 20 using a Bernoulli distribution matrix for each M
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Reconstruction Rate (500 Realizations): M=128, N=256 Reconstruction Rate (500 Realizations): M=128, N=256
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Fig.7 a ANMSE for reconstruction of Uniform sparse signals from noisy observations using Gaussian
observation matrices. b ANMSE for reconstruction of binary sparse signals from noisy observations using
Gaussian observation matrices

reconstruction performance over M (M ranges from 50 to 130 and increments by 5 and
S =25). @ is Gaussian Measurement matrix. It is clear that the ANMSE of the proposed
algorithm is lower than that of OMP, ROMP, SP and FBP algorithms. In Fig. 6b, we rep-
licate the last scenario with @ drawn from the Bernoulli distribution. We can observe that
the ANMSE for the proposed algorithm is still lower than, SP, FBP, OMP and ROMP
algorithms.

5.4 Reconstruction performance for Noisy Observations

Here, we aim to evaluate the reconstruction performance of the proposed AFB algorithm
when simulated using noisy observations Fig. 7a, b show the reconstruction error for noisy
binary and uniform sparse signals. It can be noted that the proposed algorithm produces
less error than OMP, ROMP, SP and FBP.

6 Conclusion

In this paper, we have proposed a greedy based CS reconstruction algorithm called Adap-
tive Iterative Forward—Backward Greedy Algorithm (AFB). AFB consists of fours steps:
Parameters initialization, Selection and Estimation, Check and Remove, and Update step.
APFB initializes its parameters in the Parameters initialization step. Then, during the Selec-
tion and Estimation step, AFB proceeds to update the support set by solving the least
squares problem and selects M/2 columns. In the Check and Remove step, AFB checks the
estimated set and removes the incorrect columns. Finally in the Update step, AFB decides
whether to terminate or to repeat the previous steps. AFB is evaluated in comparison with
existing baseline algorithms in terms of Average Normalized Mean Squared Error. AFB
exhibits superior performance and significantly reduces the reconstruction error, indicating
that it is a promising approach for CS reconstruction.
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