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Abstract
The resource scaling has been influential in enabling the cloud service providers to pro-
vision the resources on-demand effectively. The prior estimation of workloads helps in 
addressing the scaling issues arises due to dynamic nature of the resource demands. In this 
paper, we evaluate six different forecasting approaches over real world workload data traces 
of web and cloud servers. The entire analysis is carried out three times as three different 
functions are used to measure the deviation in forecasts. The three forecast error measures 
are root mean squared error, mean absolute error, and mean absolute scaled error. We also 
carried out a statistical evaluation using Friedman test and Finner post-hoc analysis. The 
study concludes that the auto ARIMA process outperforms other models and achieves the 
best rank in the statistical analysis.

Keywords Workload prediction · Resource demand · Time series · Cloud computing · 
Statistical analysis

1 Introduction

The cloud architectures provide a way to share resources in the form of virtual machines 
(VMs) among multiple users independent to their geographical locations. Every individual 
is moving towards cloud technology and getting benefited in a number of ways such as on 
demand services, elasticity, flexibility, availability and many more. Elasticity is one of the 
key properties of cloud which provides the flexibility of stretching and compressing virtual 
hardware resources at any point of time in the lifetime of hosted applications. However, the 
cloud resource management is complex and challenging task [1, 2] that has raised the pos-
sibility of dynamic resource scaling. The resource scaling helps in upholding the quality of 
services (QoS) promised to its subscribers and can be achieved by two different methods. 
First, a reactive resource scaling mechanism can be adapted where resources get scaled 
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after arrival of demands. In reactive scaling, users have to wait for certain amount of time 
to get their requested resources allocated due to the fact that VM initialization is not instan-
taneous. Unlike reactive methods, the proactive scaling approaches minimize the waiting 
time by allocating the requested resources in no time. These approaches utilize the esti-
mated workload information for upcoming time instances to scale the resources in advance 
before actual demand arrives. The forecasts used in resource provisioning have been clas-
sified into application and host load predictions [3]. The application predictions are further 
categorized into three levels i.e. performance, SLA parameters, and workload. The data 
sets considered in the presented work fall into workload category. The process of workload 
forecasting involves the use of historical information to extract the patterns of applications 
running on the server and time series forecasting methods have been extensively explored 
in workload prediction applications. Some of the key contributions in the domain are listed 
below.

The web server workload forecast is carried out using an auto regression approach [4]. 
The model provides the long term and short term estimations and considers the correla-
tion and non stationarity of the workload data. The auto regressive integrated moving aver-
age (ARIMA) and its variants have been extensively used to develop forecasting method-
ologies. For instance, Roy et  al.  [5] highlighted the challenges in auto scaling of cloud 
resources and developed a model-predictive estimation approach for resource auto scal-
ing. It also shows that the distributed resources can be allocated in a way that achieves 
the satisfactory QoS and low operational cost. Similarly, Tran et al. [6] proposed a predic-
tive model for server workload forecasting using seasonal variant of ARIMA process. The 
approach is one of the integral parts in the project EnergeTic-FUI, France. The accuracy of 
the model is validated with a wide set of experiments on benchmark datasets. The impact 
of workload estimations has been analyzed by Calheiros et al. in   [7]. The authors mod-
eled the ARIMA process to estimate the workload information of cloud servers. They also 
studied the aspects of predictive resource management and analyzed the accuracy of pre-
dictive model in terms of resource utilization and QoS. It has been claimed that the predic-
tive model receives an accuracy upto 91%. Similarly, a bandwidth allocation scheme using 
predictive analytic was developed for cloud architectures enabled with software defined 
networks  [8]. The approach collects the data from virtual machines executing on cloud 
servers and analyzes the collected data to estimate the bandwidth utilization of each VM 
for upcoming time instance. Then the predicted information is incorporated to generate the 
bandwidth allocation pattern and allocates the bandwidth in advance to improve the net-
work performance in terms of bandwidth utilization and capacity. Khan et al. advocated the 
use of multiple time series and grouping the similar applications to improve the forecast 
accuracy [9]. The approach examines the correlation among VM workload to extract the 
repeatable patterns of workloads. It also uses a clustering approach to group the applica-
tions exhibiting the similar behavior. Then it introduces a predictive method to estimate the 
variation in workload patterns. The long term QoS requirements has been estimated using 
multivariate time series while short term advertisements are predicted using univariate 
time series [10]. Intra correlation of QoS attributes is incorporated to improve the accuracy 
of predictions and inter correlation helps in obtaining the best possible service composition 
through time series group similarity.

The time series forecasting methods have also been used in combination with machine 
learning approaches. For instance, Messias et  al.  [11] advised to learn the suitable time 
series forecasting model using a genetic algorithm based learning mechanism as it is 
challenging task to identify which model suits to workload data under consideration. 
It becomes more complex if enough historical data is not available. Liu et  al. classified 
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the workloads into a number of classes using 0-1 integer programming and each class is 
assigned with a prediction approach to forecast the workload on the servers [12]. Cetinski 
and Juric proposed a hybrid approach to forecast the workload on cloud data centers by 
combining the statistical methods with learning approaches [13]. Rahman et al. proposed 
to monitor the QoS received by the user to keep an eye on the QoS being provided and 
received [14]. Khan et al. explored the auto scaling techniques adopted by renowned cloud 
service providers including Amazon, Google, and Microsoft [15]. The study observed the 
features and entities of auto scaling approaches. The presented approach allows proactive 
analysis of workload patterns and estimates the responsiveness of auto scaling operations. 
Baldán et al. used ARIMA and ES in combination with learning approaches to forecast the 
workload instances of cloud data centers [16]. The model successfully reduced the under 
and over provisioning cost up to 30%. Kim et al. carried out an experimental study using a 
number of different models [17]. The experiments were carried out on an application under 
four realistic workload patterns, two billing patterns, and three types of predictive scaling. 
The study revealed that none of the approach is universally best for each workload. Kumar 
and Mazumdar compared the performance of the different variants of ARMA class such as 
ARIMA, SARIMA (Seasonal ARIMA), ARFIMA (Fractionally Integrated ARIMA) with 
SSA (Singular Spectrum Analysis) on CPU, Memory and bandwidth data traces obtained 
from Wikimedia grid [18]. The performance of ARIMA was found best on network data 
trace while SSA outperformed other models over CPU and Memory data traces. In general, 
a number of approaches have been explored to improve the estimation accuracy but every 
approach lags in producing 100% accurate results [19].

The aim of this article is to assess the performance of the time series forecasting mod-
els in workload estimation of different type of workloads from cloud environment. The 
study comprises six different time series models and their forecast ability is evaluated over 
five real world data traces. A comprehensive statistical evaluation is also carried out using 
Friedman test with Finner post-hoc analysis that ranks each model based its forecast accu-
racy. In addition, the forecast accuracy of each model is compared and statistically evalu-
ated against each other. Further, this paper is organized as follows: Section  2 discusses 
the workload prediction and its role in cloud data center management. It also lists out the 
performance evaluation metrics used to evaluate the accuracy of forecasting approaches in 
this study. The time series prediction models are discussed in Sect. 3. The results of experi-
mental study are presented and discussed in Sect. 5 followed by an analytical study of the 
experimental findings in Sect. 6. Finally, the paper is wrapped up with conclusive remarks 
in Sect. 7.

2  Preliminaries

2.1  Workload Prediction

The forecasting plays a vital role in the growth of an organization by estimating the future 
trends in advance that helps in developing an effective strategic planning [20–25]. Cloud 
service providers can also use predictive analytics to estimate the future demands for 
improving the quality of services (QoS) and quality of experience (QoE). A general archi-
tecture of cloud system with forecasting module is depicted in Fig. 1 where a device called 
resource manager takes inputs from F  and current state monitor  to manage the cloud 
resources effectively. The accuracy of F  is one of the important aspects in improving the 
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cloud resource management operations which include scaling, virtual machine placement, 
minimizing the active physical machines, and others.

Let Y is a set of workload values over time t, where yt denotes the workload at time t. 
Also, consider that f is a function of y that analyzes the previous workload instances to esti-
mate the outcome of future events (Eq. (1)). The forecasts are compared against the actual 
values and forecast error ( et+1) is computed.

2.2  Performance Measure Indicators

The accuracy analysis using the individual forecast errors is a challenging task. There-
fore, a metric that gives a single number to measure the forecast accuracy of any predic-
tion model is required. A wide range of metrics have been proposed in the literature and 
each of them carry their distinct merits and demerits, for instance, RMSE is highly sensi-
tive towards the outliers. Thus, we have adopted three evaluation metrics i.e. Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Scaled Error 
(MASE) to measure the accuracy of models.

2.2.1  Root Mean Squared Error (RMSE)

It is one of the widely used metrics and it penalizes a forecast models for large errors [26]. 
The model is considered to be more accurate if its score is closer to 0. The mathematical 
representation of the metric is mentioned in  (2) where n is the number of data points in 
workload trace.

(1)ŷt+1 = f
(
yt, yt−1,… , y1

)

Fig. 1  A view of cloud system with workload forecaster
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2.2.2  Mean Absolute Error (MAE)

In root mean squared error the square of higher error values will get more weight which 
may influence the accuracy of forecaster. While MAE gives equal weight to each error 
component and measures the accuracy of forecasting model by computing the mean of 
absolute differences between actual and predicted workloads as shown in (3). The MAE is 
better indicator of average error then RMSE [27, 28]. It produces a non negative number 
to evaluate the forecast accuracy and if it is close to 0, forecasts are very much similar to 
actual values.

2.2.3  Mean Absolute Scaled Error (MASE)

The metric was proposed by Rob J. Hyndman and Anne B. Koehler to use as a substitute of 
percentage error metrics [29]. Unlike other accuracy metrics, it produces a good accuracy 
estimate of a forecasting model when comparing across a number of series of different 
scale. It scales the forecast errors based on the training mean absolute error from a naïve 
forecast method and can be computed using (4), where m denotes the seasonal term. We 
computed MASE using accuracy function provided in R and used to select the best model 
over a number of traces.

3  Time Series Forecasting Models

The analysis of time series data began a long back ago in 1927 [30]. The common aim of 
time series analysis is the forecasting of the trends by extracting meaningful statistics and 
other characteristics of the data. A number of time series forecasting methods have been 
derived and this study focuses on six different models.

3.1  Autoregressive (AR)

An autoregressive (AR) states that the future outcome of a variable is a function of its pre-
vious values and a white noise term. Since, the variable y is regressed on past occurrences 
of itself, the method is named as autoregressive. Let us consider the past values of a work-
load variable y at equally spaced time interval t, t − 1,… , 1 are yt, yt−1,… , y1 then an AR 
process of order p can be expressed as given in Eq. (5) [31].

(2)RMSE(y, ŷ) =

√√√√1

n

n∑

t=1

(yt − ŷt)
2

(3)MAE(y, ŷ) =
1

n

n∑

t=1

|yt − ŷt|

(4)MASE(y, ŷ) =
1

n

n�

t=1

� �yt − ŷt�
1

n−m

∑n

t=m+1
�yt − yt−1�

�
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Figure 2 depicts an AR process of order p , where yt and ŷt are the actual and pre-
dicted workloads respectively at time instance t. �i ( i = 1, 2,… , p ) are model parameters 
that are restricted to lie between -1 and +1 while at is random noise term.

3.2  Moving Average (MA)

Unlike AR process that uses the previous actual values to forecast the upcoming 
instances, Moving Average (MA) process considers that an observable time series ( yt ) 
can be modeled and generated from a series of independent white noise ( at ), if succes-
sive values of yt highly depends on previous values  [32]. These white noise terms are 
randomly generated using a fixed distribution, and usually having mean zero. A mov-
ing average method of order q can be represented as mentioned in Eq.  (6), where �j 
( j = {1, 2,… , q} ) are the model parameters (weights) and required neither to be total 
unity nor to be positive  [32]. Figure 3 graphically illustrates the MA process of order 
q , where FMA is a function that models random white noise terms to anticipate future 
values.

(5)ŷt = 𝜙1 × yt−1 + 𝜙2 × yt−2 +…+ 𝜙p × yt−p + at

(6)ŷt = at − 𝜃1 × at−1 − 𝜃2 × at−2 −…− 𝜃q × at−q

y1 y2 . . . . . .yt−p−1 yt−p−2 yt−2 yt−1 ŷt

FAR

φp φ2 φ1

Forecast

at

Fig. 2  AR process of order p 

a1 a2 . . . . . .at−q at−2 at−1 ŷt

FMA

θq
θ2

θ1

Forecast

at

Fig. 3  MA of order q 
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3.3  Autoregressive Moving Average (ARMA)

The Autoregressive Moving Average (ARMA) process combines both autoregres-
sive and moving average terms in the model which is sometimes favorable to achieve a 
greater fit of the actual data. This method parsimoniously describes a time series using 
two different polynomials, one for auto regression and other one for moving average 
model. Commonly this method is preferred for modeling of a noisy time series data. 
Fig. 4 shows the working of an ARMA process with p autoregressive terms and q mov-
ing average terms which can be represented using expression (7).

3.4  Autoregressive Integrated Moving Average (ARIMA)

The Autoregressive Integrated Moving Average (ARIMA) model is more general form 
of ARMA model. It has three different components namely autoregressive (AR), Inte-
gration (I), and Moving Average (MA). It is preferably applied over a non-stationary 
time series data which can be transformed into a stationary data by applying integra-
tion or differencing a number of times. A general ARIMA model of order (p, d, q) is 
represented as ARIMA(p, d, q ) and shown in Fig. 5. Where p, d and q are the number 
of autoregressive terms, number of differences required, and number of moving average 
terms in the prediction equation. The differencing operation of order d is denoted using 
�d and ỹt represents the value of differenced time series at time t. The simplest form of 
ARIMA(1,1,1) can be written as mentioned in Eq.  (8), where B represents backward 
shift ( B × yt = yt−1 ) operator [31].

(7)
ŷt = 𝜙1 × yt−1 + 𝜙2 × yt−2 +⋯ + 𝜙p × yt−p + at − 𝜃1 × at−1 − 𝜃2 × at−2 −⋯ − 𝜃q × at−q

yt−1yt−2. . .yt−q. . .yt−p. . .y1

at−1at−2. . .at−q. . .at−p. . .a1

FARMA

θq θ2
θ1

at

ŷt

Fo
re
ca
st

φ1
φ2

φp

Fig. 4  ARMA of order p and q 
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In addition, the auto ARIMA (referred as M5 ) function provided in the forecast 
package of R  [33] is also considered to analyze the effect of parameter optimization. It 
analyzes the data series and finds the optimal values for regression, differencing, and mov-
ing average terms. Based on these terms, the order of ARIMA model is identified which is 
later applied to forecast the trends on the data series.

3.5  Exponential Smoothing (ES)

Exponential smoothing (ES) advocates that the most recent forecasts highly affect the next 
forecast. The weights of previous predictions reduces exponentially as the data becomes 
older. The general model for exponential smoothing is given in Eq.  (9), where � is the 
smoothing constant or model’s parameter. The visual representation of the model is shown 
in Fig. 6. The key benefit of the model is that it does not need to store high amount of data 
to make forecasts.

3.6  An Illustration

Let Y is a set of randomly sampled workload instances that represents the memory 
requested by an application. The simulation is carried out using R programming lan-
guage and workload is generated using sample(min:max, n, replace = 

(8)
(1 − �1B)
⏟⏞⏞⏟⏞⏞⏟

AR(1)

(1 − B)yt
⏟⏞⏟⏞⏟

First Difference

= (1 − �1B)at
⏟⏞⏞⏞⏟⏞⏞⏞⏟

MA(1)

(9)ŷt = 𝛼yt−1 + (1 − 𝛼)ŷt−1

φ1

φ2

φp

yt+d. . .. . .. . .. . .. . .. . .yd+1. . .y2y1

δd δd

ỹt−1ỹt−2. . .ỹt−q. . .ỹt−p. . .ỹ1

at−1at−2. . .at−q. . .at−p. . .a1

FARIMA

θq θ2
θ1

at

ŷt

Fo
re
ca
st

Fig. 5  ARIMA of order p, d, and q 
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FALSE). Since, the requested memory is sampled at uniform interval, it is converted 
into a time series object. Here, min and max defines the minimum and maximum values 
in the workload trace respectively. We generated Y of length n = 40 with replacement 
option being FALSE that means no value is repeated in generation of workload data. An 
random forecasting model ( M0 i.e. ŷt = yt−1 + rand ) is applied over Y to estimate the 
future values listed as ŶM0 , where rand is a random number between 0 and 1. The fore-
cast error ( et = yt − ŷt ) is measured and listed out as eM0 . The random forecasting model 
( M0 ) estimates the workload with 35.64,  29.42 and 0.98 forecast accuracy as per the 
RMSE, MAE and MASE metrics that represent a large amount of error in estimations.

Y = {25.00, 21.00, 75.00, 13.00, 44.00, 83.00, 99.00, 30.00, 54.00, 41.00, 90.00, 96.00, 43.00, 46.00,

22.00, 57.00, 28.00, 56.00, 64.00, 61.00, 16.00, 70.00, 32.00, 18.00, 78.00, 69.00, 66.00,

94.00, 12.00, 42.00, 49.00, 87.00, 100.00, 67.00, 37.00, 8.00, 14.00, 35.00, 50.00, 7.00}

Ŷ
M0 = {NA, 25.12, 21.90, 75.74, 13.50, 44.84, 83.17, 99.65, 30.09, 54.09, 41.52, 90.04, 96.89,

43.19, 46.21, 22.64, 57.13, 28.08, 56.28, 64.83, 61.81, 16.74, 70.91, 32.62, 18.17, 78.64,

69.21, 66.90, 94.26, 12.91, 42.25, 49.80, 87.79, 100.73, 67.64, 37.25, 8.58, 14.03, 35.19, 50.35}

e
M0 = {NA,−4.12, 53.10,−62.74, 30.50, 38.16, 15.83,−69.65, 23.91,−13.09, 48.48, 5.96,

−53.89, 2.81,−24.21, 34.36,−29.13, 27.92, 7.72,−3.83,−45.81, 53.26,−38.91,−14.62,

59.83,−9.64,−3.21, 27.10,−82.26, 29.09, 6.75, 37.20, 12.21,−33.73,−30.64,−29.25, 5.42, 20.97,

14.81,−43.35}

Similarly, we evaluate each time series forecasting model on random workload data. 
The estimations obtained from an autoregressive process ( M1 ) are listed as ŶM1 and eM1 
represents the forecast errors. The forecasting model randomly selects the values of two 
parameters �1 = −0.0093 and c = 49.365 . The model generates the 27.81,  23.78,   and 
0.78 for RMSE, MAE and MASE correspondingly that shows the better forecasts than 
M0.

y1 y2 . . . . . . yt−2 yt−1

ŷ1 ŷ2 . . . . . . ŷt−2 ŷt−1 ŷt

FES

α

(1
−

α
)

F
or

ec
as

t

Fig. 6  Exponential smoothing
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Ŷ
M1 = {NA, 49.17, 48.67, 49.24, 48.96, 48.59, 48.44, 49.09, 48.86, 48.98, 48.53, 48.47,

48.97, 48.94, 49.16, 48.83, 49.10, 48.84, 48.77, 48.80, 49.22, 48.71, 49.07, 49.20,

48.64, 48.72, 48.75, 48.49, 49.25, 48.97, 48.91, 48.56, 48.44, 48.74, 49.02,

e
M1 = {NA,−28.17, 26.33,−36.24,−4.96, 34.41, 50.56,−19.09, 5.14,−7.98, 41.47, 47.53,

−5.97,−2.94,−27.16, 8.17,−21.10, 7.16, 15.23, 12.20,−33.22, 21.29,−17.07,

−31.20, 29.36, 20.28, 17.25, 45.51,−37.25,−6.97, 0.09, 38.44, 51.57, 18.26,−12.02,

−41.29,−35.23,−14.04, 1.10,−42.30}

Similarly on applying the first order MA ( M2 ) with randomly chosen �1 = −0.126 
and c = 49.365 over Y, it forecasts with 28.13, 23.40,  and 0.78 forecast errors obtained 
using RMSE, MAE, and MASE respectively that shows the similar accuracy as of M1.

Ŷ
M2 = {NA, 49.37, 52.94, 46.59, 53.60, 50.57, 45.28, 42.60, 50.95, 48.98, 50.37, 44.37, 42.86,

49.35, 49.79, 52.87, 48.84, 51.99, 48.86, 47.46, 47.66, 53.35, 47.27, 51.29,

53.56, 46.29, 46.50, 46.91, 43.43, 53.33, 50.79, 49.59, 44.65, 42.39, 46.26, 50.53,

54.72, 54.50, 51.82, 49.59}

e
M2 = {0.00,−28.37, 22.06,−33.59,−9.60, 32.43, 53.72,−12.60, 3.05,−7.98, 39.63,

51.63, 0.14,−3.35,−27.79, 4.13,−20.84, 4.01, 15.14, 13.54,−31.66, 16.65,

−15.27,−33.29, 24.44, 22.71, 19.50, 47.09,−31.43,−11.33,−1.79, 37.41, 55.35,

24.61,−9.26,−42.53,−40.72,−19.50,−1.82,−42.59}

After applying an ARMA process ( M3 ) on Y with p and q both terms being 1 where 
�1 , �1 and c are same as selected in M1 and M2 , the forecasts have RMSE, MAE, and 
MASE equal to 27.34, 23.17,   and 0.77 respectively. The forecasts of M3 are bit more 
accurate than M1 and M2.

Fig. 7  Forecast accuracy on 
random data
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Ŷ
M3 = {NA, 49.13, 45.62, 52.36, 44.28, 48.92, 52.88, 54.25, 46.03, 49.86, 47.86, 53.83,

53.78, 47.60, 48.73, 45.79, 50.24, 46.30, 50.06, 50.52, 50.11, 44.91, 51.87, 46.56,

45.59, 52.72, 50.77, 50.67, 53.95, 43.96, 48.72, 48.94, 53.35, 54.31, 50.34, 47.34,

44.33, 45.41, 47.72, 49.18}

e
M3 = {0.00,−28.13, 29.38,−39.36,−0.28, 34.08, 46.12,−24.25, 7.97,−8.86, 42.14,

42.17,−10.78,−1.60,−26.73, 11.21,−22.24, 9.70, 13.94, 10.48,−34.11, 25.09,

−19.87,−28.56, 32.41, 16.28, 15.23, 43.33,−41.95,−1.96, 0.28, 38.06, 46.65, 12.69,

−13.34,−39.34,−30.33,−10.41, 2.28,−42.18}

We applied ARIMA(1,1,1) ( M4 ) also over Y which improves the accuracy more by 
producing forecasts with 26.78,  22.35,   and 0.76 values of RMSE, MAE, and MASE 
respectively.

Ŷ
M4 = {NA,NA, 51.20, 53.66, 46.62, 50.55, 54.89, 56.57, 48.46, 51.64, 49.95, 55.76, 56.18,

50.00, 50.63, 47.78, 52.00, 48.41, 51.86, 52.62, 52.25, 47.02, 53.56, 48.80, 47.41,

54.46, 53.08, 52.82, 56.09, 46.37, 50.34, 50.93, 55.36, 56.67, 52.77, 49.46, 46.21,

47.05, 49.45, 51.09}

e
M4 = {NA, 0.00, 23.80,−40.66,−2.62, 32.45, 44.11,−26.57, 5.54,−10.64, 40.05, 40.24,

−13.18,−4.00,−28.63, 9.22,−24.00, 7.59, 12.14, 8.38,−36.25, 22.98,−21.56,

−30.80, 30.59, 14.54, 12.92, 41.18,−44.09,−4.37,−1.34, 36.07, 44.64, 10.33,

−15.77,−41.46,−32.21,−12.05, 0.55,−44.09}

We evaluated an exponential smoothing model ( M6 ) over Y with randomly selected 
� = 0.5 which forecasts the workload trace with RMSE, MAE, and MASE equal to 31.12, 
27.44, and 0.90 values. The forecasts of M6 are better than M0 only. However, it may pro-
duce more accurate forecasts with better values of �.

Ŷ
M6 = {NA, 49.98, 35.49, 55.24, 34.12, 39.06, 61.03, 80.02, 55.01, 54.50, 47.75, 68.88,

82.44, 62.72, 54.36, 38.18, 47.59, 37.79, 46.90, 55.45, 58.22, 37.11, 53.56,

42.78, 30.39, 54.19, 61.60, 63.80, 78.90, 45.45, 43.72, 46.36, 66.68, 83.34, 75.17,

56.09, 32.04, 23.02, 29.01, 39.51}

e
M6 = {NA,−28.98, 39.51,−42.24, 9.88, 43.94, 37.97,−50.02,−1.01,−13.50, 42.25,

27.12,−39.44,−16.72,−32.36, 18.82,−19.59, 18.21, 17.10, 5.55,−42.22, 32.89,

−21.56,−24.78, 47.61, 14.81, 4.40, 30.20,−66.90,−3.45, 5.28, 40.64, 33.32,−16.34,

−38.17,−48.09,−18.04, 11.98, 20.99,−32.51}

Table 1  List of data traces and corresponding acronyms

Type Dataset Workload characterstic Acronym

Web Server Logs NASA Server Number of HTTP Requests D
1

Calgary Server Number of HTTP Requests D
2

Saskatchewan Server Number of HTTP Requests D
3

Google Cluster 
Resource Traces

CPU trace Amount of CPU Cores Requested D
4

Memory trace Amount of RAM (MB) requested D
5



1960 J. Kumar, A. K. Singh 

1 3

Figure 7 shows the forecast accuracy of each model on random data. It can be seen that 
the ARIMA process generates better forecasts according to all three evaluation metrics i.e. 
RMSE, MAE and MASE. We conducted a comprehensive experimental study on various 
data sets to analyze the behavior of each model.

Table 2  Performance of AR(1)

PWS Error metric D1 D2 D3 D4 D5

5 RMSE 5.10E+01 1.60E+01 2.76E+01 5.87E+02 4.38E+02
MAE 3.72E+01 1.13E+01 1.97E+01 2.60E+02 2.12E+02
MASE 1.01E+00 7.74E-01 8.39E-01 1.02E+00 1.02E+00

10 RMSE 8.56E+01 3.21E+01 6.86E+01 1.25E+03 8.47E+02
MAE 6.23E+01 1.95E+01 4.28E+01 5.23E+02 4.06E+02
MASE 1.02E+00 7.93E-01 1.02E+00 1.07E+00 1.03E+00

20 RMSE 1.50E+02 9.22E+01 1.51E+02 2.82E+03 1.84E+03
MAE 1.10E+02 8.30E+01 1.25E+02 1.20E+03 8.67E+02
MASE 1.02E+00 1.04E+00 1.18E+00 1.15E+00 1.05E+00

30 RMSE 2.26E+02 4.93E+01 6.33E+01 3.98E+03 2.59E+03
MAE 1.60E+02 3.64E+01 3.89E+01 1.85E+03 1.29E+03
MASE 1.02E+00 8.78E-01 9.77E-01 1.14E+00 1.02E+00

60 RMSE 1.65E+02 7.43E+01 8.69E+01 7.10E+03 4.77E+03
MAE 1.21E+02 5.98E+01 5.92E+01 3.90E+03 2.73E+03
MASE 1.17E+00 8.76E-01 9.73E-01 1.06E+00 9.80E-01

Table 3  Performance of MA(1)

PWS Error metric D1 D2 D3 D4 D5

5 RMSE 7.86E+01 1.62E+01 2.82E+01 7.11E+02 5.53E+02
MAE 6.17E+01 1.14E+01 2.04E+01 3.80E+02 3.08E+02
MASE 1.68E+00 7.81E-01 8.68E-01 1.50E+00 1.49E+00

10 RMSE 1.48E+02 3.22E+01 6.99E+01 1.37E+03 9.91E+02
MAE 1.17E+02 1.96E+01 4.48E+01 7.02E+02 5.62E+02
MASE 1.92E+00 7.93E-01 1.06E+00 1.44E+00 1.43E+00

20 RMSE 2.79E+02 9.26E+01 1.54E+02 2.97E+03 2.13E+03
MAE 2.23E+02 8.43E+01 1.32E+02 1.47E+03 1.16E+03
MASE 2.06E+00 1.05E+00 1.25E+00 1.40E+00 1.40E+00

30 RMSE 3.95E+02 5.08E+01 7.11E+01 4.16E+03 2.92E+03
MAE 3.18E+02 3.80E+01 4.89E+01 2.19E+03 1.64E+03
MASE 2.04E+00 9.16E-01 1.23E+00 1.35E+00 1.30E+00

60 RMSE 1.75E+02 7.58E+01 1.11E+02 7.47E+03 5.18E+03
MAE 1.41E+02 6.11E+01 8.18E+01 4.40E+03 3.25E+03
MASE 1.36E+00 8.96E-01 1.34E+00 1.20E+00 1.17E+00
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4  Simulation Environment and Datasets

The experiments are carried out on a machine equipped with  Intel®  Core™ I7-7700 proces-
sor of 3.60GHz clock speed. The machine consists 8 GB of main memory. The models 
are implemented using R. This analytical study is performed over five different benchmark 
data sets. The data sets are NASA server HTTP Trace, Calgary HTTP Trace, Saskatchewan 
server HTTP Trace,  [34] and Google Cluster Trace  [35]. We selected CPU and memory 

Table 4  Performance of ARMA(1,1)

PWS Error metric D1 D2 D3 D4 D5

5 RMSE 4.56E+01 1.56E+01 2.52E+01 5.87E+02 4.29E+02
MAE 3.23E+01 1.10E+01 1.79E+01 2.60E+02 2.02E+02
MASE 8.79E-01 7.54E-01 7.63E-01 1.02E+00 9.73E-01

10 RMSE 7.95E+01 3.19E+01 6.40E+01 1.25E+03 8.42E+02
MAE 5.66E+01 1.95E+01 3.89E+01 5.20E+02 3.96E+02
MASE 9.25E-01 7.90E-01 9.25E-01 1.06E+00 1.01E+00

20 RMSE 1.47E+02 9.16E+01 1.44E+02 2.81E+03 1.81E+03
MAE 1.07E+02 8.20E+01 1.13E+02 1.17E+03 8.62E+02
MASE 9.92E-01 1.02E+00 1.07E+00 1.12E+00 1.04E+00

30 RMSE 2.25E+02 4.87E+01 5.79E+01 3.95E+03 2.59E+03
MAE 1.59E+02 3.60E+01 3.57E+01 1.81E+03 1.29E+03
MASE 1.02E+00 8.69E-01 8.96E-01 1.12E+00 1.02E+00

60 RMSE 1.62E+02 7.42E+01 8.43E+01 7.03E+03 4.74E+03
MAE 1.19E+02 5.98E+01 5.86E+01 3.88E+03 2.75E+03
MASE 1.15E+00 8.77E-01 9.63E-01 1.06E+00 9.87E-01

Table 5  Performance of ARIMA(1,1,1)

PWS Error metric D1 D2 D3 D4 D5

5 RMSE 4.54E+01 1.58E+01 2.52E+01 5.84E+02 4.30E+02
MAE 3.17E+01 1.12E+01 1.80E+01 2.55E+02 2.02E+02
MASE 8.64E-01 7.69E-01 7.68E-01 1.00E+00 9.77E-01

10 RMSE 7.97E+01 3.20E+01 6.43E+01 1.24E+03 8.42E+02
MAE 5.56E+01 1.97E+01 3.84E+01 5.07E+02 3.99E+02
MASE 9.08E-01 7.98E-01 9.12E-01 1.04E+00 1.01E+00

20 RMSE 1.48E+02 9.18E+01 1.47E+02 2.79E+03 1.83E+03
MAE 1.05E+02 8.15E+01 1.07E+02 1.15E+03 8.63E+02
MASE 9.73E-01 1.02E+00 1.02E+00 1.10E+00 1.04E+00

30 RMSE 2.28E+02 4.87E+01 5.86E+01 3.94E+03 2.58E+03
MAE 1.55E+02 3.60E+01 3.60E+01 1.78E+03 1.30E+03
MASE 9.92E-01 8.69E-01 9.05E-01 1.10E+00 1.02E+00

60 RMSE 1.65E+02 7.35E+01 8.63E+01 7.06E+03 4.79E+03
MAE 1.19E+02 5.92E+01 5.95E+01 3.78E+03 2.76E+03
MASE 1.15E+00 8.67E-01 9.79E-01 1.03E+00 9.89E-01
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resource requests data traces from Google cluster traces. In this paper, we refer these traces 
as D1,D2,D3,D4 , and D5 respectively as listed out in Table 1.

NASA server traces are two HTTP request traces consisting of two months requests to 
the NASA Kennedy Space Center WWW server in Florida. In our experiments, we have 
considered only one month request data. The data logs are stored in ASCII file format 
distributed in five different fields. Each record contains host, timestamp, request, HTTP 
reply code, and bytes. Here, host indicates the hostname or an IP address of the requesting 

Table 6  Performance of Auto Arima

PWS Error metric D1 D2 D3 D4 D5

5 RMSE 4.53E+01 1.58E+01 2.52E+01 5.82E+02 4.25E+02
MAE 3.17E+01 1.12E+01 1.80E+01 2.56E+02 2.02E+02
MASE 8.63E-01 7.69E-01 7.68E-01 1.01E+00 9.75E-01

10 RMSE 7.97E+01 3.19E+01 6.43E+01 1.23E+03 8.20E+02
MAE 5.56E+01 1.96E+01 3.84E+01 5.04E+02 3.92E+02
MASE 9.08E-01 7.95E-01 9.12E-01 1.03E+00 9.96E-01

20 RMSE 1.48E+02 9.14E+01 1.47E+02 2.79E+03 1.79E+03
MAE 1.05E+02 8.09E+01 1.07E+02 1.15E+03 8.61E+02
MASE 9.72E-01 1.01E+00 1.02E+00 1.10E+00 1.04E+00

30 RMSE 2.25E+02 4.83E+01 5.86E+01 3.94E+03 2.56E+03
MAE 1.54E+02 3.58E+01 3.60E+01 1.78E+03 1.30E+03
MASE 9.89E-01 8.63E-01 9.05E-01 1.10E+00 1.02E+00

60 RMSE 1.70E+02 7.26E+01 8.63E+01 7.03E+03 4.71E+03
MAE 1.11E+02 5.83E+01 5.95E+01 3.82E+03 2.71E+03
MASE 1.08E+00 8.55E-01 9.79E-01 1.04E+00 9.73E-01

Table 7  Performance of exponential smoothing

PWS Error metric D1 D2 D3 D4 D5

5 RMSE 4.57E+01 1.53E+01 2.51E+01 6.24E+02 4.39E+02
MAE 3.19E+01 1.10E+01 1.85E+01 2.41E+02 1.97E+02
MASE 2.55E+00 9.72E-01 9.72E-01 1.41E+00 1.45E+00

10 RMSE 7.99E+01 3.25E+01 4.75E+01 1.32E+03 8.74E+02
MAE 5.57E+01 1.94E+01 2.33E+01 4.78E+02 3.84E+02
MASE 3.00E+00 7.89E-01 1.47E+00 1.77E+00 1.69E+00

20 RMSE 1.48E+02 1.97E+00 2.76E+00 3.06E+03 1.94E+03
MAE 1.05E+02 3.07E+03 5.37E+03 1.03E+03 8.23E+02
MASE 3.26E+00 9.08E-01 8.00E-01 1.09E+01 9.68E+00

30 RMSE 2.28E+02 7.44E-01 1.19E+00 4.46E+03 2.78E+03
MAE 1.55E+02 2.31E+03 2.60E+03 1.62E+03 1.27E+03
MASE 3.33E+00 1.12E+00 3.46E+00 1.48E+00 5.03E+00

60 RMSE 8.08E+00 7.71E+01 3.38E-01 8.12E+03 5.18E+03
MAE 1.14E+04 6.16E+01 1.33E+04 3.66E+03 2.78E+03
MASE 2.22E+00 1.04E+00 4.19E+00 1.02E+00 1.15E+00
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machine, timestamp denotes the time of request in the format “DAY MON DD HH:MM:SS 
YYYY” with timezone −  0400, request is mentioned in quotes, next field indicates the 
reply code, and last field shows the bytes sent in reply of the request. Similarly, Calgary and 
Saskatchewan traces contain HTTP requests worth of one year and seven month’s HTTP 
requests to the University of Calgary’s department of computer science WWW server and 
University of Saskatchewan’s WWW server respectively. The both servers are respectively 
located at Calgary, Alberta, Canada and Saskatoon, Saskatchewan, Canada. The other data-
set i.e. Google cluster trace was released by Google in 2011 that incorporates the data of 29 
days collected from organization’s cluster cell. The data contains 10, 388 machines, over 
0.67 million jobs, 20 million tasks. Here, a job may consist multiple tasks and each task 
may further have multiple processes and arranged in a set of six different tables.

5  Forecast Evaluation

We carried out a number of experiments with different prediction window size (PWS) to 
study the performance behavior of time series forecasting models. The prediction window 
size defines the forecast time interval e.g. if the length of the window is 10 minutes, the 
model predicts upcoming workload on the server after each 10 min. The experiments are 
performed with prediction window of 5, 10, 20, 30, and 60 min duration. The 60% of the 
data is used to estimate the model parameters and the remaining data is used to test the 
forecast accuracy of estimated model.

The forecast error in the experiments carried out with first order autoregressive model 
are reported in Table 2. The model produces least root mean squared error over Calgary 
traces ( D2 ) in all experiments with different lengths of prediction window. In the case of 
mean absolute error, the least error was measured again on D2 for 5, 10, 20 and 40 minutes 
of prediction window. The Saskatchewan trace ( D3 ) receives the least mean absolute error 
when the length of window is 60 minutes. The mean absolute scaled error measured the 
minimum forecast error in the predictions of D2 for the cases when prediction window 
is of length 5, 10, 30, and 60 minutes. The NASA trace ( D1 ) achieves the better forecast 
accuracy than other traces for 20 minutes of PWS. It is also observed that the first order 
autoregressive model performs better on web server workloads rather than cloud server 
workloads. In cloud server workloads, the memory trace i.e. D5 attains better results. Based 
on MASE results, it can be generalized that AR(1) performs better on Calgary trace.

The similar results were observed in the experiments performed with first order moving 
average forecasting model. The measured error in forecasts of MA process are tabulated 
in Table 3 which shows that the model attained better accuracy over Calgary trace ( D2 ) 
for all values of prediction window. The forecasts of web server workloads were found 
more accurate than cloud server workloads. On comparing the performance of the model 
over different cloud workloads, the memory trace ( D5 ) achieved better forecasts than D4 i.e. 
CPU demand trace.

We performed the same set of experiments with ARMA(1,1) and the results are listed 
in Table 4. The achieved forecast errors indicate that the model produces lower root mean 
squared error for D2 forecasts in all instances of prediction window. The Saskatchewan 
trace received lower mean absolute error for prediction lookup window of 30 and 60 min. 
For other values of PWS D2 got better forecasts according to mean absolute error. D2 also 
witnesses better results in terms of mean absolute scaled error except one instance i.e. 
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when prediction lookup window is 20 min. The experimental results depict similar trend in 
the accuracy of web and cloud server workloads as shown in previous two models.

We performed experiments with ARIMA(1,1,1) and auto ARIMA also. The forecast 
errors measured in forecasts of both models are shown in Tables 5 and 6 respectively. The 
results indicate that both models produced forecasts with similar accuracy. In both cases, 
the root mean squared error and mean absolute error of Calgary trace forecasts were found 
better than other traces. According to mean absolute scaled error metric, the Saskatchewan 

Table 8  Friedman test ( � = 0.05) Accuracy metric F-Statistics p-value H0 Result
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trace and NASA trace forecasts were better when the prediction window was 5 and 20 min 
duration.

The last model we experimented with is exponential smoothing and the forecasting 
errors are listed in the Table 7. Unlike the previous models, it produces the mix results. For 
instance, according to root mean square metric the D2 forecasts are less erroneous for pre-
diction window of length 5, 10, 20 and 30 minutes. For the case of 60 minutes, Saskatch-
ewan trace receives better forecast. And MAE indicates that D2 forecasts are better when 
prediction window duration is 5, 10 and 60 min and D1 forecasts are better in other cases. 
On comparing the MASE, the model performs better on D2 in case of 10 and 30 min pre-
diction window. In case of 20 and 60 minutes interval, the model performs better on Sas-
katchewan and CPU trace respectively. While it performs equally better on D2 and D3 for 5 
minutes prediction window. Again the model performs better on web server workloads in 
most of the cases and it gives mixed performance over cloud server traces.

6  Statistical Analysis

This section analyzes the statistics of forecast accuracy observed by different prediction 
models that are reported in previous section. The experimental findings report the forecast 
accuracy on a particular data trace only and it becomes difficult to rank the models. The 
statistical analysis helps in finding out whether the difference in results are significant or 
not. We have used the Friedman test [36] due the fact that it is considered to be most pow-
erful test when five or more models’ performance is compared  [37]. The Friedman test 
considers a null hypothesis ( H0 ) that assumes the accuracy of each model is same in nature 
and no significant difference in the results is present. The alternate hypothesis ( H1 ) 

Table 9  Post hoc analysis using Finner test (Controle Method=M5)

Comparison RMSE MAE MASE

Statistic p-value H
p

0
 Result Statistic p-value H
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advocates that the experimental findings of at least one model are significantly different 
than others. Provided k models’ performance is evaluated on d different datasets, a rank 
( R�ij

 ) for an experimental finding i.e. forecast accuracy of jth forecasting model ( Mj ) on ith 
dataset ( Di ) is computed for all datasets. These ranks are summed up to compute the rank 
of a forecasting model ( RMj

 ) as shown in Eq. (10). The test further computes the Friedman 
statistic commonly referred as F-Statistic as given in Eq.  (11), where Q can be obtained 
from Eq. (12). The F-Statistic is tested against the F-quantiles for a given � with degree of 
freedom, f1 = k − 1 and f2 = (d − 1)(k − 1) , where � is the significance level being consid-
ered. The study includes six models ( k = 6 ) and five data traces ( d = 5 ). The statistical 
results are reported with � = 0.05 as standard.

We applied the statistical test using the STAC web platform  [38]. The Friedman test 
observed the 28.67 and 0.0 values of F-Statistic and p-value respectively that resulted in 
the rejection of null hypothesis H0 for RMSE based forecast accuracy as it finds the sig-
nificant difference in the predictions of different models. Similarly, it also rejects the H0 
for MAE and MASE based forecast accuracy evaluation. The F-Statistics and p-values for 
both findings are given in Table 8, where H0.R denotes the rejection of H0 . The Friedman 
ranks obtained by each model are shown in Fig. 8, where Figs. 8a,b and c depict the ranks 
given to the forecasting models for RMSE, MAE and MASE based accuracy evaluation 
respectively.

The Friedman test reports the presence of any significant difference in the results and 
provides a rank to each model based on the experimental results. However, post-hoc 
analysis methods can be used to explore the statistical properties of experimental find-
ings further. We have used Finner post-hoc analysis  [39] that performs multiple com-
parisons. The test considers one of the methods under evaluation as a control method. 
It works around a null hypothesis ( Hp

0
 ) where p denotes the null hypothesis for post-hoc 

analysis. The Hp
o assumes that the mean of the control method’s result is equal with each 

other group member under test. The pairwise comparison results obtained from Finner 
post-hoc method are listed out in Table 9, where Hp

0
.R and Hp

0
.A represent the rejection 

and acceptance of Hp

0
 . It can be observed that the analysis rejects the Hp

0
 in most of the 

comparisons. Based on these statistical findings, it can be observed that M3 , M4 and 
M5 produced the similar forecast accuracy and presence of significant difference is not 
noticed. The rankings of these models also exhibit the similar behavior as no major dif-
ference in the rankings is observed. However, M5 received the best ranking among these 
models.

(10)RMj
=

d∑

i=1

R�ij
;j ∈ {1, 2,… , k}

(11)F − Statistic =
(d − 1)Q

d(k − 1) − Q

(12)Q =
12

dk(k + 1)

k∑

j=1

(
RMj

−
d(k + 1)

2

)2
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7  Conclusions

Forecasting have been always beneficial to a wide range of applications in their business 
decision making. This work studies the performance behavior of time series forecasting 
schemes for server workload estimation in cloud environment. The study analyses the per-
formance of six different forecasting models on three web server workload traces and two 
cloud server workload traces. We have analyzed the experimental findings of each model 
using statistical tests including Friedman test and Finner post-hoc analysis. The study also 
finds that the three models M3,M4 and M5 produced more or less similar forecast accuracy. 
But the performance of M5 is observed to be best among the considered models.
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